
Supplementary Materials

A Proof for the Adversarial Zero-One Loss (Theorem 1)

To prove Theorem 1, which defines the ERM loss of the adversarial classifier for zero-one loss, we
first develop two important lemmas. Our approach analyzes the Nash equilibrium value of the game
described in Eq. 3, beginning with a specific simple case of the game: the game matrix L′xi,θ is a
completely mixed game.
Lemma 1. If the game matrix L′xi,θ is a completely mixed game, i.e., every adversary’s and predic-
tor’s strategy has non zero probability, and if the game value is nonzero, then the equilibrium game

value for the game is
∑|Y|
j=1 ψj,yi (xi)+|Y|−1

|Y| .

Proof. According to Barron 3 , a completely mixed game with a square game matrix has only one
saddle point. If we know that the game value is nonzero, then the game matrix is invertible and the
game value can be computed using the formula v(M) = 1

JTM−1J
, where M is the zero-sum game

matrix with row player as the maximizing player and column player as the minimizing player, and J
is a vector with length |Y| containing all ones, J = [1, 1, . . . , 1]T .

Therefore, under the adversarial game matrix formulation, M is the transpose of Lxi,θ:

M = L′Txi,θ =


ψ1,yi(xi) ψ1,yi(xi) + 1 · · · ψ1,yi(xi) + 1

ψ2,yi(xi) + 1 ψ2,yi(xi) · · · ψ2,yi(xi) + 1
...

...
. . .

...
ψ|Y|,yi(xi) + 1 ψ|Y|,yi(xi) + 1 · · · ψ|Y|,yi(xi)

 . (9)

The inverse of game matrix M is of the form (detailed proof described in Appendix G):

M−1 =


a1,1 a1,2 · · · a1,|Y|
a2,1 a2,2 · · · a2,|Y|

...
...

. . .
...

a|Y|,1 a|Y|,2 · · · a|Y|,|Y|

 , (10)

where:

ak,k = −
∑|Y|
j=1,j 6=k ψj,yi(xi) + |Y| − 2∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

k ∈ {1, . . . , |Y|},

ak,l =
ψk,yi(xi) + 1∑|Y|

j=1 ψj,yi(xi) + |Y| − 1
k, l ∈ {1, . . . , |Y|}, k 6= l.

The value of the vector-matrix multiplication JTM−1J where J is a vector containing all ones, is
the summation of all elements in M−1:

JTM−1J =

−
∑|Y|
k=1

[∑|Y|
j=1
j 6=k

ψj,yi(xi) + |Y| − 2

]
+
∑
k,l∈{1,...,|Y|}

k 6=l
[ψk,yi(xi) + 1]∑|Y|

j=1 ψj,yi(xi) + |Y| − 1
(11)

=

∑
k,l∈{1,...,|Y|}

k 6=l
ψk,yi(xi)−

∑
j,k∈{1,...,|Y|}

j 6=k
ψj,yi(xi) + |Y|(|Y| − 1)− |Y|(|Y| − 2)∑|Y|

j=1 ψj,yi(xi) + |Y| − 1

(12)

=
|Y|∑|Y|

j=1 ψj,yi(xi) + |Y| − 1
. (13)

3Emmanual N Barron. Game Theory: An Introduction, Volume 2. John Wiley & Sons, 2013.

10

Therefore, the equilibrium game value when the game matrix L′xi,θ is a completely mixed game with
nonzero game value is:

v(M) =
1
|Y|∑|Y|

j=1 ψj,yi (xi)+|Y|−1

=

∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

|Y|
. (14)

We next consider the case where one of the adversary’s strategies in the game matrix L′xi,θ has zero
probability. Lemma 2 establishes the game value for such cases.
Lemma 2. If an adversary strategy k (corresponding with column k) has zero probability in
the Nash equilibrium of game matrix L′xi,θ, and if the game matrix excluding column and row
k is a completely mixed game with nonzero game value, the equilibrium value for the game is∑|Y|

j=1,j 6=k ψj,yi (xi)+|Y|−2

|Y|−1 ≥
∑|Y|
j=1 ψj,yi (xi)+|Y|−1

|Y| .

Proof. If an adversary strategy k (corresponds with column k) has zero probability, row k also
has zero probability because removing column k causes the removal of ψk,yi(xi) term from row k,
leaving ψj,yi(xi) + 1,∀j 6= k. Since the row player seeks to minimize the game value and row k
now has values greater than or equal to the other rows, row k can be dominated and therefore has
zero probability in the Nash equilibrium of the game.

Using Lemma 1, we can compute the value of a game without column k and row k in the case that

the game value is nonzero, which is
∑|Y|
j=1,j 6=k ψj,yi (xi)+|Y|−2

|Y|−1 . Therefore, since both column and row
k has zero probability and the game matrix excluding column and row k is a completely mixed game,

the value of the game matrix L′xi,θ is also
∑|Y|
j=1,j 6=k ψj,yi (xi)+|Y|−2

|Y|−1 . By definition of equilibrium
game value, this value has to be greater than or equal to any possible strategy that the adversary player
can play, including the strategy that assigns non-zero probability to column and row k. Therefore, we

can also conclude that the inequality
∑|Y|
j=1,j 6=k ψj,yi (xi)+|Y|−2

|Y|−1 ≥
∑|Y|
j=1 ψj,yi (xi)+|Y|−1

|Y| holds.

The proof for Theorem 1 involves the generalization of Lemma 2 to all possible combination of
strategies with zero probability, as described in the following.

Theorem 1. The model parameters θ for multiclass zero-one adversarial classification are equiva-
lently obtained from empirical risk minimization under the adversarial zero-one loss function:

AL0-1
f (xi, yi) = max

S⊆{1,...,|Y|}
S6=∅

∑
j∈S ψj,yi(xi) + |S| − 1

|S|
, (15)

where S is any non-empty member of the powerset of classes {1, 2, . . . , |Y|}.

Proof. Generalizing Lemma 2, if we consider all possible combination of strategies with zero
probability, then the game value of game matrix L′xi,θ equals to the game value of the matrix after
removing all columns and rows with zero probability, resulting in a completely mixed game matrix.
Let R be a set of the remaining columns in the resulting completely mixed game matrix. If we know
that the game value for the resulting game matrix is nonzero, then the equilibrium game value of
L′xi,θ is

∑
j∈R ψj,yi (xi)+|R|−1

|R| . This value must be greater than or equal to any possible strategy of
the adversary player. Moreover, we know that if the set R contains only one element {yi}, then the
game value is∑

j∈R ψj,yi(xi) + |R| − 1

|R|
=
ψyi,yi(xi) + 1− 1

1
= θT (φ(xi, yi)− φ(xi, yi)) = 0. (16)

Therefore, by considering all possible combination of strategies with zero probability, we can conclude
that the game value of the game matrix L′xi,θ is the following function:

max
S⊆{1,...,|Y|}
S6=∅

∑
j∈S ψj,yi(xi) + |S| − 1

|S|
. (17)

11

The adversarial optimization (Eq. 3) can be viewed from the empirical risk minimization perspective
where the loss function is defined by the game value described above, hence proving the theorem.

B Proof for the Consistency Analysis (Theorem 2 and Theorem 3)

In this section, we will prove Theorem 2 and Theorem 3. We first analyze the properties of the set of
labels that define the supporting hyperplane of AL0-1 loss.
Lemma 3. If R∗ ⊆ {1, . . . , |Y|} is the set of labels that defines the supporting hyperplane of AL0-1

loss (Eq. (4)) when the true label y = k, then R∗ also defines the supporting hyperplane of AL0-1

loss when the true label is any label other than k.

Proof. We know that for any set R ⊆ {1, . . . , |Y|},∑
j∈R ψj,y(x) + |R| − 1

|R|
=

∑
j∈R [fj(x)− fy(x)] + |R| − 1

|R|
(18)

=

∑
j∈R fj(x) + |R| − 1

|R|
− fy(x). (19)

Since R∗ is the set of labels that define the supporting hyperplane of the loss when the true label class
y = k, then for any other set R ⊆ {1, . . . , |Y|}:

∑
j∈R∗ ψj,k(x) + |R∗| − 1

|R∗|
≥
∑
j∈R ψj,k(x) + |R| − 1

|R|
(20)∑

j∈R∗ fj(x) + |R∗| − 1

|R∗|
− fk(x) ≥

∑
j∈R fj(x) + |R| − 1

|R|
− fk(x) (21)∑

j∈R∗ fj(x) + |R∗| − 1

|R∗|
≥
∑
j∈R fj(x) + |R| − 1

|R|
. (22)

Therefore, for any other class l, the inequality below also holds:∑
j∈R∗ fj(x) + |R∗| − 1

|R∗|
− fl(x) ≥

∑
j∈R fj(x) + |R| − 1

|R|
− fl(x) (23)∑

j∈R∗ ψj,l(x) + |R∗| − 1

|R∗|
≥
∑
j∈R ψj,l(x) + |R| − 1

|R|
. (24)

We now analyze AL0-1 using a geometrical view. We know that the loss is the maximization over
different linear hyperplanes. We analyze the hyperplane defined by the complete set of labels
R∗ = {1, . . . , |Y|}. For three class classification (Figure 2a), it is the hyperplane in the middle
with AL0-1 value ψ1,y(x)+ψ2,y(x)+ψ3,y(x)+2

3 . Note that in Figure 2a, ψ1,y(x) = 0 since y = 1. We
demonstrate the circumstances that correspond with this case in the following lemma.
Lemma 4. The hyperplane defined by the complete set of labels R∗ = {1, . . . , |Y|} supports AL0-1

in the area where − 1
|Y| ≤ fj(x) ≤ |Y|−1

|Y| ,∀j ∈ {1, . . . , |Y|} given that
∑|Y|
j=1 fj(x) = 0.

Proof. Since the hyperplane defined by the complete set of labels R∗ = {1, . . . , |Y|} supports AL0-1,
from the proof in Lemma 3, we know that:∑|Y|

j=1 fj(x) + |Y| − 1

|Y|
=
|Y| − 1

|Y|
≥
∑
j∈R fj(x) + |R| − 1

|R|
, (25)

for any R ⊆ {1, . . . , |Y|}, R 6= ∅. In the case that R contains only one element j, we know that
|Y|−1
|Y| ≥ fj(x). In the case that R contains all element but j, we have:

|Y| − 1

|Y|
≥
∑
k∈{1,...,|Y|},k 6=j fk(x) + |Y| − 2

|Y| − 1
=
−fj(x) + |Y| − 2

|Y| − 1
(26)

12

|Y|2 − 2|Y|+ 1 ≥ −|Y|fj(x) + |Y|2 − 2|Y| (27)

fj(x) ≥ − 1

|Y|
. (28)

In general for any set R ⊆ {1, . . . , |Y|}, R 6= ∅, the following holds:

|Y| − 1

|Y|
≥
∑
j∈R fj(x) + |R| − 1

|R|
(29)

|R||Y| − |R| ≥ |Y|
∑
j∈R

fj(x) + |R||Y| − |Y| (30)

∑
j∈R

fj(x) ≤ |Y| − |R|
|Y|

. (31)

If we consider Rc as the complement of set R, i.e., Rc = {1, . . . , |Y|}\R, the following also holds:

|Y| − 1

|Y|
≥
∑
j∈Rc fj(x) + |Rc| − 1

|Rc|
=
−
∑
j∈R fj(x) + |Rc| − 1

|Rc|
(32)

|Rc||Y| − |Rc| ≥ −|Y|
∑
j∈R

fj(x) + |Rc||Y| − |Y| (33)

∑
j∈R

fj(x) ≥ −|Y| − |R
c|

|Y|
= −|R|
|Y|

. (34)

We can easily see that the general case above is automatically implied from the individual rule
− 1
|Y| ≤ fj(x) ≤ |Y|−1

|Y| ,∀j ∈ {1, . . . , |Y|}, given that
∑|Y|
j=1 fj(x) = 0.

Next, we prove Theorem 2, which states that the loss for minimizer f∗ of E
[
AL0-1

f (X, Y)|X = x
]

resides in the area described in Lemma 4.

Theorem 2. The loss for the minimizer f∗ of E
[
AL0-1

f (X, Y)|X = x
]

resides on the hyperplane
defined (in Eq. 4) by the complete set of labels, S = {1, . . . , |Y|}.

Proof. We start the proof by denoting R as a non-complete set of labels, R ({1, . . . , |Y|}, R 6= ∅,
that defines the supporting hyperplane of AL0-1 loss. Let f0 be the potential function where its
loss resides on the hyperplane defined by R. We will show that we can construct f1 such that
its loss resides on the hyperplane defined by the complete set of labels, S = {1, . . . , |Y|}, such
that E

[
AL0-1

f1 (X, Y)|X = x
]
≤ E

[
AL0-1

f0 (X, Y)|X = x
]
. Note that E

[
AL0-1

f (X, Y)|X = x
]

=∑|Y|
y=1 Py(x) AL0-1

f (x, y). In this proof, we need consider the loss for each possible true label y ∈ Y .

Let Rc be the complement of the set R, i.e., Rc = {1, . . . , |Y|}\R, and let us denote ψf0

j,y(x) =

f0
j (x) − f0

y (x). We note that for y ∈ R, the loss,
∑
j∈R ψ

f0

j,y(x)+|R|−1

|R| , does not depend on any

ψf0

k,y(x) for k ∈ Rc. Therefore, changing any ψf0

k,y(x) where k ∈ Rc does not change the loss when
the true label is y ∈ R.

Let f1 be the potential function such that f1
k (x) = − 1

|Y| for ∀k ∈ Rc, and keep all ψf1

j,y(x) =

f1
j (x) − f1

y (x) remaining the same as ψf0

j,y(x) = f0
j (x) − f0

y (x) for j ∈ R and y ∈ R. Let

b = − |R
c|
|Y| −

∑
k∈Rc f

0
k (x), setting f1

j (x) = f0
j (x)− b

|R| for all j ∈ R will satisfy the requirement

above while keeping it valid, i.e.,
∑|Y|
j=1 f

1
j (x) = 0. Analyzing the transformation above, we have:∑

j∈R f
1
j (x) + |R| − 1

|R|
=

∑
j∈R f

0
j (x) +

∑
j∈Rc f

0
j (x) + |Rc|

|Y| + |R| − 1

|R|
(35)

=
|Rc|+ |R||Y| − |Y|

|R||Y|
=
|R||Y| − |R|
|R||Y|

=
|Y| − 1

|Y|
(36)

13

=

∑|Y|
j=1 f

1
j (x) + |Y| − 1

|Y|
. (37)

We can view this transformation as the following: when y ∈ R, we fix ψj,y(x) for all j ∈ R and
move all ψk,y(x) for all k ∈ Rc towards the intersection between the hyperplane defined by R and
the hyperplane defined by the complete set of labels.

We know that AL0-1
f1 (x, y) is equal to AL0-1

f0 (x, y) if the true label y ∈ R. The difference comes when
the true label y ∈ Rc. For f1, the loss will be:∑

j∈R f
1
j (x) + |R| − 1

|R|
− f1

y (x) =
Y − 1

Y
+

1

Y
= 1. (38)

Before analyzing the loss for f0, we observe the following inequality. Since R is the set that defines
the hyperplane that supports the AL0-1 loss under f0, then for all k ∈ Rc:∑

j∈R f
0
j (x) + |R| − 1

|R|
≥
∑
j∈R f

0
j (x) + f0

k (x) + |R|
|R|+ 1

(39)

|R|
∑
j∈R

f0
j (x) + |R|2 −R+

∑
j∈R

f0
j (x) + |R| − 1 ≥ |R|

∑
j∈R

f0
j (x) + |R|f0

k (x) + |R|2 (40)

∑
j∈R

f0
j (x)− 1 ≥ |R|f0

k (x) (41)

∑
j∈R

f0
j (x)− |R|f0

k (x) ≥ 1. (42)

Applying the inequality above, we get the loss for f0 when the true label y ∈ Rc:∑
j∈R f

0
j (x) + |R| − 1

|R|
− f0

y (x) =

∑
j∈R f

0
j (x)− |R|f0

y (x) + |R| − 1

|R|
(43)

≥ 1 + |R| − 1

|R|
= 1. (44)

In the analysis above, we construct f1, where its loss resides in the intersection between
the hyperplane defined by R and the hyperplane defined by the complete set of labels.
Since E

[
AL0-1

f (X, Y)|X = x
]

=
∑|Y|
y=1 Py(x) AL0-1

f (x, y), the analysis above shows that
E
[
AL0-1

f1 (X, Y)|X = x
]
≤ E

[
AL0-1

f0 (X, Y)|X = x
]
. Therefore, we can conclude that given the

probability for each class Py(x), the loss of the minimizer of E
[
AL0-1

f (X, Y)|X = x
]

resides on the
hyperplane defined by the complete set of labels, S = {1, . . . , |Y|}.

To better understand Theorem 2, we will discuss an example for three-class classification. Let the
potential function f0 = [1

6 ,
4
6 ,−

5
6], whose loss resides on the hyperplane defined by the set of labels

R = {1, 2}, i.e., ψ1,y(x)+ψ2,y(x)+1
2 . Figure 3 shows the plot of the loss when the true label y is 1, 2

or 3. We can compute the losses as follows:

y = 1 y = 2 y = 3

f0
1 (x) = 1

6 ψf0

1,1 = 0 ψf0

1,2 = −0.5 ψf0

1,3 = 1

f0
2 (x) = 4

6 ψf0

2,1 = 0.5 ψf0

2,2 = 0 ψf0

2,3 = 1.5

f0
3 (x) = − 5

6 ψf0

3,1 = −1 ψf0

3,2 = −1.5 ψf0

3,3 = 0

loss AL0-1
f0 (x, 1) = 0.75 AL0-1

f0 (x, 2) = 0.25 AL0-1
f0 (x, 3) = 1.75

We construct f1 from f0 using the steps described above. Note that Rc = {3} and b = − |R
c|
|Y| −∑

k∈Rc f
0
k (x) = − 1

3 + 5
6 = 1

2 . We set f1
3 (x) = − 1

|Y| = − 1
3 since 3 ∈ Rc. We compute f1

1 (x) and
f1

2 (x) by subtracting f0
1 (x) and f0

2 (x) with b
|R| = 1

2·2 = 1
4 . The losses incurred by f1 (Figure 4) and

its computations displayed in the following:

14

y = 1 y = 2 y = 3

f1
1 (x) = 1

6 −
1
4 = − 1

12 ψf1

1,1 = 0 ψf1

1,2 = −0.5 ψf1

1,3 = 0.25

f1
2 (x) = 4

6 −
1
4 = 5

12 ψf1

2,1 = 0.5 ψf1

2,2 = 0 ψf1

2,3 = 0.75

f1
3 (x) = − 1

3 ψf1

3,1 = −0.25 ψf1

3,2 = −0.75 ψf1

3,3 = 0

loss AL0-1
f1 (x, 1) = 0.75 AL0-1

f1 (x, 2) = 0.25 AL0-1
f1 (x, 3) = 1

(a) (b) (c)

Figure 3: The plot of loss AL0-1 for f0 when the true label y is 1, 2, or 3.

(a) (b) (c)

Figure 4: The plot of loss AL0-1 for f1 when the true label y is 1, 2, or 3.

As we can see from the table, the loss incurred by f1 when the true label is 1 or 2 remains the same
as the loss incurred by f0. The difference comes when the true label is 3. In this case, f1 incurs less
loss than f0 (1 compared to 1.75).

Utilizing the lemmas and theorem above, we can now prove the Fisher consistency of AL0-1.

Theorem 3. The adversarial zero-one loss, AL0-1, from Eq. (4) is Fisher consistent.

Proof. For any given X = x, our goal is to minimize E
[
AL0-1

f (X, Y)|X = x
]

=∑|Y|
y=1 Py(x) maxS⊆{1,...,|Y|}

S6=∅

∑
j∈S ψj,y(x)+|S|−1

|S| . According to Theorem 2, it is equal to minimizing

the following:

|Y|∑
y=1

Py(x)

∑|Y|
j=1 ψj,y(x) + |Y| − 1

|Y|
=

|Y|∑
y=1

Py(x)

[∑|Y|
j=1 (fj(x)− fy(x)) + |Y| − 1

|Y|

]
(45)

=

|Y|∑
y=1

Py(x)

[
|Y| − 1

|Y|
− fy(x)

]
(46)

15

=
|Y| − 1

|Y|

|Y|∑
y=1

Py(x)−
|Y|∑
y=1

Py(x)fy(x) (47)

=
|Y| − 1

|Y|
−
|Y|∑
y=1

Py(x)fy(x), (48)

subject to − 1
|Y| ≤ fj(x) ≤ |Y|−1

|Y| and
∑|Y|
j=1 fj(x) = 0.

Since (|Y|−1)/|Y| is constant with respect to {fi}, finding f∗ in the minimization above is equivalent
with finding f∗ in the following maximization:

max
f

|Y|∑
y=1

Py(x)fy(x) (49)

subject to − 1

|Y|
≤ fj(x) ≤ |Y| − 1

|Y|
j ∈ {1, . . . , |Y|};

|Y|∑
j=1

fj(x) = 0.

The solution for this maximization satisfies f∗j (x) = |Y|−1
|Y| if j = argmaxj Pj(x), and − 1

|Y|
otherwise. This implies that the adversarial zero-one loss, AL0-1, from Eq. (4) is Fisher consistent.

C Proof for the Oracle’s Greedy Algorithm Optimality (Theorem 4)

Theorem 4. The proposed greedy algorithm used by the oracle is optimal.

Proof. To calculate the set R that maximize AL0-1 given θ and a sample (xi, yi), the algorithm
calculates all potentials ψj,yi(xi) for each label j ∈ {1, . . . , |Y|} and sorts them from in non-
increasing order. Starting with the empty set R = ∅, it then adds labels to R in sorted order until
adding a label would decrease the value of

∑
j∈R ψj,yi (xi)+|R|−1

|R| .

If the set that maximizes AL0-1 has k elements, it must contain the k largest potentials, otherwise we
can swap the potentials that are not in the k largest potentials list with the potentials in the list and get
a larger value. We are now left to prove that adding more potentials to the set R will not increase the
value of

∑
j∈R ψj,yi (xi)+|R|−1

|R| .

Let ψi denote the potentials sorted in non-increasing order, i.e. ψ1 ≥ ψ2 ≥ · · · ≥ ψ|Y|, and

let k be the size of the set R, hence
∑
j∈R ψj,yi (xi)+|R|−1

|R| =
∑k
i=1 ψi+k−1

k . We aim to prove that∑k
i=1 ψi+k−1

k ≥
∑k+j
i=1 ψi+k+j−1

k+j for any j = {1, . . . , |Y| − k}. From the construction of the
algorithm we know that it is true for j = 1, i.e.,:∑k

i=1 ψi + k − 1

k
≥
∑k+1
i=1 ψi + k

k + 1
(50)

(k + 1)

(
k∑
i=1

ψi + k − 1

)
≥ k

(
k+1∑
i=1

ψi + k

)
(51)

k

k∑
i=1

ψi + k2 − k +

k∑
i=1

ψi + k − 1 ≥ k
k∑
i=1

ψi + kψk+1 + k2 (52)

k∑
i=1

ψi − 1 ≥ kψk+1. (53)

Since the potentials are sorted in non-increasing order, then for any j = {1, . . . , |Y| − k}:

j

(
k∑
i=1

ψi − 1

)
≥ jkψk+1 ≥ k

j∑
i=1

ψk+j (54)

16

j

k∑
i=1

ψi − j + k

k∑
i=1

ψi + k2 + k(j − 1) ≥ k
j∑
i=1

ψk+j + k

k∑
i=1

ψi + k2 + k(j − 1) (55)

k

k∑
i=1

ψi + k2 − k + j

k∑
i=1

ψi + jk − j ≥ k
k+j∑
i=1

ψi + k2 + k(j − 1) (56)

(k + j)

(
k∑
i=1

ψi + k − 1

)
≥ k

(
k+j∑
i=1

ψi + k + j − 1

)
(57)

∑k
i=1 ψi + k − 1

k
≥
∑k+j
i=1 ψi + k + j − 1

k + j
. (58)

Therefore, we can conclude that the oracle’s greedy algorithm is optimal.

D Proof for the Quadratic Programming Formulation (Theorem 5)

Theorem 5. Let Λi,k be the partial derivative of ∆i,k with respect to θ, i.e., Λi,k =
d∆i,k

dθ and

let νi,k be the constant part of ∆i,k (for example if ∆i,k =
ψ1,yi

(xi)+ψ3,yi
(xi)+ψ4,yi

(xi)+2

3 , then
νi,k = 2

3), then the corresponding dual optimization for the primal minimization (Eq. 5) is:

max
α

n∑
i=1

2|Y|−1∑
k=1

νi,k αi,k −
1

2

m∑
i,j=1

2|Y|−1∑
k,l=1

αi,kαj,l [Λi,k · Λj,l] (59)

subject to: αi,k ≥ 0,

2|Y|−1∑
k=1

αi,k = C, i ∈ {1, . . . , n}, k ∈ {1, . . . , 2|Y| − 1},

where αi,k is the dual variable for the k-th constraint of the i-th sample.

Proof. We can write the Lagrangian for the primal optimization in Eq. 5 as follows:

L(θ, ξ,α) =
1

2
‖θ‖2 + C

n∑
i=1

ξi −
n∑
i=1

αi,1[−∆i,1 + ξi]− · · · −
n∑
i=1

αi,2|Y|−1[−∆i,2|Y|−1 + ξi].

(60)

We then write the KKT conditions for optimality and the complementary conditions as follows:

∇θL = θ −
n∑
i=1

αi,1[−Λi,1]− · · · −
n∑
i=1

αi,2|Y|−1[−Λi,2|Y|−1] = 0 ⇒ θ = −
n∑
i=1

2|Y|−1∑
k=1

αi,k Λi,k

(61)

∇ξiL = C − αi,1 − · · · − αi,2|Y|−1 = 0 ⇒
2|Y|−1∑
k=1

αi,k = C (62)

∀i, k, αi[−∆i,k + ξi] = 0 ⇒ αi,k = 0 ∨ ξi = ∆i,k

(63)

Rearranging the Lagrangian formula, and plugging the definition of θ in terms of dual variables and
applying the complementary conditions yields:

L =
1

2
‖θ‖2 +

n∑
i=1

αi,1[θ · Λi,1 + νi,1] + · · ·+
n∑
i=1

αi,2|Y|−1[θ · Λi,2|Y|−1 + νi,2|Y|−1]

+

n∑
i=1

(C − αi,1 − · · · − αi,2|Y|−1)ξi (64)

17

=
1

2
‖θ‖2 +

n∑
i=1

2|Y|−1∑
k=1

αi,k [θ · Λi,k] +

n∑
i=1

2|Y|−1∑
k=1

νi,k αi,k (65)

= −1

2

n∑
i,j=1

2|Y|−1∑
k,l=1

αi,kαj,l [Λi,k · Λj,l] +

n∑
i=1

2|Y|−1∑
k=1

νi,k αi,k. (66)

Therefore, the dual quadratic programming formulation can be written as:

max
α

n∑
i=1

2|Y|−1∑
k=1

νi,k αi,k −
1

2

m∑
i,j=1

2|Y|−1∑
k,l=1

αi,kαj,l [Λi,k · Λj,l] (67)

subject to αi,k ≥ 0,

2|Y|−1∑
k=1

αi,k = C, i ∈ {1, . . . , n}, k ∈ {1, . . . , 2|Y| − 1}.

E Proof for the Kernel Trick (Theorem 6)

Theorem 6. Let X be the input space and K be a positive definite real valued kernel on X × X
with a mapping function ω(x) : X → H that maps the input space X to a reproducing kernel Hilbert
space H. Then, all the values in the dual optimization of Eq. (6) needed to operate in the Hilbert
spaceH can be computed in terms of the kernel function K(xi,xj) as:

Λi,k · Λj,l = c(i,k),(j,l)K(xi,xj), (68)

∆i,k = −
n∑
j=1

2|Y|−1∑
l=1

αj,l c(j,l),(i,k)K(xj ,xi) + νi,k, (69)

fm(xi) = −
n∑
j=1

2|Y|−1∑
l=1

αj,l

[(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
K(xj ,xi)

]
, (70)

where c(i,k),(j,l) =

|Y|∑
m=1

(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
,

and Ri,k is the set of labels included in the constraint ∆i,k (for example if ∆i,k =
ψ1,yi

(xi)+ψ3,yi
(xi)+ψ4,yi

(xi)+2

3 , then Ri,k = {1, 3, 4}), the function 1(j = yi) returns 1 if j = yi or
0 otherwise, and the function 1(j ∈ Ri,k) returns 1 if j is a member of set Ri,k or 0 otherwise.

Proof. First, let us define the feature function φ(xi, j) used in our formulation in the input space:
φ(xi, j) is a vector containing zeros except for the one corresponding to class j, which is equal
to xi. For example, φ(xi, 1) = [xi,0, . . . ,0]T , φ(xi, 2) = [0,xi, . . . ,0]T , and φ(xi, |Y|) =
[0, . . . ,0,xi]

T , where 0 is a vector containing all zeros with the same length as xi. Therefore, the
vector multiplication θTφ(xi, j) = θT

j xi, where θj is the vector elements in the parameter space
corresponding with class j.

By employing kernel methods, the optimization works in the reproducing kernel Hilbert space
(RKHS). Therefore, in the kernelized optimization, our feature function is φ(ω(xi), j). Note
that our dual formulation (Eq. 6) depends on the dot product Λi,k · Λj,l. By definition, Λi,k =

1
|Ri,k|

(∑
j∈Ri,k [φ(ω(xi), j)− φ(ω(xi), yi)]

)
. We can expand Λi,k as:

Λi,k =
1

|Ri,k|
∑
j∈Ri,k

(φ(ω(xi), j)− φ(ω(xi), yi)) (71)

18

=

 1

|Ri,k|

|Y|∑
j=1

1(j ∈ Ri,k)φ(ω(xi), j)

− φ(ω(xi), yi) (72)

=

|Y|∑
j=1

(
1(j ∈ Ri,k)

|Ri,k|
φ(ω(xi), j)− 1(j = yi)φ(ω(xi), j)

)
(73)

=

|Y|∑
j=1

(
1(j ∈ Ri,k)

|Ri,k|
− 1(j = yi)

)
φ(ω(xi), j). (74)

Since φ(ω(xi), j) is just a vector containing zeros and ω(xi), using the scalar multiplication properties
of dot product, we can expand Λi,k · Λj,l as the following:

Λi,k · Λj,l =

 |Y|∑
m=1

(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)
φ(ω(xi),m)


·

 |Y|∑
m=1

(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
φ(ω(xj),m)

 (75)

=

|Y|∑
m=1

[(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
(φ(ω(xi),m) · φ(ω(xj),m))

]
(76)

=

 |Y|∑
m=1

(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

) [ω(xi) · ω(xj)]

(77)

=

 |Y|∑
m=1

(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)K(xi,xj).

(78)

Let us define:

c(i,k),(j,l) =

|Y|∑
m=1

(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
, (79)

then, we have Λi,k ·Λj,l = c(i,k),(j,l)K(xi,xj). We can also express ∆i,k in terms of kernel functions
as the following:

∆i,k = θ · Λi,k + νi,k = −
n∑
j=1

2|Y|−1∑
l=1

αj,l [Λj,l · Λi,k] + νi,k (80)

= −
n∑
j=1

2|Y|−1∑
l=1

αj,l c(j,l),(i,k)K(xj ,xi) + νi,k. (81)

In the prediction step, given a new datapoint xi, we need to calculate fm(xi) = θTφ(xi,m) for all
m ∈ {1, . . . , |Y|}. We can also compute fm(xi) in terms of kernel functions as the following:

fm(xi) = θ · φ(ω(xi),m) (82)

= −
n∑
j=1

2|Y|−1∑
l=1

αj,l [Λj,l · φ(ω(xi),m)] (83)

19

= −
n∑
j=1

2|Y|−1∑
l=1

αj,l

 |Y|∑
q=1

(
1(q ∈ Rj,l)
|Rj,l|

− 1(q = yj)

)
φ(ω(xj), q)

 · φ(ω(xi),m)


(84)

= −
n∑
j=1

2|Y|−1∑
l=1

αj,l

[(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
φ(ω(xj),m) · φ(ω(xi),m)

]
(85)

= −
n∑
j=1

2|Y|−1∑
l=1

αj,l

[(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
ω(xj) · ω(xi)

]
(86)

= −
n∑
j=1

2|Y|−1∑
l=1

αj,l

[(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
K(xj ,xi)

]
. (87)

F Proof for the Polynomial Convergence Analysis (Theorem 7)

Theorem 7. For any ε > 0 and training dataset {(x1, y1), . . . , (xn, yn)} with U = maxi[xi · xi],
Algorithm 1 terminates after incrementally adding at most max

{
2n
ε ,

4nCU
ε2

}
constraints to the

constraint set A∗.

Proof. First, we want to establish a lower bound on the improvement of the dual objective value after
each time we add an additional constraint. The proof follows the structure of the proof described by
Tsochantaridis et al. [27].

For the purpose of simplification, let us change the index of the dual QP variable. Assuming a
combined index s = (i, k) represents the i-th sample and k-th constraint, we can rewrite our dual QP
objective as:

W (α) =
∑
s

νs αs −
1

2

∑
s,t

αsαt[Λs · Λt]. (88)

In the constraint generation steps, we only consider the constraints that are already added to the
constraint set A∗. In the simplification above, we can set αs = 0 for all constraints that are not yet
added to the set. When we add a new constraint ξi ≥ ∆s, we allow αs to have value from 0 to C,
but it needs to maintain the constraint that

∑2|Y|−1
k=1 αi,k = C. Therefore, we cannot analyze the

improvement in the dual objective for adding one constraint by just optimizing over αs alone. We
need to consider a larger optimization over the whole space.

For the purpose of deriving bounds, it is sufficient to restrict our attention to a one-dimensional
version of the optimization, i.e., trying to optimize in just one specific direction. If we can show that
it makes sufficient improvement on just one specific direction, it implies that the optimization over
the whole space can improve at least that much on the objective function.

Let us consider adding one new constraint where we allow αr taking values other than 0. Let β be
the value we set for αr and W ′(α) be the new objective value after we add the new constraint. Then
the difference of the objective value between before and after adding the constraint is:

W ′(α)−W (α) = νrβ −
1

2

(
2
∑
s

αsβ[Λs · Λr] + β2[Λr · Λr]

)
(89)

= β

(
νr −

∑
s

αs[Λs · Λr]

)
− β2

2
[Λr · Λr]. (90)

The optimization needs to find β∗ that maximizes the formula above. We can find β∗ by taking the
derivative of the difference above with respect to β and setting it to zero.

d(W ′(α)−W (α))

dβ
= νr −

∑
s

αs[Λs · Λr]− β[Λr · Λr] = 0 (91)

20

β∗ =
νr −

∑
s αs[Λs · Λr]

Λr · Λr
=
νr + θ · Λr

Λr · Λr
=

∆r

Λr · Λr
. (92)

Note that β∗ > 0 because [Λr · Λr] > 0 and the algorithm only add one constraint where ∆r > 0.
The improvement of the dual objective value after adding the new constraint can be computed as
follows:

max
β>0

[W ′(α)−W (α)] =
(∆r)

2

[Λr · Λr]
− (∆r)

2

2([Λr · Λr])2
[Λr · Λr] =

(∆r)
2

2[Λr · Λr]
. (93)

Note that this improvement is always positive.

Let us denote the index r as an index consisting of the pair (i, k). By the definition, Λr =
1
|Rr|

(∑
j∈Rr [φ(xi, j)− φ(xi, yi)]

)
, where Rr is the set of classes included in the constraint ∆r.

Using Equation (78), we analyze the dot product Λr · Λr as follows:

Λr · Λr =

 |Y|∑
m=1

(
1(m ∈ Rr)
|Rr|

− 1(m = yi)

)(
1(m ∈ Rr)
|Rr|

− 1(m = yi)

) [xi · xi] (94)

=
1

|Rr|2

 |Y|∑
m=1

[1(m ∈ Rr)− |Rr|1(m = yi)] [1(m ∈ Rr)− |Rr|1(m = yi)]

 [xi · xi]

(95)

≤ |Rr|
2 + |Rr|
|Rr|2

[xi · xi] =

(
1 +

1

|Rr|

)
[xi · xi] ≤ 2 [xi · xi] . (96)

Let U be the maximum of [xi · xi] over all training data, i.e., U = maxi[xi · xi]. Plugging the result
above into the improvement, we have:

W ′(α)−W (α) =
(∆r)

2

2[Λr · Λr]
≥ (∆r)

2

4[xi · xi]
≥ (∆r)

2

4U
. (97)

Note that there is also a restriction: αr ≤ C. In the case of β∗ > C, we need to adjust the
improvement. If β∗ > C, it also implies that:

∆r

Λr · Λr
> C ⇔ ∆r > C[Λr · Λr]. (98)

Therefore, the improvement of the dual objective after adding the constraint with the restriction
0 < β ≤ C is:

max
0<β≤C

[W ′(α)−W (α)] =

{
(∆r)2

2[Λr·Λr] if ∆r ≤ C[Λr · Λr]
C∆r − C2

2 [Λr · Λr] otherwise
(99)

≥ ∆r

2
min

{
C,

∆r

[Λr · Λr]

}
≥ ∆r

2
min

{
C,

∆r

2U

}
. (100)

Note that the dual objective value is upper-bounded by nC, where n is the number of training data.
Since in every iteration the algorithm will add a new constraint if ∆r ≥ ξi + ε and the objective get
the improvement as described above for each additional constraint, the algorithm will terminate after
incrementally adding a number of constraints that is at most:

max

{
2nC

∆rC
,

4nCU

(∆r)2

}
≤ max

{
2n

ε
,

4nCU

ε2

}
. (101)

21

G Proof of the Matrix Inverse in the Equilibrium Game Value Analysis

Lemma 5. The matrix M−1 in Eq. 10 is the inverse of the matrix M in Eq. 9, i.e.

MM−1 = I

Proof. Let us denote H = MM−1. We want to prove that H = I . We will prove the equality
by analyzing each cell Hk,l of the matrix. The value of Hk,l should be 1 if k is equal to l and 0
otherwise.

For the k-th diagonal entry in the matrix H , we have:

Hk,k =−
ψk,yi(xi)

(∑|Y|
j=1,j 6=k ψj,yi(xi) + |Y| − 2

)
∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

+

∑|Y|
j=1,j 6=k (ψk,yi(xi) + 1) (ψj,yi(xi) + 1)∑|Y|

j=1 ψj,yi(xi) + |Y| − 1

(102)

=−
ψk,yi(xi)

∑|Y|
j=1,j 6=k ψj,yi(xi) + (|Y| − 2)ψk,yi(xi)∑|Y|

j=1 ψj,yi(xi) + |Y| − 1

+
ψk,yi(xi)

∑|Y|
j=1,j 6=k ψj,yi(xi) +

∑|Y|
j=1,j 6=k ψj,yi(xi) + (|Y| − 1)ψk,yi(xi) + |Y| − 1∑|Y|

j=1 ψj,yi(xi) + |Y| − 1

(103)

=

∑|Y|
j=1,j 6=k ψj,yi(xi) + ψk,yi(xi) + |Y| − 1∑|Y|

j=1 ψj,yi(xi) + |Y| − 1
(104)

=

∑|Y|
j=1 ψj,yi(xi) + |Y| − 1∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

(105)

= 1, (106)

and for non-diagonal entries Hk,l, where k 6= l, we have:

Hk,l =−
(ψk,yi(xi) + 1)

(∑|Y|
j=1,j 6=l ψj,yi(xi) + |Y| − 2

)
∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

+
ψk,yi(xi) (ψk,yi(xi) + 1)∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

+

∑|Y|
j=1,j 6=k,j 6=l (ψk,yi(xi) + 1) (ψj,yi(xi) + 1)∑|Y|

j=1 ψj,yi(xi) + |Y| − 1
(107)

=−
ψk,yi(xi)

∑|Y|
j=1,j 6=l ψj,yi(xi) + (|Y| − 2)ψk,yi(xi) +

∑|Y|
j=1,j 6=l ψj,yi(xi) + |Y| − 2∑|Y|

j=1 ψj,yi(xi) + |Y| − 1

+
ψk,yi(xi) (ψk,yi(xi) + 1)∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

+

ψk,yi(xi)
∑|Y|

j = 1,
j 6= k,
j 6= l

ψj,yi(xi) +
∑|Y|

j = 1,
j 6= k,
j 6= l

ψj,yi(xi) + (|Y| − 2)ψk,yi(xi) + |Y| − 2

∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

(108)

=−
ψk,yi(xi)

∑|Y|
j=1,j 6=l ψj,yi(xi) +

∑|Y|
j=1,j 6=l ψj,yi(xi)∑|Y|

j=1 ψj,yi(xi) + |Y| − 1

+
ψk,yi(xi)

∑|Y|
j=1,j 6=l ψj,yi(xi) +

∑|Y|
j=1,j 6=l ψj,yi(xi)∑|Y|

j=1 ψj,yi(xi) + |Y| − 1
(109)

= 0 (110)

22

Therefore, since all diagonal entries of H has value 1, and all non-diagonal entries of H has zero
value, then MM−1 = I .

H Illustrations for the Binary Classification Cases

In the binary classification case, the adversarial loss is the maximum among three functions: ψ1,yi(xi),
ψ2,yi(xi), and ψ1,yi

(xi)+ψ2,yi
(xi)+1

2 . In the case where the true label yi = 1, we have ψ1,yi(xi) = 0.
The adversarial loss in this case can be computed as max{0, ψ2,1(xi),

ψ2,1(xi)+1
2 }, which has values:

AL0-1
binary|yi=1 =


0 if ψ2,1(xi) ≤ −1

ψ2,1(xi) if ψ2,1(xi) ≥ 1
ψ2,1(xi)+1

2 if − 1 ≤ ψ2,1(xi) ≤ 1.

(111)

Note that ψ2,1(xi) = f2(xi) − f1(xi) = θTφ(xi, 2) − θTφ(xi, 1), where φ(xi, j) is a vector
containing zero elements except the one corresponding to class j which is equal to xi. If we
change our notation for the class label from y ∈ {1, 2} to y ∈ {−1,+1} and define the parameter
θ to contains both vector parameter w and bias b, the binary adversarial loss can be equivalently
formulated as:

AL0-1
binary =


0 if yi(w · xi + b) ≥ 1
−yi(w·xi+b)+1

2 if − 1 ≤ yi(w · xi + b) ≤ 1

−yi(w · xi + b) if yi(w · xi + b) ≤ −1.

(112)

Adding L2 regularization to the binary adversarial loss and introducing slack variables ξi and δi
results in the following quadratic programming formulation:

min
w,b

1

2
‖w‖2 + C

[
m∑
i=1

1

2
ξi +

m∑
i=1

1

2
δi

]
(113)

subject to yi(w · xi + b) ≥ 1− ξi
yi(w · xi + b) ≥ −1− δi
ξi ≥ 0

δi ≥ 0

i ∈ {1, . . . ,m}.

Note that the formulation above is similar to the formulation of SVMs. The difference is that the
adversarial formulation has two slack variables corresponding to the hinges at 1 and -1.

We can view the adversarial formulation as maximizing a margin that is similar to the soft-margin
SVM, but with different constraints. We study how this adversarial formulation’s double hinges
affect the maximum margin in its solutions. Figure 5 shows the comparison of the maximum margin
resulted from the adversarial method and SVM for different values of the C.

As we can see from the figure, the adversarial solution tends to have larger margins than the SVM
solution under identitical choices of C. In the case where C = 10 and C = 100, the adversarial
solution is very similar to the SVM solution, with different choice of the support vector points that
define the margin.

The interesting results can be seen in the case where C = 1000 and C = 10000. In the SVM solution,
the marginal hyperplanes (i.e., the line w · xi + b = ±1) that define the boundary of the margin
always cross some support vectors that are classified correctly by the algorithm (highlighted with red
in the figure). In the adversarial solution, however, the marginal hyperplanes may also cross some
support vectors that are classified incorrectly by the algorithm (highlighted with green in the figure).
For example in the case where C = 10000, the marginal hyperplanes in the adversarial solution are
defined by three support vectors, one of them is classified correctly and two of them are classified
incorrectly. This kind of solution is unique to the adversarial method with no possibility of being
realized under the standard SVM algorithm.

23

Figure 5: The maximum margin hyperplanes of the adversarial classification and SVM for different
values of C.

24

	Proof for the Adversarial Zero-One Loss (Theorem 1)
	Proof for the Consistency Analysis (Theorem 2 and Theorem 3)
	Proof for the Oracle's Greedy Algorithm Optimality (Theorem 4)
	Proof for the Quadratic Programming Formulation (Theorem 5)
	Proof for the Kernel Trick (Theorem 6)
	Proof for the Polynomial Convergence Analysis (Theorem 7)
	Proof of the Matrix Inverse in the Equilibrium Game Value Analysis
	Illustrations for the Binary Classification Cases

