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Abstract

We present SEBOOST, a technique for boosting the performance of existing stochas-
tic optimization methods. SEBOOST applies a secondary optimization process
in the subspace spanned by the last steps and descent directions. The method
was inspired by the SESOP optimization method, and has been adapted for the
stochastic learning. It can be applied on top of any existing optimization method
with no need to tweak the internal algorithm. We show that the method is able
to boost the performance of different algorithms, and make them more robust to
changes in their hyper-parameters. As the boosting steps of SEBOOST are applied
between large sets of descent steps, the additional subspace optimization hardly
increases the overall computational burden. We introduce hyper-parameters that
control the balance between the baseline method and the secondary optimization
process. The method was evaluated on several deep learning tasks, demonstrating
significant improvement in performance. Video presentation is given in [15]

1 Introduction

Stochastic Gradient Descent (SGD) based optimization methods are widely used for many different
learning problems. Given some objective function that we want to optimize, a vanilla gradient
descent method would simply take some fixed step in the direction of the current gradient. In
many learning problems the objective, or loss, function is averaged over the set of given training
examples. In that scenario calculating the loss over the entire training set would be expensive, and is
therefore approximated on a small batch, resulting in a stochastic algorithm that requires relatively
few calculations per step. The simplicity and efficiency of SGD algorithms have made them a
standard choice for many learning tasks, and specifically for deep learning [9, 6, 5, 10] . Although
the vanilla SGD has no memory of previous steps, they are usually utilized in some way, for example
using momentum [13]. Alternatively, the AdaGrad method uses the previous gradients in order to
normalize each component in the new gradient adaptively [3], while the ADAM method uses them to
estimate an adaptive moment [8]. In this work we utilize the knowledge of previous steps in spirit
of the Sequential Subspace Optimization (SESOP) framework [11]. The nature of SESOP allows
it to be easily merged with existing algorithms. Several such extensions were introduced over the
years to different fields, such as PCD-SESOP and SSF-SESOP, showing state-of-the-art results in
their matching fields [4, 17, 16].

The core idea of our method is as follows. At every outer iteration we first perform several steps
of a baseline stochastic optimization algorithm which are then summed up as an inner cumulative
stochastic step. Afterwards, we minimize the objective function over the affine subspace spanned
by the cumulative stochastic step, several previous outer steps and optional other directions. The
subspace optimization boosts the performance of the baseline algorithm, therefore our method is
called the Sequential Subspace Optimization Boosting method (SEBOOST).
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2 The algorithm

As our algorithm tries to find the balance between SGD and SESOP, we start by a brief review of the
original algorithms, and then move to the SEBOOST algorithm.

2.1 Vanilla SGD

In many different large-scale optimization problems, applying complex optimization methods is not
practical. Thus, popular optimization methods for those problems are usually based on a stochastic
estimation of the gradient. Let minx∈Rn f(x) be some minimization problem, and let g(x) be the
gradient of f(x). The general stochastic approach applies the following optimization rule

xk+1 = xk − ηg∗(xk)

where xi is the result of the ith iteration, η is the learning rate and g∗(xk) is an approximation of
g(xk) obtained using only a small subset (mini-batch) of the training data. These stochastic descent
methods have proved themselves in many different problems, specifically in the context of deep
learning algorithms, providing a combination of simplicity and speed. Notice that the vanilla SGD
algorithm has no memory of previous iterations. Different optimization methods which are based on
SGD usually utilize the previous iterations in order to make a more informed descent process.

2.2 Vanilla SESOP

The SEquential Subspace OPtimization Method [11, 16] is an optimization technique used for large
scale optimization problems. The core idea of SESOP is to perform the optimization of the objective
function in the subspace spanned by the current gradient direction and a set of directions obtained
from the previous optimization steps. Following the notations in Section 2.1, a subspace structure for
SESOP is usually defined based on the following directions:

1. Gradients: Current gradient and [optionally] older ones {g (xi) : i = k, k − 1, . . . k − s1}
2. Previous directions: {pi = xi − xi−1 : i = k, k − 1, . . . k − s2}

In the SESOP formulation the current gradient and the last step are mandatory and any other set can
be used to enrich the subspace. From a theoretical point of view, one can enrich the subspace by two
Nemirovsky directions: A weighted average of the previous gradients and the direction to the starting
point. This will provide optimal worst case complexity of the method (see also [12].) Denoting Pk as
the set of directions at iteration k, the SESOP algorithm would solve the minimization problem

αk = argmin
α

f (xk + Pkα)

xk+1 = xk + Pkαk

Thus SESOP reduces the optimization problem to the subspace spanned by Pk at each iteration. This
means that instead of solving an optimization problem in Rn the dimensionality of the subspace is
governed by the size of Pk and can be controlled.

2.3 The SEBOOST algorithm

As explained in Section 2.1, when dealing with large-scale optimization problems, stochastic learning
methods are usually better fitted to the task then many more involved optimization methods. However,
when applied correctly those methods can still be used to boost the optimization process and achieve
faster convergence rates. We propose to start with some SGD algorithm as a baseline, and then apply
a SESOP-like optimization method over it in an alternating manner. The subspace for the SESOP
algorithm arises from the descent directions of the baseline, utilizing the previous iterations.

A description of the method is given in Algorithm 1. Note that the subset of the training data used for
the secondary optimization in step 7 isn’t necessarily the same as that of the baseline in step 2, as will
be shown in Section 3. Also, note that in step 8 the last added direction is changed, that is done in
order to incorporate the step performed by the secondary optimization into the subspace.
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Algorithm 1 The SEBOOST algorithm

1: for k = 1, . . . do
2: Perform ` steps of baseline stochastic optimization method to get from xk0 to xk`
3: Add the direction of the cumulative step xk` − xk0 to the optimization subspace P
4: if Subspace dimension exceeded the limit: dim(P ) > M then
5: Remove oldest direction from the optimization subspace P
6: end if
7: Perform optimization over subspace P to get from xk` to xk+1

0

8: Change the last added direction to p = xk+1
0 − xk0

9: end for

It is clear that SEBOOST offers an attractive balance between the baseline stochastic steps and the
more costly subspace optimizations. Firstly, as the number ` of stochastic steps grows, the effect of
subspace optimization over the result subsides, where taking `→∞ reduces the algorithm back to
the baseline method. Secondly, the dimensionality of the subspace optimization problem is governed
by the size of P and can be reduced to as few parameters as desired. Notice also that as SEBOOST is
added on top of baseline stochastic optimization method, it does not require any internal changes to
be made to the original algorithm. Thus, it can be applied on top of any such method with minimal
implementation cost, while potentially boosting the base method.

2.4 Enriching the subspace

Although the core elements of our optimization subspace are the directions of last M − 1 external
steps and the new stochastic cumulative direction, many more elements can be added to enrich the
subspace.

Anchor points As only the last (M − 1) directions are saved in our subspace, the subspace has
knowledge only of recent history of the optimization process. The subspace might benefit from
directions dependent on preceding directions as well. For example, one could think of the overall
descent achieved by the algorithm p = xk0 − x00 as a possible direction, or the descent over the second
half of the optimization process p = xk0 − x

k/2
0 .

We formulate this idea by defining anchor points. Anchors points are locations chosen throughout
the descent process which we fix and update only rarely. For each anchor point ai the direction
p = xk0 − ai is added to the subspace. Different techniques can be chosen for setting and changing
the anchors. In our formulation each point is associated with a parameter ri which describes the
number of boosting steps between each update of the point. After every ri steps the corresponding
point ai is initialized back to the current x. That way we can control the number of iterations before
an anchor point becomes irrelevant and is initialized again. Algorithm 2 shows how the anchor points
can be added to Algorithm 1, by incorporating it before step 7.

Current gradient As in the SESOP formulation, the gradient at the current point can be added to
the subspace.

Momentum Similarly to the idea of momentum in SGD methods one can save a weighted average
of the previous updates and add it to the optimization subspace. Denoting the current momentum as
mk and the last step as p = xk+1

0 − xk0 , the momentum is updated as mk+1 = µ·mk + p, where µ is
some hyper-parameter, as in regular SGD momentum.

Algorithm 2 Controlling anchors in SEBOOST

1: for i = 1, . . . ,#anchors do
2: if ri%k == 0 then
3: Change the anchor ai to xk`
4: end if
5: Normalize the direction p = xk` − ai and add it to the subspace
6: end for
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Figure 1: Results for experiment 3.1. The baseline parameters was set as lrSGD = 0.5, lrNAG = 0.1,
lrAdaGrad = 0.05, which provided good convergence. SEBOOST’s parameters were fixed atM = 50
and ` = 100 with 50 function evaluations for the secondary optimization.

3 Experiments

Following the recent rise of interest in deep learning tasks we focus our evaluation on different neural
networks problems. We start with a small, yet challenging, regression problem and then proceed
to the known problems of the MNIST autoencoder and CIFAR-10 classifier. For each problem we
compare the results of baseline stochastic methods with our boosted variants, showing that SEBOOST
can give significant improvement over the base method. Note that the purpose of our work is not to
directly compete with existing methods, but rather to show that SEBOOST can improve each learning
method compared to its’ original variant, while preserving the original qualities of these algorithms.
The chosen baselines were SGD with momentum, Nesterov’s Accelerated Gradient (NAG) [13] and
AdaGrad [3]. The Conjugate Gradient (CG) [7] was used for the subspace optimization.

Our algorithm was implemented and evaluated using the Torch7 framework [1], and is publicly
available 1. The main hyper-parameters that were altered during the experiments were:

• lrmethod - The learning rate of a baseline method.

• M - Maximal number of old directions.

• ` - Number of baseline steps between each subspace optimization.

For all experiments the weight decay was set at 0.0001 and the momentum was fixed at 0.9 for SGD
and NAG. Unless stated otherwise, the number of function evaluations for CG was set at 20. The
baseline method used a mini-batch of size 100, while the subspace optimization was applied with
a mini-batch of size 1000. Note that subspace optimization is applied over a significantly larger
batch. That is because while a “bad” stochastic step will be canceled by the next ones, a single
secondary step has a bigger effect on the overall result and therefore requires better approximation of
the gradient. As the boosting step is applied only between large sets of the base method, the added
cost does not hinder the algorithm.

For each experiment a different architecture will be defined. We will use the notation a →L b to
denote a classic linear layer with a inputs and b outputs followed by a non-linear Tanh function.
Notice that when presenting our results we show two different graphs. The right one always shows
the error as a function of the number of passes of the baseline algorithms over the data (i.e. epochs),
while the left one shows the error as a function of the actual processor time, taking into account the
additional work required by the boosted algorithms.

3.1 Simple regression

We will start by evaluating our method on a small regression problem. The dataset in question is
a set of 20,000 values simulating some continuous function f : R6 → R. The dataset was divided

1https://github.com/eladrich/seboost

4



into 18,000 training examples and 2,000 test examples. The problem was solved using a tiny neural
network with the architecture 6→L 12→L 8→L 4→L 1. Although the network size is very small
the resulting optimization problem remains challenging and gives clear indication of SEBOOST’s
behavior. Figure 1 shows the optimization process for the different methods. In all examples the
boosted variant converged faster. Note that the different variants of SEBOOST behave differently,
governed by the corresponding baseline.

3.2 MNIST autoencoder

One of the classic neural network formulation is that of an autoencoder, a network that tries to learn
efficient representation for a given set of data. An autoencoder is usually composed of two parts,
the encoder which takes the input and produces the compact representation and the decoder which
takes the representation and tries to reconstruct the original input. In our experiment the MNIST
dataset was used, with 60,000 training images of size 28× 28 and 10,000 test images. The encoder
was defined as three layer network with an architecture of form 784→L 200→L 100→L 64, with
a matching decoder 64→L 100→L 200→L 784.

Figure 3 shows the optimization process for the autoencoder problem. A similar trend can be seen
to that of experiment 3.1, SEBOOST is able to significantly improve SGD and NAG and shows
some improvement over AdaGrad, although not as noticeable. A nice byproduct of working with
an autoencoding problem is that one can visualize the quality of the reconstructions as a function of
the iterations. Figure 2 shows the change in reconstructions quality for SGD and SESOP-SGD, and
shows that the boosting achieved is significant in terms on the actual results.

Original #10 #30 #100 #200 Original #10 #30 #100 #200

Figure 2: Reconstruction Results. The first row shows results of the SGD algorithm, while the second
row shows results of SESOP-SGD. The last row gives the number of passes over the data.

3.3 CIFAR-10 classifier

For classification purposes a standard benchmark is the CIFAR-10 dataset. The dataset is composed
of 60,000 images of size 32 × 32 from 10 different classes, where each class has 6,000 different
images. 50,000 images are used for training and 10,000 for testing. In order to check SEBOOST’s
ability to deal with large and modern networks the ResNet [6] architecture, winner of the ILSVRC
2015 classification task, is used.
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Figure 3: Results for experiment 3.2. The baseline parameters was set at lrSGD = 0.1, lrNAG = 0.01,
lrAdaGrad = 0.01. SEBOOST’s parameters were fixed at M = 10 and ` = 200.

5



0 500 1000 1500 2000 2500 3000

train time in seconds

0

10

20

30

40

50

60

te
s
t 
e
rr

o
r 

(%
)

CIFAR-10 Classification

SGD

SEBOOST-SGD

NAG

SEBOOST-NAG

ADAGRAD

SEBOOST-ADAGRAD

0 20 40 60 80 100 120 140 160

number of epochs

0

10

20

30

40

50

60

te
s
t 
e
rr

o
r 

(%
)

CIFAR-10 Classification

SGD

SEBOOST-SGD

NAG

SEBOOST-NAG

ADAGRAD

SEBOOST-ADAGRAD

Figure 4: Results for experiment 3.3. All baselines were set with lr = 0.1 and a mini-batch of size
128. SEBOOST’s parameters were fixed at M = 10 and ` = 391, with a mini-batch of size 1024.

Figure 4 shows the optimization process and the achieved accuracy for ResNet of depth 32. Note that
we did not manually tweak the learning rate as was done in the original paper. While AdaGrad is not
boosted for this experiment, SGD and NAG achieve significant boosting and reach a better minimum.
The boosting step was applied only once every epoch, applying too frequent boosting steps resulted
in a less stable optimization and higher minima, while applying infrequent steps also lead to higher
minima. Experiment 3.4 shows similar results for MNIST and discusses them.

3.4 Understanding the hyper-parameters

SEBOOST introduces two hyper-parameters: ` the number of baseline steps between each subspace
optimization andM the number of old directions to use. The purpose of the following two experiments
is to measure the effect of those parameters on the achieved result and to give some intuition as to
their meaning. All experiments are based on the MNIST autoencoder problem defined in Section 3.2.

First, let us consider the parameter `, which controls the balance between the baseline SGD algorithm
and the more involved optimization process. Taking small values of ` results in more steps of the
secondary optimization process, however each direction in the subspace is then composed of fewer
steps from the stochastic algorithm, making it less stable. Furthermore, recalling that our secondary
optimization is more costly than regular optimization steps, applying it too often would hinder the
algorithm’s performance. On the other hand, taking large values of ` weakens the effect of SEBOOST
over the baseline algorithm.

Figure 5a shows how ` affects the optimization process. One can see that applying the subspace
optimization too frequently increases the algorithm’s runtime and reaches an higher minimum than
the other variants, as expected. Although taking a large value of ` reaches a better minimum, taking
a value which is too large slows the algorithm. We can see that for this experiment taking ` = 200
balances correctly the trade-offs.
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Figure 5: Experiment 3.4, analyzing different changes in SEBOOST’s hyper-parameters
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Figure 6: Experiment 3.5, analyzing different changes in SEBOOST’s subspace

Let us now consider the effect of M , which governs the size of the subspace in which the secondary
optimization is applied. Although taking large values of M allows us to hold more directions and
apply the optimization in a larger subspace it also makes the optimization process more involved.
Figure 5b shows how M affects the optimization process. Interestingly, the lower M is, the faster the
algorithm starts descending. However, larger M values tend to reach better minima. For M = 20 the
algorithm reaches the same minimum as M = 50, but starts the descent process faster, making it a
good choice for this experiment.

To conclude, the introduced hyper-parameters M and ` affect the overall boosting effect achieved by
SEBOOST. Both parameters incorporate different trade-offs of the optimization problem and should
be considered when using the algorithm. Our own experiments show that a good initialization would
be to set ` so the algorithm runs about once or twice per epoch, and to set M between 10 to 20.

3.5 Investigating the subspace

One of the key components of SEBOOST is the structure of the subspace in which the optimization
is applied. The purpose of the following two experiments is to see how changes in the baseline
algorithm, or the addition of more directions, affect the algorithm. All experiments are based on the
MNIST autoencoder problem defined in Section 3.2.

In the basic formulation of SEBOOST the subspace is composed only from the directions of the
baseline algorithm. In Section 3.2 we saw how choosing different baselines affect the algorithm.
Another experiment of interest is to see how our algorithm is influenced by changes in the hyper-
parameters of the baseline algorithm. Figure 6a shows the effect of the learning rate over the baseline
algorithms and their boosted variants. It can be seen that the change in the original baseline affects our
algorithm, however the impact is noticeably smaller, showing that the algorithm has some robustness
to the original learning rate.

In Section 2.4 a set of additional directions which can be added to the subspace were defined, these
directions can possibly enrich the subspace and improve the optimization process. Figure 6b shows the
influence of those directions on the overall result. In SEBOOST-anchors a set of anchor points were
added with the r values of 500, 250, 100, 50 and 20. In SEBOOST-momnetum a momentum vector
with µ = 0.9 was used. It can be seen that using the proposed anchor directions can significantly
boost the algorithm. The momentum direction is less useful, giving a small boost on its own and
actually slightly hinders the performance when used in conjunction with the anchor directions.

4 Conclusion

In this paper we presented SEBOOST, a technique for boosting stochastic learning algorithms via a
secondary optimization process. The secondary optimization is applied in the subspace spanned by
the preceding descent steps, which can be further extended with additional directions. We evaluated
SEBOOST on different deep learning tasks, showing the achieved results of our methods compared to
their original baselines. We believe that the flexibility of SEBOOST could make it useful for different
learning tasks. One can easily change the frequency of the secondary optimization step, ranging from
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frequent and more risky steps, to the more stable one step per epoch. Changing the baseline algorithm
and the structure of the subspace allows us to further alter SEBOOST’s behavior.

Although this is not the focus of our work, an interesting research direction for SEBOOST is that of
parallel computing. Similarly to [2, 14], one can look at a framework composed of a single master
and a set of workers, where each worker optimizes a local model and the master saves a global set of
parameters which is based on the workers. Inspired by SEBOOST, one can take the descent directions
from each of the workers and apply a subspace optimization in the spanned subspace, allowing the
master to take a more efficient step based on information from each of its workers.

Another interesting direction for future work is the investigation of pruning techniques. In our work,
when the subspace if fully occupied the oldest direction is simply removed. One might consider more
advanced pruning techniques, such as eliminating the direction which contributed the least for the
secondary optimization step, or even randomly removing one of the subspace directions. A good
pruning technique can potentially have a significant effect on the overall result. These two ideas will
be further researched in future work. Overall, we believe SEBOOST provides a promising balance
between popular stochastic descent methods and more involved optimization techniques.
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