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Abstract

Recent progress on many imaging and vision tasks has been driven by the use of
deep feed-forward neural networks, which are trained by propagating gradients of
a loss defined on the final output, back through the network up to the first layer that
operates directly on the image. We propose back-propagating one step further—to
learn camera sensor designs jointly with networks that carry out inference on the
images they capture. In this paper, we specifically consider the design and inference
problems in a typical color camera—where the sensor is able to measure only one
color channel at each pixel location, and computational inference is required to
reconstruct a full color image. We learn the camera sensor’s color multiplexing
pattern by encoding it as layer whose learnable weights determine which color
channel, from among a fixed set, will be measured at each location. These weights
are jointly trained with those of a reconstruction network that operates on the
corresponding sensor measurements to produce a full color image. Our network
achieves significant improvements in accuracy over the traditional Bayer pattern
used in most color cameras. It automatically learns to employ a sparse color
measurement approach similar to that of a recent design, and moreover, improves
upon that design by learning an optimal layout for these measurements.

1 Introduction

With the availability of cheap computing power, modern cameras can rely on computational post-
processing to extend their capabilities under the physical constraints of existing sensor technology.
Sophisticated techniques, such as those for denoising [3, 28], deblurring [19, 26], etc., are increasingly
being used to improve the quality of images and videos that were degraded during acquisition.
Moreover, researchers have posited novel sensing strategies that, when combined with post-processing
algorithms, are able to produce higher quality and more informative images and videos. For example,
coded exposure imaging [18] allows better inversion of motion blur, coded apertures [14, 23] allow
passive measurement of scene depth from a single shot, and compressive measurement strategies [1,
8, 25] combined with sparse reconstruction algorithms allow the recovery of visual measurements
with higher spatial, spectral, and temporal resolutions.

Key to the success of these latter approaches is the co-design of sensing strategies and inference
algorithms, where the measurements are designed to provide information complimentary to the
known statistical structure of natural scenes. So far, sensor design in this regime has largely been
either informed by expert intuition (e.g., [4]), or based on the decision to use a specific image model
or inference strategy—e.g., measurements corresponding to random [1], or dictionary-specific [5],
projections are a common choice for sparsity-based reconstruction methods. In this paper, we seek to
enable a broader data-driven exploration of the joint sensor and inference method space, by learning
both sensor design and the computational inference engine end-to-end.
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Figure 1: We propose a method to learn the optimal color multiplexing pattern for a camera through
joint training with a neural network for reconstruction. (Top) Given C possible color filters that could
be placed at each pixel, we parameterize the incident light as a C−channel image. This acts as input
to a “sensor layer” that learns to select one of these channel at each pixel. A reconstruction network
then processes these measurements to yield a full-color RGB image. We jointly train both for optimal
reconstruction quality. (Bottom left) Since the hard selection of individual color channels is not
differentiable, we encode these decisions using a Soft-max layer, with a “temperature” parameter α
that is increased across iterations. (Bottom right) We use a bifurcated architecture with two paths
for the reconstruction network. One path produces K possible values for each color intensity through
multiplicative and linear interpolation, and the other weights to combine these into a single estimate.

We leverage the successful use of back-propagation and stochastic gradient descent (SGD) [13] in
learning deep neural networks for various tasks [12, 16, 20, 24]. These networks process a given
input through a complex cascade of layers, and training is able to jointly optimize the parameters of
all layers to enable the network to succeed at the final inference task. Treating optical measurement
and computational inference as a cascade, we propose using the same approach to learn both jointly.
We encode the sensor’s design choices into the learnable parameters of a “sensor layer” which, once
trained, can be instantiated by camera optics. This layer’s output is fed to a neural network that carries
out inference computationally on the corresponding measurements. Both are then trained jointly.

We demonstrate this approach by applying it to the sensor-inference design problem in a standard
digital color camera. Since image sensors can physically measure only one color channel at each
pixel, cameras spatially multiplex the measurement of different colors across the sensor plane, and
then computationally recover the missing intensities through a reconstruction process known as
demosaicking. We jointly learn the spatial pattern for multiplexing different color channels—that
requires making a hard decision to use one of a discrete set of color filters at each pixel—along with
a neural network that performs demosaicking. Together, these enable the recovery of high-quality
color images of natural scenes. We find that our approach significantly outperforms the traditional
Bayer pattern [2] used in most color cameras. We also compare it to a recently introduced design [4]
based on making sparse color measurements, that has superior noise performance and fewer aliasing
artifacts. Interestingly, our network automatically learns to employ a similar measurement strategy,
but is able outperform this design by finding a more optimal spatial layout for the color measurements.
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2 Background

Since both CMOS and CCD sensors can measure only the total intensity of visible light incident on
them, color is typically measured by placing an array of color filters (CFA) in front of the sensor
plane. The CFA pattern determines which color channel is measured at which pixel, with the most
commonly pattern used in RGB color cameras being the Bayer mosaic [2] introduced in 1976. This
is a 4× 4 repeating pattern, with two measurements of the green channel and one each of red and
blue. The color values that are not directly measured are then reconstructed computationally by
demosaciking algorithms. These algorithms [15] typically rely on the assumption that different
color channels are correlated and piecewise smooth, and reason about locations of edges and other
high-frequency image content to avoid creating aliasing artifacts.

This approach yields reasonable results, and the Bayer pattern remains in widespread use even today.
However, the choice of the CFA pattern involves a trade-off. Color filters placed in front of the sensor
block part of the incident light energy, leading to longer exposure times or noisier measurements (in
comparison to grayscale cameras). Moreover, since every channel is regularly sub-sampled in the
Bayer pattern, reconstructions are prone to visually disturbing aliasing artifacts even with the best
reconstruction methods. Most consumer cameras address this by placing an anti-aliasing filter in
front of the sensor to blur the incident light field, but this leads to a loss of sharpness and resolution.

To address this, Chakrabarti et al. [4] recently proposed the use of an alternative CFA pattern in which
a majority of the pixels measure the total unfiltered visible light intensity. Color is measured only
sparsely, using 2× 2 Bayer blocks placed at regularly spaced intervals on the otherwise unfiltered
sensor plane. The resulting measured image corresponds to an un-aliased full resolution luminance
image (i.e., the unfiltered measurements) with “holes” at the color sampling site; with point-wise
color information on a coarser grid. The reconstruction algorithm in [4] is significantly different
from traditional demosaicking, and involves first recovering missing luminance values by hole-filling
(which is computationally easier than up-sampling since there is more context around the missing
intensities), and then propagating chromaticities from the color measurement sites to the remaining
pixels using edges in the luminance image as a guide. This approach was shown to significantly
improve upon the capabilities of a Bayer sensor—in terms of better noise performance, increased
sharpness, and reduced aliasing artifacts.

That [4]’s CFA pattern required a very different reconstruction algorithm illustrates the fact that
both the sensor and inference method need to be modified together to achieve gains in performance.
In [4]’s case, this was achieved by applying an intuitive design principles—of making high SNR
non-aliased measurements of one color channel. However, these principles are tied to a specific
reconstruction approach, and do not tell us, for example, whether regularly spaced 2× 2 blocks are
the optimal way of measuring color sparsely.

While learning-based methods have been proposed for demosaicking [10, 17, 22] (as well as for joint
demosaicking and denoising [9, 11]), these work with a pre-determined CFA pattern and training is
used only to tune the reconstruction algorithm. In contrast, our approach seeks to learn, automatically
from data, both the CFA pattern and reconstruction method, so that they are jointly optimal in terms
of reconstruction quality.

3 Jointly Learning Measurement and Reconstruction

We formulate our task as that of reconstructing an RGB image y(n) ∈ R
3, where n ∈ Z

2 indexes
pixel location, from a measured sensor image s(n) ∈ R. Along with this reconstruction task,
we also have to choose a multiplexing pattern which determines the color channel that each s(n)
corresponds to. We let this choice be between one of C channels—a parameterization that takes
into account which spectral filters can be physically synthesized. We use x(n) ∈ R

C denote the
intensity measurements corresponding to each of these color channels, and a zero-one selection map
I(n) ∈ {0, 1}C , |I(n)| = 1 to encode the multiplexing pattern, such that the corresponding sensor
measurements are given by s(n) = I(n)Tx(n). Moreover, we assume that I(n) repeats periodically
every P pixels, and therefore only has P 2 unique values.

Given a training set consisting of pairs of output images y(n) and C-channel input images x(n),
our goal then is to learn this pattern I(n), jointly with a reconstruction algorithm that maps the
corresponding measurements s(n) to the full color image output y(n). We use a neural network
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to map sensor measurements s(n) to an estimate ŷ(n) of the full color image. Furthermore, we
encode the measurement process into a “sensor layer”, which maps the input x(n) to measurements
s(n), and whose learnable parameters encode the multiplexing pattern I(n). We then learn both
the reconstruction network and the sensor layer simultaneously, with respect to a squared loss
‖ŷ(n)− y(n)‖2 between the reconstructed and true color images.

3.1 Learning the Multiplexing Pattern

The key challenge to our joint learning problem lies in recovering the optimal multiplexing pattern
I(n), since it is ordinal-valued and requires learning to make a hard non-differentiable decision
between C possibilities. To address this, we rely on the standard soft-max operation, which is
traditionally used in multi-label classification tasks.

However, we are unable to use the soft-max operation directly—unlike in classification tasks where
the ordinal labels are the final output, and where the training objective prefers hard assignment
to a single label, in our formulation I(n) is used to generate sensor measurements that are then
processed by a reconstruction network. Indeed, when using a straight soft-max, we find that the
reconstruction network converges to real-valued I(n) maps that correspond to measuring different
weighted combinations of the input channels. Thresholding the learned I(n) to be ordinal valued
leads to a significant drop in performance, even when we further train the reconstruction network to
work with this thresholded version.

Our solution to this is fairly simple. We use a soft-max with a temperature parameter that is increased
slowly through training iterations. Specifically, we learn a vector w(n) ∈ R

C for each location n of
the multiplexing pattern, with the corresponding I(n) given during training as:

I(n) = Soft-max [αtw(n)] , (1)

where αt is a scalar factor that we increase with iteration number t.

Therefore, in addition to changes due to the SGD updates to w(n), the effective distribution of I(n)
become “peakier” at every iteration because of the increasing αt, and as αt → ∞, I(n) becomes a
zero-one vector. Note that the gradient magnitudes of w(n) also scale-up, since we compute these
gradients at each iteration with respect to the current value of t. This ensures that the pattern can keep
learning in the presence of a strong supervisory signal from the loss, while retaining a bias to drift
towards making a hard choice for a single color channel.

As illustrated in Fig. 1, our sensor layer contains a parameter vector w(n) for each pixel of the
P × P multiplexing pattern. During training, we generate the corresponding I(n) vectors using
(1) above, and the layer then outputs sensor measurements based on the C-channel input x(n) as
s(n) = I(n)Tx(n). Once training is complete (and for validation during training), we replace I(n)
with its zero-one version as I(n)c = 1 for c = argmaxc w

c(n), and 0 otherwise.

As we report in Sec. 4, our approach is able to successfully learn an optimal sensing pattern, which
adapts during training to match the evolving reconstruction network. We would also like to note here
two alternative strategies that we explored to learn an ordinal I(n), which were not as successful. We
considered using a standard soft-max approach with a separate entropy penalty on the distribution
I(n)—however, this caused the pattern I(n) to stop learning very early during training (or for lower
weighting of the penalty, had no effect at all). We also tried to incrementally pin the lowest I(n)
values to zero after training for a number of iterations, in a manner similar to Han et al.’s [7] approach
to network compression. However, even with significant tuning, this approach caused a large parts of
the pattern search space to be eliminated early, and was not able to adapt to the fact that a channel
with a low weight at a particular location might eventually become desirable based on changes to the
pattern at other locations, and corresponding updates to the reconstruction network.

3.2 Reconstruction Network Architecture

Traditional demosaicking algorithms [15] produce a full color image by interpolating the missing
color values from neighboring measurement sites, and by exploiting cross-channel dependencies.
This interpolation is often linear, but in some cases takes the form of transferring chromaticities or
color ratios (e.g., in [4]). Moreover, most demosaicking algorithms reason about image textures and
edges to avoid smoothing across boundaries or creating aliasing artifacts.
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We adopt a simple bifurcated network architecture that leverages these intuitions. As illustrated in
Fig. 1, our network reconstructs each P × P patch in y(n) from a receptive field that is centered on
that patch in the measured image s(n), and thrice as large in each dimension. The network has two
paths, both of operate on the entire input and both output (P × P × 3K) values, i.e., K values for
each output color intensity. We denote these outputs as λ(n, k), f(n, k) ∈ R

3.

One path produces f(n, k) by first computing multiplicative combinations of the entire 3P × 3P
input patch—we instantiate this using a fully-connected layer without a bias term that operates in
the log-domain—followed by a linear combinations across each of the 3K values at each location.
We interpret these f(n, k) values as K proposals for each y(n). The second path uses a more
standard cascade of convolution layers—all of which have F outputs with the first layer having a
stride of P—followed by a fully connected layer that produces the outputs λ(n, k) with the same
dimensionality as f(n, k). We treat λ(n, k) as gating values for the proposals f(n, k), and generate
the final reconstructed patch ŷ(n) as

∑
k
λ(n, k)f(n, k).

4 Experiments

We follow a similar approach to [4] for training and evaluating our method. Like [4], we use
the Gehler-Shi database [6, 21] that consists of 568 color images of indoor and outdoor scenes,
captured under various illuminants. These images were obtained from RAW sensor images from a
camera employing the Bayer pattern with an anti-aliasing optical filter, by using the different color
measurements in each Bayer block to construct a single RGB pixel. These images are therefore at half
the resolution of the original sensor image, but have statistics that are representative of aliasing-free
full color images of typical natural scenes. Unlike [4] who only used 10 images for evaluation, we
use the entire dataset—using 56 images for testing, 461 images for training, and the remaining 51
images as a validation set to fix hyper-parameters.

We treat the images in the dataset as the ground truth for the output RGB images y(n). As sensor
measurements, we consider C = 4 possible color channels. The first three correspond to the original
sensor RGB channels. Like [4], we choose the fourth channel to be white or panchromatic, and
construct it as the sum of the RGB measurements. As mentioned in [4], this corresponds to a
conservative estimate of the light-efficiency of an unfiltered channel. We construct the C-channel
input image x(n) by including these measurements, followed by addition of different levels of
Gaussian noise, with high noise variances simulating low-light capture.

We learn a repeating pattern with P = 8. In our reconstruction network, we set the number of
proposals K for each output intensity to 24, and the number of convolutional layer outputs F in
the second path of our network to 128. When learning our sensor multiplexing pattern, we increase
the scalar soft-max factor αt in (1) according to a quadratic schedule as αt = 1 + (γt)2, where
γ = 2.5× 10−5 in our experiments. We train a separate reconstruction network for each noise level
(positing that a camera could select between these based on the ISO settings). However, since it is
impractical to employ different sensors for different settings, we learn a single spatial multiplexing
pattern, optimized for reconstruction under moderate noise levels with standard deviation (STD) of
0.01 (with respect to intensity values in x(n) scaled to be between 0 and 1).

We train our sensor layer and reconstruction network jointly at this noise level on sets of 8 × 8
y(n) patches and corresponding 24× 24 x(n) patches sampled randomly from the training set. We
use a batch-size of 128, with a learning rate of 0.001 for 1.5 million iterations. Then, keeping the
sensor pattern fixed to our learned version, we train reconstruction networks from scratch for other
noise levels—training again with a learning rate of 0.001 for 1.5 million iterations, followed another
100,000 iterations with a rate of 10−4. We also train reconstruction networks at all noise levels
in a similar way for the Bayer pattern, as well the pattern of [4] (with a color sampling rate of 4).
Moreover, to allow consistent comparisons, we re-train the reconstruction network for our pattern at
the 0.01 noise level from scratch following this regime.

4.1 Evaluating the Reconstruction Network

We begin by comparing the performance of our learned reconstruction networks to traditional
demosaicking algorithms for the standard Bayer pattern, and the pattern of [4]. Note that our goal
is not to propose a new demosaicking method for existing sensors. Nevertheless, since our sensor
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It # 2,500 It # 5,000 It # 7,500 It # 10,000 It # 12,500 It # 25,000
Entropy: 1.38 Entropy: 1.38 Entropy: 1.38 Entropy: 1.38 Entropy: 1.38 Entropy: 1.37

It # 100,000 It # 200,000 It # 300,000 It # 400,000 It # 500,000 It # 600,000
Entropy: 1.02 Entropy: 0.78 Entropy: 0.75 Entropy: 0.82 Entropy: 0.86 Entropy: 0.85

It # 1,000,000 It # 1,100,000 It # 1,200,000 It # 1,300,000 It # 1,400,000 It # 1,500,0000
Entropy: 0.57 Entropy: 0.37 Entropy: 0.35 Entropy: 0.25 Entropy: 0.18 (Final)

Figure 2: Evolution of sensor pattern through training iterations. We find that the our network’s color
sensing pattern changes qualitatively through the training process. In initial iterations, the sensor
layer learns to sample color channels directly. As training continues, these color measurements are
replaced by panchromatic (white) pixels. The final iterations see fine refinements to the pattern. We
also report the mean (across pixels) entropy of the underlying distribution I(n) for each pattern. Note
that, as expected, this entropy decreases across iterations as the distributions I(n) evolve from being
soft selections of color channels, to zero-one vectors that make hard ordinal decisions.

Table 1: Median Reconstruction PSNR (dB) using Traditional demosaicking and Proposed Network

Bayer CFZ [4]

Noise STD=0.0025 Noise STD=0.01 Noise STD=0.0025 Noise STD=0.01

Traditional 42.69 32.44 48.84 39.55

Network 47.55 43.72 49.08 44.64

pattern is being learned jointly with our proposed reconstruction architecture, it is important to
determine whether this architecture can learn to reason effectively with different kinds of sensor
patterns, which is necessary to effectively cover the joint sensor-inference design space.

We compare our learned networks to Zhang and Wu’s method [27] for the Bayer pattern, and
Chakrabarti et al.’s method [4] for their own pattern. We measure performance in terms of the
reconstruction PSNR of all non-overlapping 64× 64 patches from all test images (roughly 40,000
patches). Table 1 compares the median PSNR values across all patches for reconstructions using our
network to those from traditional methods, at two noise levels—low noise corresponding to an STD
of 0.0025, and moderate noise corresponding to 0.01. For the pattern of [4], we find that our network
performs similar to their reconstruction method at the low noise level, and significantly better at the
higher noise level. On the Bayer pattern, our network achieves much better performance at both noise
levels. We also note here that reconstruction using our network is significantly faster—taking 9s on a
six core CPU, and 200ms when using a Titan X GPU, for a 2.7 mega-pixel image. In comparison, [4]
and [27]’s reconstruction methods take 20s and 1 min. respectively on the CPU.

4.2 Visualizing Sensor Pattern Training

In Fig. 2, we visualize the evolution of our sensor pattern during the training process, while it is being
jointly learned with the reconstruction network. In the initial iterations, the sensor layers displays a
preference for densely sampling the RGB channels, with very few panchromatic measurements—in
fact, in the first row of Fig. 2, we see panchromatic pixels switching to color measurements. This
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Figure 3: Example reconstructions from (noisy) measurements with different sensor multiplexing
patterns. Best viewed at higher resolution in the electronic version.

is likely because early on in the training process, the reconstruction network hasn’t yet learned to
exploit cross-channel correlations, and therefore needs to measure the output channels directly.

However, as training progresses, the reconstruction network gets more sophisticated, and we see the
number of color measurements get sparser and sparser, in favor of panchromatic pixels that offer the
advantage of higher SNR. Essentially, the sensor layer begins to adopt one of the design principles of
[4]. However, it distributes the color measurement sites across the pattern, instead of concentrating
them into separated blocks like [4]. In the last 500K iterations, we see that most changes correspond
to fine refinements of the pattern, with a few individual pixels swapping the channels they measure.

While the patterns themselves in Fig. 2 correspond to the channel at each pixel with the maximum
value in the selection map I(n), remember that these maps themselves are soft. Therefore, we also
report the mean entropy of the underlying I(n) for each pattern in Fig. 2. We see that this entropy
decreases across iterations, as the choice of color channel for more and more pixels becomes fixed,
with their distributions in I(n) becoming peakier and closer to being zero-one vectors.

4.3 Evaluating Learned Pattern

Finally, we evaluate the performance of neural network-based reconstruction from measurements
with our learned pattern, to those with the Bayer pattern and the pattern of [4]. Table 2 shows
different quantiles of reconstruction PSNR for various noise levels, with noise STDs raning from
0 to 0.04. Even though our sensor pattern was trained at the noise level of STD=0.01, we find it
achieves the highest reconstruction quality over a large range of noise levels. Specifically, it always
outperforms the Bayer pattern, by fairly significant margins at higher noise levels. The improvement
in performance over [4]’s pattern is less pronounced, although we do achieve consistently higher
PSNR values for all quantiles at most noise levels. Figure 3 shows examples of color patches
reconstructed from our learned sensor, and compare these to those from the Bayer pattern and [4].

We see that the reconstructions from the Bayer pattern are noticeably worse. This is because it
makes lower SNR measurements, and the reconstruction networks learn to smooth their outputs to
reduce this noise. Both [4] and our pattern yield significantly better reconstructions. Indeed, most of
our gains over the Bayer pattern come from choosing to make most measurements panchromatic, a
design principle shared by [4]. However, remember that our sensor layer learns this principle entirely
automatically from data, without expert supervision. Moreover, we see that [4]’s reconstructions
tend to have a few more instances of “chromaticity noise”, in the form of contiguous regions with
incorrect hues, which explain its slightly lower PSNR values in Table 2.
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Table 2: Network Reconstruction PSNR (dB) Quantiles for various CFA Patterns

Noise STD Percentile Bayer [2] CFZ [4] Learned

25% 47.62 48.04 47.97
0 50% 51.72 52.17 52.12

75% 54.97 55.32 55.30

25% 44.61 46.05 46.08
0.0025 50% 47.55 49.08 49.17

75% 50.52 51.57 51.76

25% 42.55 44.33 44.37
0.0050 50% 45.63 47.01 47.19

75% 48.73 49.68 49.94

25% 41.34 42.92 43.08
0.0075 50% 44.48 45.60 45.85

75% 47.77 48.41 48.69

25% 40.58 41.97 42.16
0.0100 50% 43.72 44.64 44.94

75% 47.10 47.56 47.80

25% 40.29 41.17 41.41
0.0125 50% 43.36 43.88 44.22

75% 46.65 47.04 47.27

25% 39.97 40.54 40.85
0.0150 50% 43.03 43.29 43.69

75% 46.25 46.69 46.86

25% 39.60 40.03 40.31
0.0175 50% 42.62 42.83 43.12

75% 45.82 46.39 46.45

25% 39.31 39.49 39.96
0.0200 50% 42.39 42.39 42.78

75% 45.56 46.14 46.23

25% 38.18 38.31 38.92
0.0300 50% 41.17 41.48 41.85

75% 44.23 45.61 45.63

25% 37.14 37.43 38.00
0.0400 50% 39.98 40.86 41.02

75% 43.17 45.11 44.98

5 Conclusion

In this paper, we proposed learning sensor design jointly with a neural network that carried out
inference on the sensor’s measurements, specifically focusing on the problem of finding the optimal
color multiplexing pattern for a digital color camera. We learned this pattern by joint training with
a neural network for reconstructing full color images from the multiplexed measurements. We
used a soft-max operation with an increasing temperature parameter to model the non-differentiable
color channel selection at each point, which allowed us to train the pattern effectively. Finally,
we demonstrated that our learned pattern enabled better reconstructions than past designs. An
implementation of our method, along with trained models, data, and results, is available at our project
page at http://www.ttic.edu/chakrabarti/learncfa/.

Our results suggest that learning measurement strategies jointly with computational inference is both
useful and possible. In particular, our approach can be used directly to learn other forms of optimized
multiplexing patterns—e.g., spatio-temporal multiplexing for video, viewpoint multiplexing in light-
field cameras, etc. Moreover, these patterns can be learned to be optimal for inference tasks beyond
reconstruction. For example, a sensor layer jointly trained with a neural network for classification
could be used to discover optimal measurement strategies for say, distinguishing between biological
samples using multi-spectral imaging, or detecting targets in remote sensing.
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