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A Computational Complexity

Table A.1: Comparison of computational complexity in big O notation between ADA-FULL, ADA-LR
and RADAGRAD.

Operation Line ADA-FULL ADA-LR RADAGRAD

Πgt 3 p log τ
Gt = gtg

>
t p2 p2 pτ

GtΠ 4 p2 log τ
QR-decomp 5 τ2p τ2p
Q>Gt 6 τp2 τ2p
SVD 7 p3 τ2p τ3

QW 8 τ2p
βt+1 = 10 p2 τp τp

Total p3 τp2 τ2p

B RADA-VR: RADAGRAD with variance reduction.

Algorithm 3 RADA-VR

Input: η > 0, δ ≥ 0, τ , S number of epochs, m iterations per epoch, initial β1
0

1: for s = 1 . . . S do
2: µ = ∇

∑n
i=1 fi(β

s
0)

3: for t = 1 . . .m− 1 do
4: Compute VR gradient: gt = ∇ft(βst )−∇ft(β

s
0) + µ

5: Project: g̃t = Πgt
6: G̃t = G̃t−1 + gtg̃

>
t

7: Qt,Rt← qr_update(Qt−1,Rt−1,gt, g̃t)
8: B = G̃>t Q
9: U,Σ,W = B {SVD}

10: V = WQ̃>

11: βst+1 = βst − ηV(Σ1/2 + δI)−1V>gt − γt
12: end for
13: βs+1

0 = βst+1
14: end for
Output: βSm

C Analysis

C.1 Regret bound for ADA-LR

The following proof is based on the proof for Theorem 7 in [9]. The key difference is that instead
of having the square root and (pseudo-)inverse of the full matrix Gt : G

1/2
t and S†t we have the

approximate square root and inverse based on the randomized SVD [15]): S̃t = (QQ>Gt)
1/2 and

S̃†t = (QQ>Gt)
−1/2. Essentially we use the proximal function ψt = 〈x, S̃tx〉 or ψt = 〈x, H̃tx〉

where we set H̃t = δI + S̃t. Here Q is the approximate basis for the range of the matrix Gt [15].

We first state the following facts about the relationship between G and G̃−1/2.
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Lemma 3. Defining G̃−1/2 = (QQ>G)−1/2 we have

(I) G̃−1/2G = (G−1(QQ>)G2)1/2 ,

(II) tr((G−1(QQ>)G2)1/2) = tr(G̃1/2) .

We also require the following Lemma which bounds the sequence of proximal terms by the trace of
the final G̃−1/2.

Lemma 4 (Based on Lemma 10 in [9]).

T∑
t=1

〈gt, G̃−1/2t gt〉 ≤ 2

T∑
t=1

〈gt, G̃−1/2T gt〉 = 2tr(G̃
1/2
T ). (3)

We are now ready to prove Proposition 2.

Proof of Proposition 2. Inspecting Lemma 6:

R(T ) ≤ 1

η
ψT (β

opt) +
η

2

T∑
t=1

‖f ′t(βt)‖2ψ∗
T−1

,

we first bound the term
∑T
t=1 ‖f ′t(βt)‖2ψ∗

T−1
.

From [9, Proof of Theorem 7] we have that the squared dual norm associated with ψt is

‖x‖2ψ∗
t
= 〈x, (δI + (QQ>Gt)

1/2)−1x〉

and thus it is clear that ‖gt‖2ψ∗
t
≤ 〈gt, (QQ>Gt)

−1/2gt〉. Lemma 8 shows that ‖gt‖2ψ∗
t−1
≤

〈gt, S̃tgt〉 as long as δ ≥ ‖gt‖2. Lemma 4 then implies that

T∑
t=1

‖f ′t(βt)‖2ψ∗
T−1
≤ 2tr(G̃

1/2
T ).

We now bound 2tr(G̃
1/2
T ) by 2(tr(G

1/2
T ) + τ

√
ε):

tr(G̃
1/2
T )− tr(G

1/2
T ) = tr(G̃

1/2
T −G

1/2
T ) (4)

=

τ∑
j=1

(
λj(G̃

1/2
T )− λj(G1/2

T )
)
−

p∑
j=τ+1

λj(G
1/2
T ) (5)

≤
τ∑
j=1

(
λ1(G̃

1/2
T )− λ1(G1/2

T )
)

(6)

since λj(G̃T ) = 0, ∀j > τ .

Now, using the reverse triangle inequality and Theorem 5 we obtain

τ∑
j=1

(
λ1(G̃

1/2
T )− λ1(G1/2

T )
)
≤

τ∑
j=1

‖G̃1/2
T −G

1/2
T ‖2 (7)

≤
τ∑
j=1

√
ε (8)

≤ τ
√
ε. (9)
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It remains to show that ψT (βopt) in Lemma 6 is bounded by
(
δ +
√
ε+ tr(G

1/2
T )

)
‖βopt‖2 to get

the statement of Theorem 2:
ψT (β

opt) = 〈βopt, δI + (QQ>GT )
1/2βopt〉

≤ ‖βopt‖2‖(QQ>GT )
1/2‖2 + δ‖βopt‖2

≤ ‖βopt‖2
(√

ε+ ‖G1/2
T ‖

)
+ δ‖βopt‖2

≤ ‖βopt‖2
(√

ε+ tr(G
1/2
T )

)
+ δ‖βopt‖2

where we again use the reverse triangle inequality and Theorem 5 as above.

Finally, plugging this into the statement of Lemma 6 and setting η = ‖βopt‖2 (as in Corollary 11 in
[9]) we get the expression for the regret of ADA-LR as stated in Theorem 2.

C.2 Proofs of supporting results

Proof of Lemma 3. By direct computation we have for (I)
G̃−1/2G = (QQ>G)−1/2G

= ((QQ>G)−1G2)1/2

= (G−1(QQ>)−1G2)1/2

= (G−1(QQ>)G2)1/2.

and for (II)
tr((G−1(QQ>)G2)1/2) = tr((Q>GQ)1/2)

= tr((QQ>G)1/2)

= tr(G̃1/2).

Proof of Lemma 4. We set up the following proof by induction. In the base case:

〈g1, G̃
−1/2
1 ,g1〉 = tr(G̃

−1/2
1 g1g

>
1 ) = tr(G̃

1/2
1 ) ≤ 2tr(G̃

1/2
1 ),

where we have used (II).

Now, assuming that the lemma is true for T − 1, we get:
T∑
t=1

〈gt, G̃−1/2t , gt〉 ≤ 2

T∑
t=1

〈gt, G̃−1/2T−1 gt〉+ 〈gT , G̃−1/2T gT 〉.

Now using that G̃
−1/2
T−1 does not depend on t and (II):

T−1∑
t=1

〈gt, G̃−1/2T−1 gt〉 = tr(G̃
−1/2
T−1 GT−1) = tr(G̃

1/2
T−1).

Therefore we get
T∑
t=1

〈gt, G̃−1/2t gt〉 ≤ 2tr(G̃
1/2
T−1) + 〈gT , G̃

−1/2
T gT 〉. (10)

We can rewrite

tr(G̃
1/2
T−1) = tr(

(
QT−1Q

>
T−1GT −QT−1Q

>
T−1gTg>T

)1/2
) (11)

Now since range(QT−1) ⊂ range(QT ) and Proposition 8.5 in [15] we can use Lemma 7 with ν = 1
and g = gt to obtain:

2tr(G̃
1/2
T−1) + 〈gT , G̃

−1/2
T ,gT 〉 ≤ 2tr(G̃

1/2
T ) (12)
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D Supporting Results

Theorem 5 (SRFT approximation error (Theorem 11.2 in [15])). Defining ε =
√

1 + 7p/τ · σk+1

the following holds with failure probability at most O
(
k−1

)
∥∥Gt −QQ>Gt

∥∥
2
≤ ε, (13)

where σk+1 is the kth largest singular value of Gt, and 4
[√

k +
√
8 log(kn)

]2
≤ τ ≤ p.

Lemma 6 (Proposition 2 from [9]).

R(T ) :=

T∑
t=1

ft(βt) + ϕ(βt)− ft(β
opt)− ϕ(βopt) ≤ 1

η
ψT (β

opt) +
η

2

T∑
t=1

‖f ′t(βt)‖2ψ∗
T−1

Lemma 7 (Lemma 8 from [9]). Let B � 0. For any ν such that B− νgg> � 0 the following holds

2tr((B− νgg>)1/2) ≤ 2tr(B1/2)− νtr(B1/2gg>)

Lemma 8 (Lemma 9 from [9]). Let δ ≥ ‖g‖2 and A � 0, then

〈g, (δI + A1/2)−1g〉 ≤ 〈g, ((A + gg>)†)1/2g〉
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