
Supplementary Information for Scalable Adaptive Stochastic
Optimization Using Random Projections

A Computational Complexity

Table A.1: Comparison of computational complexity in big O notation between ADA-FULL, ADA-LR
and RADAGRAD.

Operation Line ADA-FULL ADA-LR RADAGRAD

Πgt 3 p log τ
Gt = gtg

>
t p2 p2 pτ

GtΠ 4 p2 log τ
QR-decomp 5 τ2p τ2p
Q>Gt 6 τp2 τ2p
SVD 7 p3 τ2p τ3

QW 8 τ2p
βt+1 = 10 p2 τp τp

Total p3 τp2 τ2p

B RADA-VR: RADAGRAD with variance reduction.

Algorithm 3 RADA-VR

Input: η > 0, δ ≥ 0, τ , S number of epochs, m iterations per epoch, initial β1
0

1: for s = 1 . . . S do
2: µ = ∇

∑n
i=1 fi(β

s
0)

3: for t = 1 . . .m− 1 do
4: Compute VR gradient: gt = ∇ft(βst )−∇ft(β

s
0) + µ

5: Project: g̃t = Πgt
6: G̃t = G̃t−1 + gtg̃

>
t

7: Qt,Rt← qr_update(Qt−1,Rt−1,gt, g̃t)
8: B = G̃>t Q
9: U,Σ,W = B {SVD}

10: V = WQ̃>

11: βst+1 = βst − ηV(Σ1/2 + δI)−1V>gt − γt
12: end for
13: βs+1

0 = βst+1
14: end for
Output: βSm

C Analysis

C.1 Regret bound for ADA-LR

The following proof is based on the proof for Theorem 7 in [9]. The key difference is that instead
of having the square root and (pseudo-)inverse of the full matrix Gt : G

1/2
t and S†t we have the

approximate square root and inverse based on the randomized SVD [15]): S̃t = (QQ>Gt)
1/2 and

S̃†t = (QQ>Gt)
−1/2. Essentially we use the proximal function ψt = 〈x, S̃tx〉 or ψt = 〈x, H̃tx〉

where we set H̃t = δI + S̃t. Here Q is the approximate basis for the range of the matrix Gt [15].

We first state the following facts about the relationship between G and G̃−1/2.

9



Lemma 3. Defining G̃−1/2 = (QQ>G)−1/2 we have

(I) G̃−1/2G = (G−1(QQ>)G2)1/2 ,

(II) tr((G−1(QQ>)G2)1/2) = tr(G̃1/2) .

We also require the following Lemma which bounds the sequence of proximal terms by the trace of
the final G̃−1/2.

Lemma 4 (Based on Lemma 10 in [9]).

T∑
t=1

〈gt, G̃−1/2t gt〉 ≤ 2

T∑
t=1

〈gt, G̃−1/2T gt〉 = 2tr(G̃
1/2
T ). (3)

We are now ready to prove Proposition 2.

Proof of Proposition 2. Inspecting Lemma 6:

R(T ) ≤ 1

η
ψT (β

opt) +
η

2

T∑
t=1

‖f ′t(βt)‖2ψ∗
T−1

,

we first bound the term
∑T
t=1 ‖f ′t(βt)‖2ψ∗

T−1
.

From [9, Proof of Theorem 7] we have that the squared dual norm associated with ψt is

‖x‖2ψ∗
t
= 〈x, (δI + (QQ>Gt)

1/2)−1x〉

and thus it is clear that ‖gt‖2ψ∗
t
≤ 〈gt, (QQ>Gt)

−1/2gt〉. Lemma 8 shows that ‖gt‖2ψ∗
t−1
≤

〈gt, S̃tgt〉 as long as δ ≥ ‖gt‖2. Lemma 4 then implies that

T∑
t=1

‖f ′t(βt)‖2ψ∗
T−1
≤ 2tr(G̃

1/2
T ).

We now bound 2tr(G̃
1/2
T ) by 2(tr(G

1/2
T ) + τ

√
ε):

tr(G̃
1/2
T )− tr(G

1/2
T ) = tr(G̃

1/2
T −G

1/2
T ) (4)

=

τ∑
j=1

(
λj(G̃

1/2
T )− λj(G1/2

T )
)
−

p∑
j=τ+1

λj(G
1/2
T ) (5)

≤
τ∑
j=1

(
λ1(G̃

1/2
T )− λ1(G1/2

T )
)

(6)

since λj(G̃T ) = 0, ∀j > τ .

Now, using the reverse triangle inequality and Theorem 5 we obtain

τ∑
j=1

(
λ1(G̃

1/2
T )− λ1(G1/2

T )
)
≤

τ∑
j=1

‖G̃1/2
T −G

1/2
T ‖2 (7)

≤
τ∑
j=1

√
ε (8)

≤ τ
√
ε. (9)

10



It remains to show that ψT (βopt) in Lemma 6 is bounded by
(
δ +
√
ε+ tr(G

1/2
T )

)
‖βopt‖2 to get

the statement of Theorem 2:
ψT (β

opt) = 〈βopt, δI + (QQ>GT )
1/2βopt〉

≤ ‖βopt‖2‖(QQ>GT )
1/2‖2 + δ‖βopt‖2

≤ ‖βopt‖2
(√

ε+ ‖G1/2
T ‖

)
+ δ‖βopt‖2

≤ ‖βopt‖2
(√

ε+ tr(G
1/2
T )

)
+ δ‖βopt‖2

where we again use the reverse triangle inequality and Theorem 5 as above.

Finally, plugging this into the statement of Lemma 6 and setting η = ‖βopt‖2 (as in Corollary 11 in
[9]) we get the expression for the regret of ADA-LR as stated in Theorem 2.

C.2 Proofs of supporting results

Proof of Lemma 3. By direct computation we have for (I)
G̃−1/2G = (QQ>G)−1/2G

= ((QQ>G)−1G2)1/2

= (G−1(QQ>)−1G2)1/2

= (G−1(QQ>)G2)1/2.

and for (II)
tr((G−1(QQ>)G2)1/2) = tr((Q>GQ)1/2)

= tr((QQ>G)1/2)

= tr(G̃1/2).

Proof of Lemma 4. We set up the following proof by induction. In the base case:

〈g1, G̃
−1/2
1 ,g1〉 = tr(G̃

−1/2
1 g1g

>
1 ) = tr(G̃

1/2
1 ) ≤ 2tr(G̃

1/2
1 ),

where we have used (II).

Now, assuming that the lemma is true for T − 1, we get:
T∑
t=1

〈gt, G̃−1/2t , gt〉 ≤ 2

T∑
t=1

〈gt, G̃−1/2T−1 gt〉+ 〈gT , G̃−1/2T gT 〉.

Now using that G̃
−1/2
T−1 does not depend on t and (II):

T−1∑
t=1

〈gt, G̃−1/2T−1 gt〉 = tr(G̃
−1/2
T−1 GT−1) = tr(G̃

1/2
T−1).

Therefore we get
T∑
t=1

〈gt, G̃−1/2t gt〉 ≤ 2tr(G̃
1/2
T−1) + 〈gT , G̃

−1/2
T gT 〉. (10)

We can rewrite

tr(G̃
1/2
T−1) = tr(

(
QT−1Q

>
T−1GT −QT−1Q

>
T−1gTg>T

)1/2
) (11)

Now since range(QT−1) ⊂ range(QT ) and Proposition 8.5 in [15] we can use Lemma 7 with ν = 1
and g = gt to obtain:

2tr(G̃
1/2
T−1) + 〈gT , G̃

−1/2
T ,gT 〉 ≤ 2tr(G̃

1/2
T ) (12)

11



D Supporting Results

Theorem 5 (SRFT approximation error (Theorem 11.2 in [15])). Defining ε =
√

1 + 7p/τ · σk+1

the following holds with failure probability at most O
(
k−1

)
∥∥Gt −QQ>Gt

∥∥
2
≤ ε, (13)

where σk+1 is the kth largest singular value of Gt, and 4
[√

k +
√
8 log(kn)

]2
≤ τ ≤ p.

Lemma 6 (Proposition 2 from [9]).

R(T ) :=

T∑
t=1

ft(βt) + ϕ(βt)− ft(β
opt)− ϕ(βopt) ≤ 1

η
ψT (β

opt) +
η

2

T∑
t=1

‖f ′t(βt)‖2ψ∗
T−1

Lemma 7 (Lemma 8 from [9]). Let B � 0. For any ν such that B− νgg> � 0 the following holds

2tr((B− νgg>)1/2) ≤ 2tr(B1/2)− νtr(B1/2gg>)

Lemma 8 (Lemma 9 from [9]). Let δ ≥ ‖g‖2 and A � 0, then

〈g, (δI + A1/2)−1g〉 ≤ 〈g, ((A + gg>)†)1/2g〉

References
[1] Z. Allen-Zhu and E. Hazan. Variance reduction for faster non-convex optimization. In Proceedings of the

33rd International Conference on Machine Learning, 2016.
[2] S.-I. Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276, 1998.
[3] D. Balduzzi. Deep online convex optimization with gated games. arXiv preprint arXiv:1604.01952, 2016.
[4] D. Balduzzi and M. Ghifary. Strongly-typed recurrent neural networks. In Proceedings of the 33rd

International Conference on Machine Learning, 2016.
[5] R. H. Byrd, S. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-newton method for large-scale

optimization. arXiv preprint arXiv:1401.7020, 2014.
[6] Y. N. Dauphin, H. de Vries, J. Chung, and Y. Bengio. Rmsprop and equilibrated adaptive learning rates for

non-convex optimization. arXiv preprint arXiv:1502.04390, 2015.
[7] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for

non-strongly convex composite objectives. In Advances in Neural Information Processing Systems, 2014.
[8] G. Desjardins, K. Simonyan, R. Pascanu, et al. Natural neural networks. In Advances in Neural Information

Processing Systems, pages 2062–2070, 2015.
[9] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic

optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.
[10] J. C. Duchi, M. I. Jordan, and H. B. McMahan. Estimation, optimization, and parallelism when data is

sparse. In Advances in Neural Information Processing Systems, 2013.
[11] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU Press, 2012.
[12] A. Gonen and S. Shalev-Shwartz. Faster sgd using sketched conditioning. arXiv preprint arXiv:1506.02649,

2015.
[13] Y. Gong, S. Kumar, H. Rowley, and S. Lazebnik. Learning binary codes for high-dimensional data using

bilinear projections. In Proceedings of CVPR, pages 484–491, 2013.
[14] R. Grosse and R. Salakhudinov. Scaling up natural gradient by sparsely factorizing the inverse fisher

matrix. In Proceedings of the 32nd International Conference on Machine Learning, pages 2304–2313,
2015.

[15] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288, 2011.

[16] C. Heinze, B. McWilliams, and N. Meinshausen. Dual-loco: Distributing statistical estimation using
random projections. In Proceedings of AISTATS, 2016.

[17] C. Heinze, B. McWilliams, N. Meinshausen, and G. Krummenacher. Loco: Distributing ridge regression
with random projections. arXiv preprint arXiv:1406.3469, 2014.

[18] T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams. Variance reduced stochastic gradient
descent with neighbors. In Advances in Neural Information Processing Systems, 2015.

[19] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems, pages 315–323, 2013.

12



[20] N. S. Keskar and A. S. Berahas. adaQN: An Adaptive Quasi-Newton Algorithm for Training RNNs. Nov.
2015.

[21] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[22] A. Lucchi, B. McWilliams, and T. Hofmann. A variance reduced stochastic newton method. arXiv preprint

arXiv:1503.08316, 2015.
[23] H. Luo, A. Agarwal, N. Cesa-Bianchi, and J. Langford. Efficient second order online learning via sketching.

arXiv preprint arXiv:1602.02202, 2016.
[24] M. W. Mahoney. Randomized algorithms for matrices and data. Apr. 2011. arXiv:1104.5557v3 [cs.DS].
[25] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of english: The

penn treebank. Computational linguistics, 19(2):313–330, 1993.
[26] J. Martens and R. Grosse. Optimizing neural networks with kronecker-factored approximate curvature. In

Proceedings of the 32nd International Conference on Machine Learning, 2015.
[27] B. McWilliams, G. Krummenacher, M. Lucic, and J. M. Buhmann. Fast and robust least squares estimation

in corrupted linear models. In Advances in Neural Information Processing Systems, volume 27, 2014.
[28] B. Neyshabur, R. R. Salakhutdinov, and N. Srebro. Path-sgd: Path-normalized optimization in deep neural

networks. In Advances in Neural Information Processing Systems, pages 2413–2421, 2015.
[29] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP,

volume 14, pages 1532–1543, 2014.
[30] L. Zhang, M. Mahdavi, R. Jin, T. Yang, and S. Zhu. Recovering optimal solution by dual random projection.

arXiv preprint arXiv:1211.3046, 2012.

13


	Introduction
	Related work
	Problem setting

	Stochastic optimization in high dimensions
	Approximating Ada-full using random projections
	Randomized low-rank approximation
	RadaGrad: A faster approximation
	Practical algorithms

	Experiments
	Low effective rank data
	Non-convex optimization in neural networks

	Discussion
	Computational Complexity
	Rada-vr: RadaGrad with variance reduction.
	Analysis
	Regret bound for Ada-lr
	Proofs of supporting results

	Supporting Results

