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1 Gradient Concentration

Lemma 1. For any Ising model with p spins and for all l 6= u ∈ V

E [Xul (θ
∗
u)] = 0. (1)

Proof. By direct computation, we find that

E [Xul (θ
∗
u)] = E

[
−σuσl exp

(
−
∑
i∈∂u

θ∗uiσuσi

)]

=
−1

Z

∑
σ

σuσl exp

 ∑
(i,j)∈E

θ∗ijσiσj −
∑
i∈∂u

θ∗uiσuσi

 = 0, (2)

where in the last line we use the fact that the exponential terms involving σu cancel, implying that the
sum over σu ∈ {−1,+1} is zero.

Lemma 2. For any Ising model with p spins and for all l 6= u ∈ V

E
[
Xul (θ

∗
u)

2
]

= 1. (3)

Proof. As a result of direct evaluation one derives

E
[
Xul (θ

∗
u)

2
]

= E

[
exp

(
−2

∑
i∈∂u

θ∗uiσuσi

)]

=
1

Z

∑
σ

exp

 ∑
(i,j)∈E,i,j 6=u

θ∗ijσiσj −
∑
i∈∂u

θ∗uiσuσi


=

1

Z

∑
σ

exp

 ∑
(i,j)∈E,i,j 6=u

θ∗ijσiσj +
∑
i∈∂u

θ∗uiσuσi


= 1. (4)
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Notice that in the second line the first sum over edges (under the exponential) does not depend on
σu. Furthermore, the first sum is invariant under the change of variables, σu → −σu, while the
second sum changes sign. This transformation results in appearance of the partition function in the
numerator.

Lemma 3. For any Ising model with p spins, with maximum degree d and maximum coupling
intensity β, we guarantee that for all l 6= u ∈ V

|Xul (θ
∗
u)| ≤ exp (βd) . (5)

Proof. Observe that components of θ∗u are smaller than β and at most d of them are non-zero. Recall
that spins are binary, {−1,+1}, which results in the following estimate

|Xul (θ
∗
u)| =

∣∣∣∣∣−σuσi exp

(
−
∑
i∈∂u

θ∗uiσuσi

)∣∣∣∣∣
≤ exp

(
−
∑
i∈∂u

θ∗uiσuσi

)
≤ exp (βd) . (6)

Lemma 4. For any Ising model with p spins, with maximum degree d and maximum coupling
intensity β. For any ε3 > 0, if the number of observation satisfies n ≥ exp (2βd) ln 2p

ε3
, then the

following bound holds with probability at least 1− ε3:

‖∇Sn (θ∗u)‖∞ ≤ 2

√
ln 2p

ε3

n
. (7)

Proof. Let us first show that every term is individually bounded by the RHS of (7) with high-
probability. We further use the union bound to prove that all components are uniformly bounded with
high-probability. Utilizing Lemma 1, Lemma 2 and Lemma 3 we apply the Bernstein’s Inequality

P
[∣∣∣∣ ∂

∂θul
Sn (θ∗u)

∣∣∣∣ > t

]
≤ 2 exp

(
−

1
2 t

2n

1 + 1
3 exp (βd) t

)
. (8)

Inverting the following relation

s =
1
2 t

2n

1 + 1
3 exp (βd) t

, (9)

and substituting the result in the Eq. (8) one derives

P

[∣∣∣∣ ∂

∂θul
Sn (θ∗u)

∣∣∣∣ > 1

3

(
u+

√
18

exp (βd)
u+ u2

)]
≤ 2 exp (−s) , (10)

where u = s
n exp (βd) .

When n ≥ s exp (2βd) Eq. (10) can be simplified to become independent of β and d

P
[∣∣∣∣ ∂

∂θul
Sn (θ∗u)

∣∣∣∣ > 2

√
s

n

]
≤ 2 exp (−s) . (11)

Using s = ln 2p
ε3

and the union bound on every component of the gradient leads to the desired
result.
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1.1 Restricted Strong-Convexity

We recall that the remainder of the first-order Taylor-expansion of the ISO reads

δSn (∆u, θ
∗) =

1

n

n∑
k=1

exp

(
−
∑
i∈∂u

θ∗uiσ
(k)
u σ

(k)
i

)(
exp

(
−Y (k)

u (∆u)
)
− 1 + Y (k)

u (∆u)
)
, (12)

where the random variables Y (k)
u (∆u) are i.i.d and are related to the spin configurations according to

Yu (∆u) =
∑
i∈V \u

∆uiσuσi. (13)

Lemma 5. Consider an Ising model with p spins, with maximum degree d and maximum coupling
intensity β. For all ∆u ∈ Rp−1 the following bound holds

E
[
Yu (∆u)

2
]
≥ e−2βd

d+ 1
‖∆u‖22 . (14)

Proof. Our proof strategy here follows [1, Cor. 3.1]. Notice that the probability measure of the Ising
model is symmetric with respect to the sign flip, i.e. µ (σ1, . . . , σp) = µ (−σ1, . . . ,−σp). Thus any
spin has zero mean, which implies that for every ∆u ∈ Rp−1

E

 ∑
i∈V \u

∆uiσi

 = 0. (15)

This allows to reinterpret (14) as a variance, using that σ2
u = 1,

E
[
Yu (∆u)

2
]

= E


 ∑
i∈V \u

∆uiσi

2


= Var

 ∑
i∈V \u

∆uiσi

 . (16)

Construct a subset A ⊂ V recursively as follows: (i) let i0 = argmaxj∈V \u ∆2
uj and define

A0 = {i0}, (ii) given At = {i0, . . . , it}, let Bt = {j ∈ V \At | ∂j ∩At = ∅} and it+1 =
argmaxj∈Bt\u ∆2

uj and set At+1 = At ∪ {it+1}, (iii) terminate when Bt \ u = ∅ and declare
A = At.

The set A possesses the following two main properties. First, every node i ∈ A does not have any
neighbors in A and, second,

(d+ 1)
∑
i∈A

∆2
ui ≥

∑
i∈V \u

∆2
ui. (17)

We apply the law of total variance to (16) by conditioning on the set of spins σAc whose indexes are
from the complementary set Ac.

Var

 ∑
i∈V \u

∆uiσi

 ≥ E

Var

 ∑
i∈V \u

∆uiσi | σAc


=

∑
i∈A

∆2
uiE [Var [σi | σAc ]] , (18)

where in the last line one uses that the spins in A are conditionally independent given their neighbors
σAc . One concludes the proof by using relation (17) and the fact that the conditional variance of a
spin given its neighbors are bounded from below:

Var [σi | σAc ] = 1− tanh2

∑
j∈∂i

θ∗ijσj


≥ exp (−2βd) . (19)
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Lemma 6. Consider an Ising model with p spins, with maximum degree d and maximum coupling
intensity β. For all ∆u ∈ Rp−1 and for all ε4 > 0, the remainder of the Taylor expansion (12)
satisfies with probability at least 1− ε4, the following inequality

δSn (∆u, θ
∗
u) ≥ (2 + ‖∆u‖1)

−1

e−3βd
d+ 1

‖∆u‖22 − 2

√
ln 1

ε4

n
‖∆u‖21

 , (20)

whenever n ≥ 4 exp (2βd) ln 1
ε4

.

Proof. This concentration property is based on the Bernstein’s inequality. First of all, observe that
for all z ∈ R, the following bound holds

(2 + |z|)
(
e−z − 1 + z

)
≥ z2. (21)

This implies that the remainder of the Taylor expansion (12) is lower-bounded

δSn (∆u, θ
∗
u) ≥ 1

n

n∑
k=1

exp

(
−
∑
i∈∂u

θ∗uiσuσi

)
Y

(k)
u (∆u)

2

2 +
∣∣∣Y (k)
u (∆u)

∣∣∣ . (22)

Notice that the support of Yu (∆u) is trivially upper bounded for all ∆u ∈ Rp−1

|Yu (∆u)| ≤ ‖∆u‖1 . (23)

It implies that the expression (22) can be lower-bounded by a quadratic expression in Y (k)
u

δSn (∆u, θ
∗
u) ≥ (2 + ‖∆u‖1)

−1 1

n

n∑
k=1

exp

(
−
∑
i∈∂u

θ∗uiσuσi

)
Y (k)
u (∆u)

2
. (24)

Then extending the technique of the type used in Lemma 2, one shows that

E

[
exp

(
−2

∑
i∈∂u

θ∗uiσuσi

)
Yu (∆u)

4

]
=E

[
Yu (∆u)

4
]

≤‖∆u‖41 . (25)

To finish the proof we apply the Bernstein’s inequality to the right-hand side of (24), thus combining
relations (25), (23) and Lemma 5. Moreover when n ≥ 4e2βd ln 1

ε4
further simplifications can be

made in the way similar to the one used in Lemma 4.

Lemma 7. Consider an Ising model with p spins, with maximum degree d and maximum coupling
intensity β. For all ε4 > 0, when n ≥ 212d2 (1 + d)

2
e6βd ln 1

ε4
the ISO satisfies, with probability at

least 1− ε4, the restricted strong convexity condition

δSn (∆u, θ
∗
u) ≥ e−3βd

4 (d+ 1)
(

1 + 2
√
dR
) ‖∆u‖22 , (26)

for all ∆u ∈ Rp−1 such that ‖∆u‖1 ≤ 4
√
d ‖∆u‖2 and ‖∆u‖2 ≤ R with R > 0.

Proof. We prove it applying Lemma 6 directly to ‖∆u‖1 ≤ 4
√
d ‖∆u‖2 and ‖∆u‖2 ≤ R when

n ≥ 212d2 (1 + d)
2
e6βd ln 1

ε4
.
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