
Clustering with Same-Cluster Queries

Hassan Ashtiani , Shrinu Kushagra and Shai Ben-David
David R. Cheriton School of Computer Science

University of Waterloo,
Waterloo, Ontario, Canada

{mhzokaei,skushagr,shai}@uwaterloo.ca

Abstract

We propose a framework for Semi-Supervised Active Clustering framework
(SSAC), where the learner is allowed to interact with a domain expert, asking
whether two given instances belong to the same cluster or not. We study the query
and computational complexity of clustering in this framework. We consider a
setting where the expert conforms to a center-based clustering with a notion of
margin. We show that there is a trade off between computational complexity and
query complexity; We prove that for the case of k-means clustering (i.e., when the
expert conforms to a solution of k-means), having access to relatively few such
queries allows efficient solutions to otherwise NP hard problems.
In particular, we provide a probabilistic polynomial-time (BPP) algorithm for
clustering in this setting that asks O

(
k2 log k + k log n) same-cluster queries and

runs with time complexity O
(
kn log n) (where k is the number of clusters and

n is the number of instances). The algorithm succeeds with high probability for
data satisfying margin conditions under which, without queries, we show that the
problem is NP hard. We also prove a lower bound on the number of queries needed
to have a computationally efficient clustering algorithm in this setting.

1 Introduction

Clustering is a challenging task particularly due to two impediments. The first problem is that
clustering, in the absence of domain knowledge, is usually an under-specified task; the solution
of choice may vary significantly between different intended applications. The second one is that
performing clustering under many natural models is computationally hard.

Consider the task of dividing the users of an online shopping service into different groups. The result
of this clustering can then be used for example in suggesting similar products to the users in the same
group, or for organizing data so that it would be easier to read/analyze the monthly purchase reports.
Those different applications may result in conflicting solution requirements. In such cases, one needs
to exploit domain knowledge to better define the clustering problem.

Aside from trial and error, a principled way of extracting domain knowledge is to perform clustering
using a form of ‘weak’ supervision. For example, Balcan and Blum [BB08] propose to use an
interactive framework with ’split/merge’ queries for clustering. In another work, Ashtiani and
Ben-David [ABD15] require the domain expert to provide the clustering of a ’small’ subset of data.

At the same time, mitigating the computational problem of clustering is critical. Solving most of
the common optimization formulations of clustering is NP-hard (in particular, solving the popular
k-means and k-median clustering problems). One approach to address this issues is to exploit the
fact that natural data sets usually exhibit some nice properties and likely to avoid the worst-case
scenarios. In such cases, optimal solution to clustering may be found efficiently. The quest for notions

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

of niceness that are likely to occur in real data and allow clustering efficiency is still ongoing (see
[Ben15] for a critical survey of work in that direction).

In this work, we take a new approach to alleviate the computational problem of clustering. In
particular, we ask the following question: can weak supervision (in the form of answers to natural
queries) help relaxing the computational burden of clustering? This will add up to the other benefit
of supervision: making the clustering problem better defined by enabling the accession of domain
knowledge through the supervised feedback.

The general setting considered in this work is the following. Let X be a set of elements that should
be clustered and d a dissimilarity function over it. The oracle (e.g., a domain expert) has some
information about a target clustering C∗X in mind. The clustering algorithm has access to X, d, and
can also make queries about C∗X . The queries are in the form of same-cluster queries. Namely, the
algorithm can ask whether two elements belong to the same cluster or not. The goal of the algorithm
is to find a clustering that meets some predefined clusterability conditions and is consistent with the
answers given to its queries.

We will also consider the case that the oracle conforms with some optimal k-means solution. We
then show that access to a ’reasonable’ number of same-cluster queries can enable us to provide an
efficient algorithm for otherwise NP-hard problems.

1.1 Contributions

The two main contributions of this paper are the introduction of the semi-supervised active clustering
(SSAC) framework and, the rather unusual demonstration that access to simple query answers can
turn an otherwise NP hard clustering problem into a feasible one.

Before we explain those results, let us also mention a notion of clusterability (or ‘input niceness’)
that we introduce. We define a novel notion of niceness of data, called γ-margin property that is
related to the previously introduced notion of center proximity [ABS12]. The larger the value of
γ, the stronger the assumption becomes, which means that clustering becomes easier. With respect
to that γ parameter, we get a sharp ‘phase transition’ between k-means being NP hard and being
optimally solvable in polynomial time1.

We focus on the effect of using queries on the computational complexity of clustering. We provide
a probabilistic polynomial time (BPP) algorithm for clustering with queries, that succeeds under
the assumption that the input satisfies the γ-margin condition for γ > 1. This algorithm makes
O
(
k2 log k + k log n) same-cluster queries to the oracle and runs in O

(
kn log n) time, where k is

the number of clusters and n is the size of the instance set.

On the other hand, we show that without access to query answers, k-means clustering is NP-hard
even when the solution satisfies γ-margin property for γ =

√
3.4 ≈ 1.84 and k = Θ(nε) (for any

ε ∈ (0, 1)). We further show that access to Ω(log k + log n) queries is needed to overcome the NP
hardness in that case. These results, put together, show an interesting phenomenon. Assume that
the oracle conforms to an optimal solution of k-means clustering and that it satisfies the γ-margin
property for some 1 < γ ≤

√
3.4. In this case, our lower bound means that without making queries

k-means clustering is NP-hard, while the positive result shows that with a reasonable number of
queries the problem becomes efficiently solvable.

This indicates an interesting (and as far as we are aware, novel) trade-off between query complexity
and computational complexity in the clustering domain.

1.2 Related Work

This work combines two themes in clustering research; clustering with partial supervision (in
particular, supervision in the form of answers to queries) and the computational complexity of
clustering tasks.

Supervision in clustering (sometimes also referred to as ‘semi-supervised clustering’) has been
addressed before, mostly in application-oriented works [BBM02, BBM04, KBDM09]. The most

1The exact value of such a threshold γ depends on some finer details of the clustering task; whether d is
required to be Euclidean and whether the cluster centers must be members of X .

2

common method to convey such supervision is through a set of pairwise link/do-not-link constraints
on the instances. Note that in contrast to the supervision we address here, in the setting of the papers
cited above, the supervision is non-interactive. On the theory side, Balcan et. al [BB08] propose a
framework for interactive clustering with the help of a user (i.e., an oracle). The queries considered in
that framework are different from ours. In particular, the oracle is provided with the current clustering,
and tells the algorithm to either split a cluster or merge two clusters. Note that in that setting, the
oracle should be able to evaluate the whole given clustering for each query.

Another example of the use of supervision in clustering was provided by Ashtiani and Ben-David
[ABD15]. They assumed that the target clustering can be approximated by first mapping the data
points into a new space and then performing k-means clustering. The supervision is in the form of a
clustering of a small subset of data (the subset provided by the learning algorithm) and is used to
search for such a mapping.

Our proposed setup combines the user-friendliness of link/don’t-link queries (as opposed to asking
the domain expert to answer queries about whole data set clustering, or to cluster sets of data) with
the advantages of interactiveness.

The computational complexity of clustering has been extensively studied. Many of these results
are negative, showing that clustering is computationally hard. For example, k-means clustering is
NP-hard even for k = 2 [Das08], or in a 2-dimensional plane [Vat09, MNV09]. In order to tackle the
problem of computational complexity, some notions of niceness of data under which the clustering
becomes easy have been considered (see [Ben15] for a survey).

The closest proposal to this work is the notion of α-center proximity introduced by Awasthi et. al
[ABS12]. We discuss the relationship of that notion to our notion of margin in Appendix B. In the
restricted scenario (i.e., when the centers of clusters are selected from the data set), their algorithm
efficiently recovers the target clustering (outputs a tree such that the target is a pruning of the tree) for
α > 3. Balcan and Liang [BL12] improve the assumption to α >

√
2 + 1. Ben-David and Reyzin

[BDR14] show that this problem is NP-Hard for α < 2.

Variants of these proofs for our γ-margin condition yield the feasibility of k-means clustering when
the input satisfies the condition with γ > 2 and NP hardness when γ < 2, both in the case of arbitrary
(not necessarily Euclidean) metrics2 .

2 Problem Formulation

2.1 Center-based clustering

The framework of clustering with queries can be applied to any type of clustering. However, in this
work, we focus on a certain family of common clusterings – center-based clustering in Euclidean
spaces3.

Let X be a subset of some Euclidean space, Rd. Let CX = {C1, . . . , Ck} be a clustering (i.e., a

partitioning) of X . We say x1
CX∼ x2 if x1 and x2 belong to the same cluster according to CX . We

further denote by n the number of instances (|X |) and by k the number of clusters.

We say that a clustering CX is center-based if there exists a set of centers µ = {µ1, . . . , µk} ⊂ Rn
such that the clustering corresponds to the Voroni diagram over those center points. Namely, for
every x in X and i ≤ k, x ∈ Ci ⇔ i = arg minj d(x, µj).

Finally, we assume that the centers µ∗ corresponding to C∗ are the centers of mass of the correspond-
ing clusters. In other words, µ∗i = 1

|Ci|
∑
x∈C∗i

x. Note that this is the case for example when the
oracle’s clustering is the optimal solution to the Euclidean k-means clustering problem.

2.2 The γ-margin property

Next, we introduce a notion of clusterability of a data set, also referred to as ‘data niceness property’.

2In particular, the hardness result of [BDR14] relies on the ability to construct non-Euclidean distance
functions. Later in this paper, we prove hardness for γ ≤

√
3.4 for Euclidean instances.

3In fact, our results are all independent of the Euclidean dimension and apply to any Hilbert space.

3

Definition 1 (γ-margin). Let X be set of points in metric space M . Let CX = {C1, . . . , Ck} be
a center-based clustering of X induced by centers µ1, . . . , µk ∈ M . We say that CX satisfies the
γ-margin property if the following holds. For all i ∈ [k] and every x ∈ Ci and y ∈ X \ Ci,

γd(x, µi) < d(y, µi)

Similar notions have been considered before in the clustering literature. The closest one to our
γ-margin is the notion of α-center proximity [BL12, ABS12]. We discuss the relationship between
these two notions in appendix B.

2.3 The algorithmic setup

For a clustering C∗ = {C∗1 , . . . C∗k}, a C∗-oracle is a function OC∗ that answers queries according
to that clustering. One can think of such an oracle as a user that has some idea about its desired
clustering, enough to answer the algorithm’s queries. The clustering algorithm then tries to recover
C∗ by querying a C∗-oracle. The following notion of query is arguably most intuitive.
Definition 2 (Same-cluster Query). A same-cluster query asks whether two instances x1 and x2
belong to the same cluster, i.e.,

OC∗(x1, x2) =

{
true if x1

C∗∼ x2
false o.w.

(we omit the subscript C∗ when it is clear from the context).
Definition 3 (Query Complexity). An SSAC instance is determined by the tuple (X , d, C∗). We will
consider families of such instances determined by niceness conditions on their oracle clusterings C∗.

1. A SSAC algorithm A is called a q-solver for a family G of such instances, if for every
instance (X , d, C∗) ∈ G, it can recover C∗ by having access to (X , d) and making at most
q queries to a C∗-oracle.

2. Such an algorithm is a polynomial q-solver if its time-complexity is polynomial in |X | and
|C∗| (the number of clusters).

3. We sayG admits anO(q) query complexity if there exists an algorithmA that is a polynomial
q-solver for every clustering instance in G.

3 An Efficient SSAC Algorithm

In this section we provide an efficient algorithm for clustering with queries. The setting is the one
described in the previous section. In particular, it is assumed that the oracle has a center-based
clustering in his mind which satisfies the γ-margin property. The space is Euclidean and the center
of each cluster is the center of mass of the instances in that cluster. The algorithm not only makes
same-cluster queries, but also another type of query defined as below.
Definition 4 (Cluster-assignment Query). A cluster-assignment query asks the cluster index that an
instance x belongs to. In other words OC∗(x) = i if and only if x ∈ C∗i .

Note however that each cluster-assignment query can be replaced with k same-cluster queries (see
appendix A in supplementary material). Therefore, we can express everything in terms of the more
natural notion of same-cluster queries, and the use of cluster-assignment query is just to make the
representation of the algorithm simpler.

Intuitively, our proposed algorithm does the following. In the first phase, it tries to approximate the
center of one of the clusters. It does this by asking cluster-assignment queries about a set of randomly
(uniformly) selected point, until it has a sufficient number of points from at least one cluster (say Cp).
It uses the mean of these points, µ′p, to approximate the cluster center.

In the second phase, the algorithm recovers all of the instances belonging to Cp. In order to do that, it
first sorts all of the instances based on their distance to µ′p. By showing that all of the points in Cp lie
inside a sphere centered at µ′p (which does not include points from any other cluster), it tries to find

4

the radius of this sphere by doing binary search using same-cluster queries. After that, the elements
in Cp will be located and can be removed from the data set. The algorithm repeats this process k
times to recover all of the clusters.

The details of our approach is stated precisely in Algorithm 1. Note that β is a small constant4.
Theorem 7 shows that if γ > 1 then our algorithm recovers the target clustering with high probability.
Next, we give bounds on the time and query complexity of our algorithm. Theorem 8 shows that our
approach needs O(k log n+ k2 log k) queries and runs with time complexity O(kn log n).

Algorithm 1: Algorithm for γ(> 1)-margin instances with queries

Input: Clustering instance X , oracle O, the number of clusters k and parameter δ ∈ (0, 1)
Output: A clustering C of the set X

C = {}, S1 = X , η = β log k+log(1/δ)
(γ−1)4

for i = 1 to k do
Phase 1
l = kη + 1;
Z ∼ U l[Si] // Draws l independent elements from Si uniformly at random
For 1 ≤ t ≤ i,
Zt = {x ∈ Z : O(x) = t}. //Asks cluster-assignment queries about the members of Z
p = arg maxt |Zt|
µ′p := 1

|Zp|
∑
x∈Zp

x.

Phase 2
// We know that there exists ri such that ∀x ∈ Si, x ∈ Ci ⇔ d(x, µ′i) < ri.
// Therefore, ri can be found by simple binary search
Ŝi = Sorted({Si}) // Sorts elements of {x : x ∈ Si} in increasing order of d(x, µ′p).
ri = BinarySearch(Ŝi) //This step takes up to O(log |Si|) same-cluster queries
C ′p = {x ∈ Si : d(x, µ′p) ≤ ri}.
Si+1 = Si \ C ′p.
C = C ∪ {C ′p}

end

Lemma 5. Let (X , d, C) be a clustering instance, where C is center-based and satisfies the γ-margin
property. Let µ be the set of centers corresponding to the centers of mass of C. Let µ′i be such that
d(µi, µ

′
i) ≤ r(Ci)ε, where r(Ci) = maxx∈Ci d(x, µi) . Then γ ≥ 1 + 2ε implies that

∀x ∈ Ci,∀y ∈ X \ Ci ⇒ d(x, µ′i) < d(y, µ′i)

Proof. Fix any x ∈ Ci and y ∈ Cj . d(x, µ′i) ≤ d(x, µi) + d(µi, µ
′
i) ≤ r(Ci)(1 + ε). Similarly,

d(y, µ′i) ≥ d(y, µi) − d(µi, µ
′
i) > (γ − ε)r(Ci). Combining the two, we get that d(x, µ′i) <

1+ε
γ−εd(y, µ′i).

Lemma 6. Let the framework be as in Lemma 5. Let Zp, Cp, µp, µ′p and η be defined as in Algorhtm
1, and ε = γ−1

2 . If |Zp| > η, then the probability that d(µp, µ
′
p) > r(Cp)ε is at most δk .

Proof. Define a uniform distribution U over Cp. Then µp and µ′p are the true and empirical mean of
this distribution. Using a standard concentration inequality (Thm. 12 from Appendix D) shows that
the empirical mean is close to the true mean, completing the proof.

Theorem 7. Let (X , d, C) be a clustering instance, where C is center-based and satisfies the γ-
margin property. Let µi be the center of mass of Ci. Assume δ ∈ (0, 1) and γ > 1. Then with
probability at least 1− δ, Algorithm 1 outputs C.

4It corresponds to the constant appeared in generalized Hoeffding inequality bound, discussed in Theorem
12 in appendix D in supplementary materials.

5

Proof. In the first phase of the algorithm we are making l > kη cluster-assignment queries. Therefore,
using the pigeonhole principle, we know that there exists cluster index p such that |Zp| > η. Then
Lemma 6 implies that the algorithm chooses a center µ′p such that with probability at least 1− δ

k we
have d(µp, µ

′
p) ≤ r(Cp)ε. By Lemma 5, this would mean that d(x, µ′p) < d(y, µ′p) for all x ∈ Cp

and y 6∈ Cp. Hence, the radius ri found in the phase two of Alg. 1 is such that ri = max
x∈Cp

d(x, µ′p).

This implies that C ′p (found in phase two) equals to Cp. Hence, with probability at least 1− δ
k one

iteration of the algorithm successfully finds all the points in a cluster Cp. Using union bound, we get
that with probability at least 1− k δk = 1− δ, the algorithm recovers the target clustering.

Theorem 8. Let the framework be as in theorem 7. Then Algorithm 1

• Makes O
(
k log n+ k2 log k+log(1/δ)

(γ−1)4
)

same-cluster queries to the oracle O.

• Runs in O
(
kn log n+ k2 log k+log(1/δ)

(γ−1)4
)

time.

Proof. In each iteration (i) the first phase of the algorithm takes O(η) time and makes η + 1 cluster-
assignment queries (ii) the second phase takes O(n log n) times and makes O(log n) same-cluster
queries. Each cluster-assignment query can be replaced with k same-cluster queries; therefore,
each iteration runs in O(kη + n log n) and uses O(kη + log n) same-cluster queries. By replacing
η = β log k+log(1/δ)

(γ−1)4 and noting that there are k iterations, the proof will be complete.

Corollary 9. The set of Euclidean clustering instances that satisfy the γ-margin property for some
γ > 1 admits query complexity O

(
k log n+ k2 log k+log(1/δ)

(γ−1)4
)
.

4 Hardness Results

4.1 Hardness of Euclidean k-means with Margin

Finding k-means solution without the help of an oracle is generally computationally hard. In this
section, we will show that solving Euclidean k-means remains hard even if we know that the optimal
solution satisfies the γ-margin property for γ =

√
3.4. In particular, we show the hardness for the

case of k = Θ(nε) for any ε ∈ (0, 1).

In Section 3, we proposed a polynomial-time algorithm that could recover the target clustering using
O(k2 log k + k log n) queries, assuming that the clustering satisfies the γ-margin property for γ > 1.
Now assume that the oracle conforms to the optimal k-means clustering solution. In this case, for
1 < γ ≤

√
3.4 ≈ 1.84, solving k-means clustering would be NP-hard without queries, while it

becomes efficiently solvable with the help of an oracle 5.

Given a set of instances X ⊂ Rd, the k-means clustering problem is to find a clustering C =
{C1, . . . , Ck} which minimizes f(C) =

∑
Ci

min
µi∈Rd

∑
x∈Ci

‖x− µi‖22. The decision version of k-means

is, given some value L, is there a clustering C with cost ≤ L? The following theorem is the main
result of this section.

Theorem 10. Finding the optimal solution to Euclidean k-means objective function is NP-hard when
k = Θ(nε) for any ε ∈ (0, 1), even when the optimal solution satisfies the γ-margin property for
γ =
√

3.4.

This results extends the hardness result of [BDR14] to the case of Euclidean metric, rather than
arbitrary one, and to the γ-margin condition (instead of the α-center proximity there). The full proof
is rather technical and is deferred to the supplementary material (appendix C).

5To be precise, note that the algorithm used for clustering with queries is probabilistic, while the lower bound
that we provide is for deterministic algorithms. However, this implies a lower bound for randomized algorithms
as well unless BPP 6= P

6

4.1.1 Overview of the proof

Our method to prove Thm. 10 is based on the approach employed by [Vat09]. However, the original
construction proposed in [Vat09] does not satisfy the γ-margin property. Therefore, we have to
modify the proof by setting up the parameters of the construction more carefully.

To prove the theorem, we will provide a reduction from the problem of Exact Cover by 3-Sets (X3C)
which is NP-Complete [GJ02], to the decision version of k-means.

Definition 11 (X3C). Given a set U containing exactly 3m elements and a collection S =
{S1, . . . , Sl} of subsets of U such that each Si contains exactly three elements, does there exist
m elements in S such that their union is U?

We will show how to translate each instance of X3C, (U,S), to an instance of k-means clustering in
the Euclidean plane, X . In particular, X has a grid-like structure consisting of l rows (one for each
Si) and roughly 6m columns (corresponding to U) which are embedded in the Euclidean plane. The
special geometry of the embedding makes sure that any low-cost k-means clustering of the points
(where k is roughly 6ml) exhibits a certain structure. In particular, any low-cost k-means clustering
could cluster each row in only two ways; One of these corresponds to Si being included in the cover,
while the other means it should be excluded. We will then show that U has a cover of size m if and
only if X has a clustering of cost less than a specific value L. Furthermore, our choice of embedding
makes sure that the optimal clustering satisfies the γ-margin property for γ =

√
3.4 ≈ 1.84.

4.1.2 Reduction design

Given an instance of X3C, that is the elements U = {1, . . . , 3m} and the collection S , we construct
a set of points X in the Euclidean plane which we want to cluster. Particularly, X consists of
a set of points Hl,m in a grid-like manner, and the sets Zi corresponding to Si. In other words,
X = Hl,m ∪ (∪l−1i=1Zi).

The set Hl,m is as described in Fig. 1. The row Ri is composed of 6m + 3 points
{si, ri,1, . . . , ri,6m+1, fi}. Row Gi is composed of 3m points {gi,1, . . . , gi,3m}. The distances
between the points are also shown in Fig. 1. Also, all these points have weight w, simply meaning
that each point is actually a set of w points on the same location.

Each set Zi is constructed based on Si. In particular, Zi = ∪j∈[3m]Bi,j , where Bi,j is a subset of
{xi,j , x′i,j , yi,j , y′i,j} and is constructed as follows: xi,j ∈ Bi,j iff j 6∈ Si, and x′i,j ∈ Bi,j iff j ∈ Si.
Similarly, yi,j ∈ Bi,j iff j 6∈ Si+1, and y′i,j ∈ Bi,j iff j ∈ Si+1. Furthermore, xi,j , x′i,j , yi,j and y′i,j
are specific locations as depicted in Fig. 2. In other words, exactly one of the locations xi,j and x′i,j ,
and one of yi,j and y′i,j will be occupied. We set the following parameters.

h =
√

5, d =
√

6, ε =
1

w2
, λ =

2√
3
h, k = (l − 1)3m+ l(3m+ 2)

L1 = (6m+ 3)wl, L2 = 3m(l − 1)w,L = L1 + L2 −mα,α =
d

w
− 1

2w3

Lemma 12. The set X = Hl,n ∪ Z has a k-clustering of cost less or equal to L if and only if there
is an exact cover for the X3C instance.

Lemma 13. Any k-clustering of X = Hl,n ∪ Z with cost ≤ L has the γ-margin property where
γ =
√

3.4. Furthermore, k = Θ(nε).

The proofs are provided in Appendix C. Lemmas 12 and 13 together show that X has a k-clustering
of cost ≤ L satisfying the γ-margin property (for γ =

√
3.4) if and only if there is an exact cover by

3-sets for the X3C instance. This completes the proof of our main result (Thm. 10).

4.2 Lower Bound on the Number of Queries

In the previous section we showed that k-means clustering is NP-hard even under γ-margin assump-
tion (for γ <

√
3.4 ≈ 1.84). On the other hand, in Section 3 we showed that this is not the case if the

algorithm has access to an oracle. In this section, we show a lower bound on the number of queries
needed to provide a polynomial-time algorithm for k-means clustering under margin assumption.

7

�R1 • • • • . . . • • �

G1 ◦ ◦ . . . ◦

�R2 • • • • . . . • • �

Gl−1 ◦ ◦ . . . ◦

�Rl • • • • . . . • • �

d 2 2 d− ε

4

Figure 1: Geometry of Hl,m. This figure is sim-
ilar to Fig. 1 in [Vat09]. Reading from letf to
right, each row Ri consists of a diamond (si),
6m + 1 bullets (ri,1, . . . , ri,6m+1), and another
diamond (fi). Each rows Gi consists of 3m cir-
cles (gi,1, . . . , gi,3m).

•
ri,2j−1

•
ri,2j

•
ri,2j+1

√
h2 − 1

•xi,j

h

•x′i,j

◦
gi,j

•yi,j

•y′i,j

•
ri+1,2j−1

•
ri+1,2j

•
ri+1,2j+1

√
h2 − 1

α

12

Figure 2: The locations of xi,j , x′i,j , yi,j and
y′i,j in the set Zi. Note that the point gi,j is not
vertically aligned with xi,j or ri,2j . This figure is
adapted from [Vat09].

Theorem 14. For any γ ≤
√

3.4, finding the optimal solution to the k-means objective function is
NP-Hard even when the optimal clustering satisfies the γ-margin property and the algorithm can ask
O(log k + log |X |) same-cluster queries.

Proof. Proof by contradiction: assume that there is polynomial-time algorithm A that makes
O(log k + log |X |) same-cluster queries to the oracle. Then, we show there exists another al-
gorithm A′ for the same problem that is still polynomial but uses no queries. However, this will be a
contradiction to Theorem 10, which will prove the result.

In order to prove that such A′ exists, we use a ‘simulation’ technique. Note that A makes only
q < β(log k + log |X |) binary queries, where β is a constant. The oracle therefore can respond to
these queries in maximum 2q < kβ |X |β different ways. Now the algorithm A′ can try to simulate all
of kβ |X |β possible responses by the oracle and output the solution with minimum k-means clustering
cost. Therefore, A′ runs in polynomial-time and is equivalent to A.

5 Conclusions and Future Directions

In this work we introduced a framework for semi-supervised active clustering (SSAC) with same-
cluster queries. Those queries can be viewed as a natural way for a clustering mechanism to gain
domain knowledge, without which clustering is an under-defined task. The focus of our analysis was
the computational and query complexity of such SSAC problems, when the input data set satisfies a
clusterability condition – the γ-margin property.

Our main result shows that access to a limited number of such query answers (logarithmic in the
size of the data set and quadratic in the number of clusters) allows efficient successful clustering
under conditions (margin parameter between 1 and

√
3.4 ≈ 1.84) that render the problem NP-hard

without the help of such a query mechanism. We also provided a lower bound indicating that at least
Ω(log kn) queries are needed to make those NP hard problems feasibly solvable.

With practical applications of clustering in mind, a natural extension of our model is to allow the
oracle (i.e., the domain expert) to refrain from answering a certain fraction of the queries, or to make
a certain number of errors in its answers. It would be interesting to analyze how the performance
guarantees of SSAC algorithms behave as a function of such abstentions and error rates. Interestingly,
we can modify our algorithm to handle a sub-logarithmic number of abstentions by chekcing all
possible orcale answers to them (i.e., similar to the “simulation” trick in the proof of Thm. 14).

8

Acknowledgments

We would like to thank Samira Samadi and Vinayak Pathak for helpful discussions on the topics of
this paper.

References

[ABD15] Hassan Ashtiani and Shai Ben-David. Representation learning for clustering: A statisti-
cal framework. In Uncertainty in AI (UAI), 2015.

[ABS12] Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under perturba-
tion stability. Information Processing Letters, 112(1):49–54, 2012.

[BB08] Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback. In
Algorithmic Learning Theory, pages 316–328. Springer, 2008.

[BBM02] Sugato Basu, Arindam Banerjee, and Raymond Mooney. Semi-supervised clustering
by seeding. In In Proceedings of 19th International Conference on Machine Learning
(ICML-2002, 2002.

[BBM04] Sugato Basu, Mikhail Bilenko, and Raymond J Mooney. A probabilistic framework for
semi-supervised clustering. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 59–68. ACM, 2004.

[BDR14] Shalev Ben-David and Lev Reyzin. Data stability in clustering: A closer look. Theoreti-
cal Computer Science, 558:51–61, 2014.

[Ben15] Shai Ben-David. Computational feasibility of clustering under clusterability assumptions.
CoRR, abs/1501.00437, 2015.

[BL12] Maria Florina Balcan and Yingyu Liang. Clustering under perturbation resilience. In
Automata, Languages, and Programming, pages 63–74. Springer, 2012.

[Das08] Sanjoy Dasgupta. The hardness of k-means clustering. Department of Computer Science
and Engineering, University of California, San Diego, 2008.

[GJ02] Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh
freeman New York, 2002.

[KBDM09] Brian Kulis, Sugato Basu, Inderjit Dhillon, and Raymond Mooney. Semi-supervised
graph clustering: a kernel approach. Machine learning, 74(1):1–22, 2009.

[MNV09] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means
problem is np-hard. In WALCOM: Algorithms and Computation, pages 274–285.
Springer, 2009.

[Vat09] Andrea Vattani. The hardness of k-means clustering in the plane. Manuscript, accessible
at http://cseweb. ucsd. edu/avattani/papers/kmeans_hardness. pdf, 617, 2009.

9

