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Lemma 3. Under Assumption 3, two subsequent iterates in Algorithm 1 satisfy
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The optimality condition suggests the following equality:
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which implies the claim.

Lemma 4. Under Assumptions 3 and 4, we have
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It completes the proof.
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Proof to Theorem 1

Proof. From the Lipschitzian condition in Assumption 4, we have
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where the second inequality uses the fact that h(t) = ta is a concave function suggesting (k + 1)
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Lemma 7. Assume that both F (x) and R(x) are convex. Under Assumptions 1, 2, 3, and 4, the
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which completes the proof.

Proof to Theorem 2

Proof. Apply the optimally strong convexity in (7) to Lemma 7, yielding
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The followed specification of a and b can easily verified.
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