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IST Austria

Klosterneuburg, AT 3400
tkacik@ist.ac.at

Abstract

Jointly characterizing neural responses in terms of several external variables
promises novel insights into circuit function, but remains computationally pro-
hibitive in practice. Here we use gaussian process (GP) priors and exploit recent
advances in fast GP inference and learning based on Kronecker methods, to ef-
ficiently estimate multidimensional nonlinear tuning functions. Our estimator
requires considerably less data than traditional methods and further provides princi-
pled uncertainty estimates. We apply these tools to hippocampal recordings during
open field exploration and use them to characterize the joint dependence of CA1
responses on the position of the animal and several other variables, including the
animal’s speed, direction of motion, and network oscillations. Our results provide
an unprecedentedly detailed quantification of the tuning of hippocampal neurons.
The model’s generality suggests that our approach can be used to estimate neural
response properties in other brain regions.

1 Introduction

An important facet of neural data analysis concerns characterizing the tuning properties of neurons,
defined as the average firing rate of a cell conditioned on the value of some external variables, for
instance the orientation of an image patch in a V1 cell, or the position of the animal within an
environment for hippocampal cells. As experiments become more complex and more naturalistic, the
number of variables that modulate neural responses increases. These include not only experimentally
targeted inputs but also variables that are no longer under the experimenter’s control but which can
be (to a certain extent) measured, either external (the behavior of the animal) or internal (attentional
level, network oscillations, etc). Characterizing these complex dependencies is very difficult, yet it
could provide important insights into neural circuits computation and function.

Traditional estimates of a cell’s tuning properties often manipulate one variable at the time or consider
simple dependencies between inputs and the neural responses e.g. Generalized Linear Models,
GLM [1, 2]). There is comparatively little work that allows for complex input-output functional
relationships on multidimensional input spaces [3–5]. The reasons for this are twofold. On one hand,
dealing with complex nonlinearities is computationally challenging, on the other hand, constraints
on experimental duration lead to a potentially very sparse sampling of the stimulus space, requiring
additional assumptions for a sensible interpolation. This problem is further exacerbated in experiments
in awake animals where the sampling of the stimulus space is driven by the animal behavior. The
few solutions for nonlinear tuning properties rely on spline-based approximation of one-dimensional
functions (for position on a linear track) [6] or assume a log-Gaussian Cox process generative model
as a way to enforce smoothness of 2D functional maps [3–5]. These methods are usually restricted to
at most two input dimensions (but see [4]).
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Here we take advantage of recent advances in scaling GP inference and learning using Kronecker
methods [7] to extend the approach in [3] to the multidimensional setting, while keeping the com-
putational and memory requirements almost linear in dataset size N , O

(
dN

d+1
d

)
and O

(
dN

2
d

)
,

respectively (for d dimensions) [8]. Our formulation requires a discretization of the input space,1
but allows for a flexible selection of the kernels specifying different assumptions about the nature
of the functional dependencies we are looking for in the data, with hyperparameters inferred by
maximizing marginal likelihood. We deal with the non-gaussian likelihood in the traditional way by
using a Laplace approximation of the posterior [8]. The critical ingredient for our approach is the
particular form of the covariance matrix that decomposes into a Kronecker product over covariances
corresponding to individual input dimensions, dramatically simplifying computations. The focus
here is not on the methods per se but rather on their previously unacknowledged utility for estimating
multidimensional nonlinear tuning functions.

The inferred tuning functions are probabilistic. The estimator is adaptive, in the sense that it relies
strongly on the prior in regions of the input space where data is scarce, but can flexibly capture
complex input-output relations where enough data is available. It naturally comes equipped with error
bars which can be used for instance for detecting shifts in receptive field properties due to learning.

Using artificial data we show that inference and learning in our model can robustly recover the
underlying structure of neural responses even in the experimentally realistic setting where the
sampling of the input space is sparse and strongly non-uniform (due to stereotyped animal behavior).
We further argue for the utility of spectral mixture kernels as a powerful tool for detecting complex
functional relationships beyond simple smoothing/interpolation. We go beyond artificial data that
follows the assumptions of the model exactly, and show robust estimation of tuning properties in
several experimental recordings. For illustration purposes we focus here on data from the CA1 region
of the hippocampus of rats, during an open field exploration task. We characterize several 3D tuning
functions as a function of the animal’s position but also additional internal (the overall activity in
the network at the time) or external variables (speed or direction of motion, time within experiment)
and use these to derive new insights into the distribution of spatial and non-spatial information at the
level of CA1 principal cell activity.

2 Methods

Generative model

Given data in the form of spike count – input pairs D = {y(i),x(i)}i=1:N , we model neural activity
as an inhomogeneous Poisson process with input-dependent firing rate λ (as in [3], see. Fig. 1a):

P(y|x) =
∏
i

Poisson
(
y(i);λ(x)(i)

)
, where Poisson (y;λ) =

1

y!
λye−λ. (1)

The inputs x are defined on a d-dimensional lattice and the spike counts are measured within a time
window δt for which the input is roughly constant (25.6ms, given by the frequency of positional
tracking).2 We formalize assumptions about neural tuning as a GP prior f ∼ GP(µ, kβ), with
f = log λ(x), with a constant mean µi = α (for the overall scale of neural responses) and a
covariance function k(·, ·) with hyperparameters β. This covariance function defines our assumptions
about what kind of functional dependencies are expected in the data (smoothness, periodicity, etc.).
The exponential linking f to λ provides a mathematically convenient way to enforce positivity of the
mean firing while keeping the posterior log-concave in f , justifiying the use of Laplace methods for
approximating the posterior (see also [3]).

For computational tractability we restrict our model to the class of product kernels k(x,x′) =∏
d kd(xd, x

′
d) for which the covariance matrix decomposes as a Kronecker product K = K1 ⊗

K2 ⊗ . . .Kd, allowing for efficient computation of determinants, matrix multiplications and eigen-
decomposition in terms of the individual factors Ki (see Suppl.Info. and [7]).

The individual kernels can be tailored to the specific application, allowing for a flexible characteriza-
tion of individual input dimensions (inputs need not live in the same space, e.g. space-time, or can be

1In practice many input dimensions are discrete to begin with (e.g. measurements of an animal’s position), so
this is a weak requirement. The coarseness of the discretization depends on the application.

2Input noise is ignored here, but could be explicitly incorporated in the generative model [9].
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Figure 1: Model overview and estimator validation. a) Generative model: spike counts arise as
Poisson draws with an input dependent mean, f(x) with an exponential linkage function. b) A GP
prior specifies the assumptions concerning the properties of this function (smoothness, periodicity,
etc). c) Place field estimates from artificial data; left to right: the position of the animal modelled as
a bounded random walk, ground-truth, traditional estimate (without smoothing), posterior mean of
the inferred functional. d) Vertical slice through the posterior with shaded area showing the 2 · sd
confidence region. d) Estimates of place field selectivity in an example CA1 recording during open
field exploration in a cross-shaped box; separate estimates for 6min subsets.

periodic, e.g. the phase of theta oscillations). Here we use a classic squared-exponential (SE kernel

for simple interpolation/smoothing tasks, kd(x, x′) = ρ2d exp
(x−x′)

2

2σ2
d

, with parameters β = {ρ,σ}
specifying the output variance and lengthscale [9]. For tasks involving extrapolation or discovering
complex patterns we use spectral mixture (SM) kernels, as a powerful and mathematically tractable
route towards automated kernel design [10]. SMs are stationary kernels defined as a linear mixture of
basis functions in the spectral domain:

kd(x, x
′) =

Q∑
q=1

wq exp
(
−2π2(x− x′)2vq

)
cos(2π(x− x′)µq) (2)

with parameters β = {w,µ,v} defining the weights, spectral means and variances for each of the
mixture components. Assuming Q is large enough, such a spectral mixture can approximate any
arbitrary kernel (the same way Gaussian mixtures can be used to approximate an arbitrary density).
Moreover, many traditional kernels can be recovered as special cases; for instance the SE kernel
corresponds to a single component spectral density with zero mean (see also [10]).

Inference and learning

We sketch the main steps of the derivation here and provide the details in the Suppl. Info. Our goal is
to find the hyperparameters θ = {α, β} that maximize P (θ|y) ∝ P (y|θ) · P(θ). We follow common
practice in using a point estimate θ∗ = argmaxθP (θ|y) for the hyperparameters, and leave a fully
probabilistic treatment to future work (e.g. using [11]). We use θ∗ to infer a predictive distribution
P(f∗|D,x∗, θ∗) for a set of test inputs x∗. Because of the Poisson observation noise these quantities
do not have simple closed form solutions and some approximations are required. As it is customary
[9], we use the Laplace method to approximate the log posterior log P(f |D) = log P(y|f)+ log P(f)

with its second-order Taylor expansion around the maximum f̂ . This results in a multivariate Gaussian
approximate posterior, with mean f̂ and covariance

(
H +K−1

)−1
, where H = −∇∇ log P(y|f) |f̂

is the Hessian of the log likelihood, and K is the covariance matrix. Substituting the approximate
posterior, we obtain the Laplace approximate marginal likelihood of the form:

log (y|θ) = log P(y|f̂)− 0.5z′K−1z− 0.5 log |I +KH| (3)
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with z = K−1(f̂ −µ). The approximate predictive distribution for θ∗ is a multivariate Gaussian with
mean k∗∇ log P(y|f̂) and covariance k∗∗ − k′∗

(
H−1 +K

)−1
k∗, where k∗ and k∗∗ correspond

to the test-data and test-test covariances, respectively [8]. Lastly the predicted tuning function for
an individual test point λ∗) = exp(f∗), is log-normal with closed-form expressions for mean and
variance (see Suppl. Info.).

Standard methods for implementing these computations using the Cholesky decomposition require
O
(
N3
)

computations and O
(
N2
)

memory, restricting their use to a few hundred data points. The
efficient implementation proposed here relies on the Kronecker structure of the covariance matrix
(which makes eigenvalue decomposition and matrix vector products very fast, see Suppl.Info.),
with linear conjugate gradients optimization and a lower bound on the marginal likelihood for
hyperparameter learning. The predictive distribution can be efficiently evaluated in O

(
dN

d+1
d

)
(with a hidden constant given by the number of Newton steps needed for convergence, cf. [8]) Our
implementation is based on the gpml library [9] and the code is available online. A more detailed
description of the algorithmic details is provided in the Suppl. Info. In practice, this means that
it takes minutes on a laptop to estimate a 3D field for a 30min dataset (2-5min depending on the
coarseness of the grid), with a traditional 2D field estimated in 20-30sec.

3 Results

Estimator validation

We first validated our implementation on artificial data with known statistics.3 We defined a circular
arena with 1m diameter and simulated the animal’s behavior as a random walk with reflective bounds
(Fig. 1 b, left panel). This random process would eventually uniformly cover the space, but for
short sessions it yields occupancy maps similar to those seen in real data. We calibrated diffusion
parameters to roughly match CA1 statistics (average speed 5cm/sec, peak firing 5-10Hz, 10-30min
long sessions). Inferring the underlying place field was already robust with 10min sessions, with the
posterior mean f∗ close to the ground truth (SE kernel, see Fig. 1 c). In comparison, the traditional
histogram-based estimates is quite poor (Fig. 1 b, left panel), though it can potentially be improved
by gaussian smoothing at the right spatial scale (although not without caveats, see Suppl. Info.).

It is more difficult to quantify the effects of the various approximations on real data where the
assumptions of the model are not matched exactly. Our approach was to check the robustness of the
GP-based estimates on subsets of the data constructed by combining every 5th data point (see left
panel in Fig. 1 d). This partitioning was designed to ensure that subsets are as statistically similar as
possible, sharing slow fluctuations in responses (e.g. due to variations in attentional levels, or changes
in behavior). An example cell’s response is shown in Fig. 1 d. Our analysis revealed robust field
estimation in most cells, provided they were reasonably active during the session (with mean firing
rates >0.1Hz; we discarded the non-responsive cells from subsequent analyses).

true field trajectory estimate histogram estimate GP (kSM)estimate histogram estimate GP (kSM)

extrapolation stereotyped behaviour

Figure 2: Spectral mixture kernels for modelling complex structure. We use artificial data with
hexagonal grid structure mimicking MEC responses. Extrapolation task: the animal’s position is
restricted to the orange delimited region of the environment. Stereotyped behavior: the simulated
animal performs a bounded random walk within an annulus . In both cases, we recover the full field,
beyond these borders (GP estimate) using a spectral mixture kernel (kSM).

3Here we show a 2D example for simplicity; we obtained very similar results with 3D artificial inputs.

4



Spectral mixture kernels for complex functional dependencies

Place field estimation is relatively easy in a traditional open field exploration session (30min). The
main challenge is getting robust estimates on the time scale of a few minutes (e.g. in order to be
able to detect changes due to learning), which we have seen a GP-based estimator can do well.
A much more difficult problem is detecting tuning properties in a cheeseboard memory task [12].
What distinguishes this setup is that fact that the animal quickly discovers the location of the wells
containing rewards, after which its running patterns become highly stereotypical, close to the shortest
path that traverses the reward locations. While it is hard to figure out place field selectivity for
locations that the animal never visits, GP-based estimators may have an advantage compared to
traditional methods when functional dependencies are structured, as is the case for grid cells in the
medial enthorinal cortex (MEC) [13, 14]. When tuning properties are complex and structured we can
exploit the expressive power of spectral mixture kernels (SM) to make the most of very limited data.

We simulated two versions of this scenario. First, we defined an extrapolation task in which the
animal’s behaviour is restricted to a subregion of the environment (marked by orange lines in the
2nd panel of Fig. 2) but we want to infer the spatial selectivity outside these borders. The second
scenario attempts to mimic the animal running patterns in a cheeseboard maze (after learning) by
restricting the trajectory within a ring (random walk with reflective boundaries in both cases). Using a
5 component spectral mixture kernel we were able to fully reconstruct the hexagonal lattice structure
of the true field despite the size of the observed region covering only about 2 times the length scale of
the periodic pattern. In contrast, traditional methods (including GP-based inference with standard
SE kernels) would fail completely at such extrapolation. While such complex patterns of spatial
dependence are restricted to MEC (and the estimator is probably best suited for ventral MEC, where
grids have a small length scale [15]) it is conceivable that such extrapolation may also be useful in
the temporal domain, or more generally for cortical responses in neurons which have so far eluded a
simple functional characterization.

Spatial and non-spatial modulation of CA1 responses

To explore the multidimensional characterization of principal cell responses in CA1 we constructed
several 3D estimators where the input combines the position of the animal within a 2D environment
with an additional non-spatial variable.4 The first non-spatial variable we considered is the network
state, quantified as the population spike count, k =

∑Nneurons

i=1 yi (naturally a discrete variable
between 0 and some kmax). This quantity provides a computationally convenient proxy for network
oscillations and has been recently used in a series of studies on the statistics of population activity
in the retina and cortex [16–19]. Second, we considered the animal’s speed and direction of motion
(with a coarse discretization), motivated by past work on non-spatial modulation of place fields on
linear tracks [20]. Third, we also considered input variable t measuring time within a session (SE
kernel; 3-5 min windows), as a way to examine the stability of spatial tuning over time. For all
analyses, positional information was discretized on a 32 × 32 grid, corresponding to a spacing of
2.5cm, comparable to the binning resolution used in traditional place field estimates. The animal
speed (estimated from the positional information with 250ms temporal smoothing) varied between 0
and about 25cm/sec, with a very skewed distribution (not shown). Small to medium variations in the
coarseness of the discretization did not qualitatively affect the results although the choice of prior
becomes more important on the tail of the speed distribution, where data is scarce.

The resulting 3D tuning functions are shown in Fig. 3 for a few example neurons. First, network state
modulates the place field selectivity in most CA1 neurons in our recordings. The typical modulation
pattern is a monotonic increase in firing with k (Fig. 3, a, top), although we also found k-dependent
flickering in a minority of the cells (Fig. 3a, middle), and very rarely k invariance (Fig. 3a, bottom).
Rate remapping is also the dominant pattern of speed-dependent modulation in our data set (Fig. 3b).
In terms of place field stability over time, about half the cells were stable during a 30min session in a
familiar environment, with occasionally higher firing rates at the very beginning of the trial (Fig. 3c,
top), while the rest showed fluctuation in representations (Fig. 3c, bottom). Results shown for 5min
windows, but results very similar for 3min.

4We chose to estimate multiple 3D fields rather than jointly conditioning on all variables mainly for simplicity;
this strategy has the added bonus of providing sanity checks for the quality of the different estimates.
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Figure 3: Estimating 3D response dependences in CA1 cells. a) Conditional place fields when
constraining the network state, defined by the average population activity k. c) Conditional place
fields as a function of the time within a 30min session, used to assess the stability of the representation.
In all cases, the rightmost field corresponds to the traditional place field ignoring the 3rd dimension.
d) Sanity check: marginal statistics of the place field selectivity obtained independently from the 3D
fields in 5 example cells. e) Population summary of the degree of modulation of spatial selectivity
by non-spatial variables; see text for details. f) Within comparison of cell properties during the
exploration of a familiar vs. a novel environment.

As a sanity check of our 3D estimators’ quality, we independently computed the traditional place
field by marginalizing out the 3rd dimension for each of our 3D estimates. We used the empirical
distribution as a prior for the non-spatial dimensions, and an uniform prior for space. Reassuringly
we find that the estimates computed after marginalization are very close to the simple 2D place field
map in all but 2 cells, which we exclude from the next analysis (examples in Fig. 3d). This provides
additional confidence in the robustness of the estimator in the multidimensional case.

Since we have a closed form expression for the map between stimulus dimensions and neural
responses, we can estimate the mutual information between neural activity and various input variables
as a way to dissect their contribution to coding. First, we visualize the modulation of spatial
selectivity by the non-spatial variable as the spatial information conditioned on the 3rd variable,
normalized by the marginal spatial information, MI(x,y|z)

MI(x,y) , with z generically denoting any of the
non-spatial variables (approximate closed form expression given f and Poisson observation noise).
We see monotonic increases in spatial information with k (Fig. 3e, top), and speed (Fig. 3e, top)
at the level of the population, and a weak decrease in spatial information over time (possibly due
to higher speeds at the beginning of the session, combined with heightened attention/motivation
levels). In terms of the division of spatial vs. non-spatial information across cells, we found that
space selective cells have weaker k-modulation (Spearman corr(MI(y, x),MI(y, k) = −0.17). This
however does not exclude the possibility that theta-coupled cells have additional spatial information
at the fine temporal scale. Additionally, there is little correlation between the coding of position and
speed (corr(MI(y, x),MI(y, speed) = −0.03), suggesting that the encoding of the two is relatively
orthogonal at the level of the population. Somewhat unexpectedly, we found a cell’s temporal stability
to be largely independent of its spatial selectivity corr(MI(y, x),MI(y, t) = −0.04).

6



Motivated by recent observations that the overall excitability of cells may be predictive of both their
spatial selectivity and of the rigidity of their representation [21], we compared the overall firing rate
of the cells with their spatial and non-spatial selectivity. We found relatively strong dependencies,
with positive correlations between firing rate and spatial information (cc = 0.21), network influence
(cc = 0.43) and the cell’s stability (cc = 0.38). When comparing these quantities in the same cells
as the animal visits a familiar or a novel environment (93 cells, 20min in each environment) we
found additional nontrivial dependences between spatial and non-spatial tuning. Although the overall
firing rates of the cells are remarkably preserved across conditions (reflecting general cell excitability,
cc = 0.66), the subpopulation of cells with strong spatial selectivity is largely non-overlapping
across environments (corr(MIfam(y, x),MInov(y, x) = 0.07). Moreover, the temporal stability of
the representation is also environment specific (corr(MIfam(y, t),MInov(y, t) = −0.04). Overall,
these results paint a complex picture of hippocampal coding, the implications of which need further
empirical and theoretical investigation.

Lastly, we studied the dependence of CA1 responses on the animal’s direction of motion. Although
directional selectivity is well documented on a linear track [20] it remains unclear if a similar
behavior occurs in a 2D environment. The main challenge comes from the poor sampling of the
position×direction-of-motion input space, something which our methods can handle readily. To
construct directionally selective place field estimates in 2D we took inspiration from recent analyses
of 2D phase procession [22] conditioning the responses on the main direction of motion within the
place field. Specifically, we used our estimation of a traditional 2D place field to define a region of
interest (ROI) that covers 90% of the field for each cell (Fig. 4. We isolated all trajectory segments
that traverse this ROI and classified them based on the primary direction of motion along the cardinal
orientations. We then computed place field estimates for each direction, with data outside the ROI
shared across conditions. To avoid artefacts due to the stereotypical pattern of running along the
box borders, we restricted this analysis to cells with fields in the central part of the environment (10
cells). A set of representative examples for the resulting directional fields are shown in Fig. 4d. We
found the fields to be largely invariant to direction of motion in our setup, with small displacements
in peak firing possibly due to differences between the perceived vs. the camera-based measurements
of position (see also [22]). Overall, these results suggest that, in contrast to linear track behavior,
CA1 responses are largely invariant to the direction of motion in an open field exploration task.

directional fields (GP)traditional field

GPhistogram

a

b

c d

cell1

cell6

Figure 4: Directional selectivity in CA1 cells. a) Cell specific ROI that covers the classic place
field (example corresponding to cell 6). b) Classification of the traversals of the region of interest
as a function of the primary direction of motion along the cardinal directions. Out of ROI data
shared across conditions. c) Traditional place field estimates for example CA1 cells and d) their
corresponding direction-specific tuning.
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4 Discussion

Strong constraints on experiment duration, poor sampling of the stimulus space and additional sources
of variability that are not under direct experimental control make the estimation of tuning properties
during awake behavior particularly challenging. Here we have shown that recent advances on fast GP
inference based on Kronecker methods allow for a robust characterization of multidimensional non-
linear tuning functions, which was inaccessible to traditional methods. Furthermore, our estimators
inherit all the advantages of a probabilistic approach, including a principled way of dealing with the
non-uniform sampling of the input space and natural uncertainty estimates.

Our methods can robustly estimate place fields with one order of magnitude fewer data points.
Furthermore, they allow for more than two-dimensional inputs. While one could imagine it would
suffice to estimate separate place fields conditioned on each value of the non-spatial dimension, z,
the joint estimator has the advantage that it allows for smoothing across z values, borrowing strength
from well-sampled regions of the z space to make better estimates for poorly sampled z values.

Several related algorithms have been proposed in the literature [3–5], which vary primarily in how
they handle the tradeoff between kernel flexibility and the computational time required for inference
and learning (see Table 1). At one extreme, [3] strongly restricts the nature of the covariance matrix to
nearest-neighbour interactions on a 2D grid (resulting in a band-diagonal inverse covariance matrix)
which allows them to exploit sparse matrix techniques to estimate the posterior mean in linear time.
At the other extreme, [4, 5] allow for an arbitrary covariance structure, but are computationally
prohibitive, O

(
N3
)
. Our proposal sits between these extremes in that it achieves close-to-linear

computational and memory costs without significantly restricting the flexibility of the covariance
structure (for a better intuition of the effect of different covariances, see also Fig. S1). In particular, it
can be combined with powerful spectral mixture kernels to extract complex functional dependencies
that go beyond simple smoothing. This opens the door to a variety of previously inaccessible
tasks such as extrapolation. Moreover, it allows for an agnostic exploration of the neural responses
functional space, which could be used to discover novel tuning properties in cells for which coding is
poorly understood.

When applied to CA1 data, our multidimensional estimators revealed a complex picture of the
modulation of neural responses by spatial and non-spatial inputs in the hippocampus. First we
confirmed linear track results concerning the speed and oscillatory modulation of spatial tuning.
Furthermore, we revealed additional insights into the interaction between the representation of space
and these non-spatial dimensions, which go beyond the capabilities of traditional methods. Most
notably we found 1) a mostly orthogonal representation of speed and position, that 2) place field
stability cannot be easily explained in terms of cell excitability or spatial selectivity, although 3) it is
environment specific. Lastly, while we showed 2D place field maps to be direction-invariant in an
open field exploration task, more interesting directional dependencies may be revealed in other 2D
tasks, where the direction of motion is behavioraly more relevant (e.g. cheeseboard). Importantly,
there is nothing hippocampus-specific in the methodology. Hence fast GP inference using Kronecker
methods, combined with expressive kernels, may provide a general-purpose tool for characterizing
neural responses across brain regions.

Table 1: Summary comparison of different estimators.

Algorithm Kernel function Computing cost Memory cost Data
size

Rad et al. 2010 [3] sparse banded inverse co-
variance

O (N) O (N) 105

Park et al. 2014 [4] SE, any in principle O
(
N3
)

O
(
N2
)

< 103

Savin & Tkacik SE and SM, works for
any tensor-product

O
(
dN

d+1
d

)
O
(
dN

2
d

)
105
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