
APPENDICES

A Uncertainty for neural networks

In this appendix we discuss some of the experimental setup to qualitatively evaluate uncer-
tainty methods for deep neural networks. To do this, we generated twenty noisy regression
pairs xi, yi with:

yi = xi + sin(–(xi + wi)) + sin(—(xi + wi)) + wi

where xi are drawn uniformly from (0, 0.6) fi (0.8, 1) and wi ≥ N(µ = 0, ‡2 = 0.032). We set
– = 4 and — = 13. None of these numerical choices were important except to represent a
highly nonlinear function with lots of noise and several clear regions where we should be
uncertain. We present the regression data together with an indication of the generating
distribution in Figure 10.

Figure 10: Underlying generating distribution. All our algorithms receive the same blue data. Pink
points represent other samples, the mean function is shown in black.

Interestingly, we did not find that using dropout produced satisfying confidence intervals for
this task. We present one example of this dropout posterior estimate in Figure 11a.

(a) Dropout gives strange uncertainty esti-
mates.

(b) Screenshot from accompanying web demo
to [7]. Dropout converges with high certainty
to the mean value.

Figure 11: Comparing the bootstrap to dropout uncertainty for neural nets.

These results are unsatisfactory for several reasons. First, the network extrapolates the mean
posterior far outside the range of any actual data for x = 0.75. We believe this is because
dropout only perturbs locally from a single neural network fit, unlike bootstrap. Second, the
posterior samples from the dropout approximation are very spiky and do not look like any
sensible posterior sample. Third, the network collapses to almost zero uncertainty in regions
with data.
We spent some time altering our dropout scheme to fix this e�ect, which might be undesirable
for stochastic domains and we believed might be an artefact of our implementation. However,

10



after further thought we believe this to be an e�ect which you would expect for dropout
posterior approximations. In Figure 11b we present a didactic example taken from the
author’s website [7].
On the right hand side of the plot we generate noisy data with wildly di�erent values.
Training a neural network using MSE criterion means that the network will surely converge
to the mean of the noisy data. Any dropout samples remain highly concentrated around
this mean. By contrast, bootstrapped neural networks may include di�erent subsets of this
noisy data and so may produce a more intuitive uncertainty estimates for our settings. Note
this isn’t necessarily a failure of dropout to approximate a Gaussian process posterior, but
this artefact could be shared by any homoskedastic posterior. The authors of [7] propose
a heteroskedastic variant which can help, but does not address the fundamental issue that
for large networks trained to convergence all dropout samples may converge to every single
datapoint... even the outliers.
This observation is key to another, more essential flaw with naive dropout as a proxy for
uncertainty in deep learning. Previous analysis argues that dropout acts as a variational
approximation to the posterior distribution of outcomes p(y) [7], however it does not
distinguish the risk (inherent stochasticity in a model) from the uncertainty (the confusion
over which model parameters apply). For Thompson sampling, it is important to sample only
over the uncertainty over the expected returns and not over realizations of the stochastic
rewards. Bootstrap and dropout are not all that di�erent when viewed in a certain light.
Bootstrap can be regarded as a data-dependent dropout where each datapoint uniquely
determines a mask (which we call the bootstrap mask). Our implementation considers
bootstrap masks which completely share parameters in the convnet and are completely
distinct in the heads, but we might consider other more general bootstrap masks. Exploring
variations of these ideas is an interesting topic for future research.
In this paper we focus on the bootstrap approach to uncertainty for neural networks. We
like its simplicity, connections to established statistical methodology and empirical good
performance. However, the key insights of this paper is the use of deep exploration via
randomized value functions. This is compatible with any approximate posterior estimator for
deep neural networks. We believe that this area of uncertainty estimates for neural networks
remains an important area of research in its own right.
Bootstrapped uncertainty estimates for the Q-value functions have another crucial advantage
over dropout which does not appear in the supervised problem. Unlike random dropout
masks trained against random target networks, our implementation of bootstrap DQN
trains against its own temporally consistent target network. This means that our bootstrap
estimates (in the sense of [5]), are able to “bootstrap” (in the TD sense of [22]) on their own
estimates of the long run value. This is important to quantify the long run uncertainty over
Q and drive deep exploration.

B Bootstrapped DQN implementation

Algorithm 1 gives a full description of Bootstrapped DQN. It captures two modes of operation
where either k neural networks are used to estimate the Qk-value functions, or where one
neural network with k heads is used to estimate k Q-value functions. In both cases, as this
is largely a parameterization issue, we denote the value function networks as Q, where Qk is
output of the kth network or the kth head.
A core idea to the full bootstrapped DQN algorithm is the bootstrap mask mt. The
mask mt decides, for each value function Qk, whether or not it should train upon the
experience generated at step t. In its simplest form mt is a binary vector of length K,
masking out or including each value function for training on that time step of experience
(i.e., should it receive gradients from the corresponding (st, at, rt+1

, st+1

, mt) tuple). The
masking distribution M is responsible for generating each mt. For example, when M yields
mt whose components are independently drawn from a Bernoulli distribution with parameter
0.5 then this corresponds to the double-or-nothing bootstrap [17]. On the other hand, if M
yields a mask mt with all ones, then the algorithm reduces to an ensemble method. Poisson
masks Mt[k] ≥ Poi(1) provides the most natural parallel with the standard non-parametric

11



bootstrap since Bin(N, 1/N) æ Poi(1) as N æ Œ. Exponential masks Mt[k] ≥ Exp(1)
closely resemble the standard Bayesian nonparametric posterior of a Dirichlet process [15].

Algorithm 1 Bootstrapped DQN
1: Input: Value function networks Q with K outputs {Qk}K

k=1

. Masking distribution M .
2: Let B be a replay bu�er storing experience for training.
3: for each episode do
4: Obtain initial state from environment s

0

5: Pick a value function to act using k ≥ Uniform{1, . . . , K}
6: for step t = 1, . . . until end of episode do
7: Pick an action according to at œ arg maxa Qk(st, a)
8: Receive state st+1

and reward rt from environment, having taking action at

9: Sample bootstrap mask mt ≥ M
10: Add (st, at, rt+1

, st+1

, mt) to replay bu�er B
11: end for
12: end for

Periodically, the replay bu�er is played back to update the parameters of the value function
network Q. The gradients of the kth value function Qk for the tth tuple in the replay bu�er
B, gk

t is:

gk
t = mk

t (yQ
t ≠ Qk(st, at; ◊))Ò◊Qk(st, at; ◊) (3)

where yQ
t is given by (2). Note that the mask mk

t modulates the gradient, giving rise to the
bootstrap behavior.

C Experiments for deep exploration

C.1 Bootstrap methodology

A naive implementation of bootstrapped DQN builds up K complete networks with K
distinct memory bu�ers. This method is parallelizable up to many machines, however we
wanted to produce an algorithm that was e�cient even on a single machine. To do this,
we implemented the bootstrap heads in a single larger network, like Figure 1a but without
any shared network. We implement bootstrap by masking each episode of data according to
w

1

, .., wK ≥ Ber(p).

Figure 12: Bootstrapped DQN performs well even with small number of bootstrap heads K or high
probability of sharing p.

In Figure 12 we demonstrate that bootstrapped DQN can implement deep exploration even
with relatively small values of K. However, the results are more robust and scalable with
larger K. We run our experiments on the example from Figure 3. Surprisingly, this method
is even e�ective with p = 1 and complete data sharing between heads. This degenerate full
sharing of information turns out to be remarkably e�cient for training large and deep neural
networks. We discuss this phenomenon more in Appendix D.

12



Generating good estimates for uncertainty is not enough for e�cient exploration. In Figure 13
we see that other methods trained with the same network architecture are totally ine�ective
at implementing deep exploration. The ‘-greedy policy follows just one Q-value estimate. We
allow this policy to be evaluated without dithering. The ensemble policy is trained exactly
as per bootstrapped DQN except at each stage the algorithm follows the policy which is
majority vote of the bootstrap heads. Thompson sampling is the same as bootstrapped DQN
except a new head is sampled every timestep, rather than every episode.

Figure 13: Shallow exploration methods do not work.

We can see that only bootstrapped DQN demonstrates e�cient and deep exploration in this
domain.

C.2 A di�cult stochastic MDP

Figure 4 shows that bootstrapped DQN can implement e�ective (and deep) exploration
where similar deep RL architectures fail. However, since the underlying system is a small and
finite MDP there may be several other simpler strategies which would also solve this problem.
We will now consider a di�cult variant of this chain system with significant stochastic noise
in transitions as depicted in Figure 14. Action “left” deterministically moves the agent left,
but action “right” is only successful 50% of the time and otherwise also moves left. The
agent interacts with the MDP in episodes of length 15 and begins each episode at s

1

. Once
again the optimal policy is to head right.

Figure 14: A stochastic MDP that requires deep exploration.

Bootstrapped DQN is unique amongst scalable approaches to e�cient exploration with deep
RL in stochastic domains. For benchmark performance we implement three algorithms which,
unlike bootstrapped DQN, will receive the true tabular representation for the MDP. These
algorithms are based on three state of the art approaches to exploration via dithering (‘-
greedy), optimism [9] and posterior sampling [13]. We discuss the choice of these benchmarks
in Appendix C.
In Figure 15a we present the empirical regret of each algorithm averaged over 10 seeds over
the first two thousand episodes. The empirical regret is the cumulative di�erence between the
expected rewards of the optimal policy and the realized rewards of each algorithm. We find
that bootstrapped DQN achieves similar performance to state of the art e�cient exploration
schemes such as PSRL even without prior knowledge of the tabular MDP structure and in
noisy environments.
Most telling is how much better bootstrapped DQN does than the state of the art optimistic
algorithm UCRL2. Although Figure 15a seems to suggest UCRL2 incurs linear regret,

13



(a) Bootstrapped DQN matches e�cient tab-
ular RL.

(b) The regret bounds for UCRL2 are near-
optimal in Õ(·), but they are still not very
practical.

Figure 15: Learning and regret bounds on a stochastic MDP.

actually it follows its bounds Õ(S
Ô

AT ) [9] where S is the number of states and A is the
number of actions.
For the example in Figure 14 we attempted to display our performance compared to several
benchmark tabula rasa approaches to exploration. There are many other algorithms we
could have considered, but for a short paper we chose to focus against the most common
approach (‘-greedy) the pre-eminent optimistic approach (UCRL2) and posterior sampling
(PSRL).
Other common heuristic approaches, such as optimistic initialization for Q-learning can
be tuned to work well on this domain, however the precise parameters are sensitive to the
underlying MDP6. To make a general-purpose version of this heuristic essentially leads to
optimistic algorithms. Since UCRL2 is originally designed for infinite-horizon MDPs, we
use the natural adaptation of this algorithm, which has state of the art guarantees in finite
horizon MDPs as well [4].
Figure 15a displays the empirical regret of these algorithms together with bootstrapped DQN
on the example from Figure 14. It is somewhat disconcerting that UCRL2 appears to incur
linear regret, but it is proven to satisfy near-optimal regret bounds. Actually, as we show
in Figure 15b, the algorithm produces regret which scales very similarly to its established
bounds [9]. Similarly, even for this tiny problem size, the recent analysis that proves a near
optimal sample complexity in fixed horizon problems [4] only guarantees that we will have
fewer than 1010 ‘ = 1 suboptimal episodes. While these bounds may be acceptable in worst
case Õ(·) scaling, they are not of much practical use.

C.3 One-hot features

In Figure 16 we include the mean performance of bootstrapped DQN with one-hot feature
encodings. We found that, using these features, bootstrapped DQN learned the optimal
policy for most seeds, but was somewhat less robust than the thermometer encoding. Two
out of ten seeds failed to learn the optimal policy within 2000 episodes, this is presented in
Figure 16.

Figure 16: Bootstrapped DQN also performs well with one-hot features, but learning is less robust.

6Further, it is di�cult to extend the idea of optimistic initialization with function generalization,
especially for deep neural networks.

14



D Experiments for Atari

D.1 Experimental setup

We use the same 49 Atari games as [12] for our experiments. Each step of the agent
corresponds to four steps of the emulator, where the same action is repeated, the reward
values of the agents are clipped between -1 and 1 for stability. We evaluate our agents and
report performance based upon the raw scores.
The convolutional part of the network used is identical to the one used in [12]. The input to
the network is 4x84x84 tensor with a rescaled, grayscale version of the last four observations.
The first convolutional (conv) layer has 32 filters of size 8 with a stride of 4. The second conv
layer has 64 filters of size 4 with stride 2. The last conv layer has 64 filters of size 3. We split
the network beyond the final layer into K = 10 distinct heads, each one is fully connected
and identical to the single head of DQN [12]. This consists of a fully connected layer to
512 units followed by another fully connected layer to the Q-Values for each action. The
fully connected layers all use Rectified Linear Units(ReLU) as a non-linearity. We normalize
gradients 1/K that flow from each head.
We trained the networks with RMSProp with a momentum of 0.95 and a learning rate of
0.00025 as in [12]. The discount was set to “ = 0.99, the number of steps between target
updates was set to · = 10000 steps. We trained the agents for a total of 50m steps per
game, which corresponds to 200m frames. The agents were every 1m frames, for evaluation
in bootstrapped DQN we use an ensemble voting policy. The experience replay contains the
1m most recent transitions. We update the network every 4 steps by randomly sampling a
minibatch of 32 transitions from the replay bu�er to use the exact same minibatch schedule
as DQN. For training we used an ‘-greedy policy with ‘ being annealed linearly from 1 to
0.01 over the first 1m timesteps.

D.2 Gradient normalization in bootstrap heads

Most literature in deep RL for Atari focuses on learning the best single evaluation policy,
with particular attention to whether this above or below human performance [12]. This is
unusual for the RL literature, which typically focuses upon cumulative or final performance.
Bootstrapped DQN makes significant improvements to the cumulative rewards of DQN on
Atari, as we display in Figure 9, while the peak performance is much more We found that
using bootstrapped DQN without gradient normalization on each head typically learned even
faster than our implementation with rescaling 1/K, but it was somewhat prone to premature
and suboptimal convergence. We present an example of this phenomenon in Figure 17.

Figure 17: Normalization fights premature convergence.

15



We found that, in order to better the benchmark “best” policies reported by DQN, it was
very helpful for us to use the gradient normalization. However, it is not entirely clear whether
this represents an improvement for all settings. In Figures 18a and 18b we present the
cumulative rewards of the same algorithms on Beam Rider.

(a) Normalization does not help cumulative
rewards.

(b) Even over 200m frames the importance
of exploration dominates the e�ects of an
inferior final policy.

Figure 18: Planning, learning and exploration in RL.

Where an RL system is deployed to learn with real interactions, cumulative rewards present
a better measure for performance. In these settings the benefits of gradient normalization
are less clear. However, even with normalization 1/K bootstrapped DQN significantly
outperforms DQN in terms of cumulative rewards. This is reflected most clearly in Figure 9
and Table 2.

D.3 Sharing data in bootstrap heads

In this setting all network heads share all the data, so they are not actually a traditional
bootstrap at all. This is di�erent from the regression task in Section 2, where bootstrapped
data was essential to obtain meaningful uncertainty estimates. We have several theories for
why the networks maintain significant diversity even without data bootstrapping in this
setting. We build upon the intuition of Section 5.2.
First, they all train on di�erent target networks. This means that even when facing the same
(s, a, r, sÕ) datapoint this can still lead to drastically di�erent Q-value updates. Second, Atari
is a deterministic environment, any transition observation is the unique correct datapoint for
this setting. Third, the networks are deep and initialized from di�erent random values so
they will likely find quite diverse generalization even when they agree on given data. Finally,
since all variants of DQN take many many frames to update their policy, it is likely that
even using p = 0.5 they would still populate their replay memory with identical datapoints.
This means using p = 1 to save on minibatch passes seems like a reasonable compromise and
it doesn’t seem to negatively a�ect performance too much in this setting. More research is
needed to examine exactly where/when this data sharing is important.

D.4 Results tables

In Table 1 the average score achieved by the agents during the most successful evaluation
period, compared to human performance and a uniformly random policy. DQN is our
implementation of DQN with the hyperparameters specified above, using the double Q-
Learning update.[25]. We find that peak final performance is similar under bootstrapped
DQN to previous benchmarks.
To compare the benefits of exploration via bootstrapped DQN we benchmark our performance
against the most similar prior work on incentivizing exploration in Atari [20]. To do this,
we compute the AUC-100 measure specified in this work. We present these results in
Table 2 compare to their best performing strategy as well as their implementation of DQN.
Importantly, bootstrapped DQN outperforms this prior work significantly.

16



Random Human Bootstrapped DQN DDQN Nature
Alien 227.8 7127.7 2436.6 4007.7 3069
Amidar 5.8 1719.5 1272.5 2138.3 739.5
Assault 222.4 742.0 8047.1 6997.9 3359
Asterix 210.0 8503.3 19713.2 17366.4 6012
Asteroids 719.1 47388.7 1032.0 1981.4 1629
Atlantis 12850.0 29028.1 994500.0 767850.0 85641
Bank Heist 14.2 753.1 1208.0 1109.0 429.7
Battle Zone 2360.0 37187.5 38666.7 34620.7 26300
Beam Rider 363.9 16926.5 23429.8 16650.7 6846
Bowling 23.1 160.7 60.2 77.9 42.4
Boxing 0.1 12.1 93.2 90.2 71.8
Breakout 1.7 30.5 855.0 437.0 401.2
Centipede 2090.9 12017.0 4553.5 4855.4 8309
Chopper Command 811.0 7387.8 4100.0 5019.0 6687
Crazy Climber 10780.5 35829.4 137925.9 137244.4 114103
Demon Attack 152.1 1971.0 82610.0 98450.0 9711
Double Dunk -18.6 -16.4 3.0 -1.8 -18.1
Enduro 0.0 860.5 1591.0 1496.7 301.8
Fishing Derby -91.7 -38.7 26.0 19.8 -0.8
Freeway 0.0 29.6 33.9 33.4 30.3
Frostbite 65.2 4334.7 2181.4 2766.8 328.3
Gopher 257.6 2412.5 17438.4 13815.9 8520
Gravitar 173.0 3351.4 286.1 708.6 306.7
Hero 1027.0 30826.4 21021.3 20974.2 19950
Ice Hockey -11.2 0.9 -1.3 -1.7 -1.6
Jamesbond 29.0 302.8 1663.5 1120.2 576.7
Kangaroo 52.0 3035.0 14862.5 14717.6 6740
Krull 1598.0 2665.5 8627.9 9690.9 3805
Kung Fu Master 258.5 22736.3 36733.3 36365.7 23270
Montezuma Revenge 0.0 4753.3 100.0 0.0 0
Ms Pacman 307.3 6951.6 2983.3 3424.6 2311
Name This Game 2292.3 8049.0 11501.1 11744.4 7257
Pong -20.7 14.6 20.9 20.9 18.9
Private Eye 24.9 69571.3 1812.5 158.4 1788
Qbert 163.9 13455.0 15092.7 15209.7 10596
Riverraid 1338.5 17118.0 12845.0 14555.1 8316
Road Runner 11.5 7845.0 51500.0 49518.4 18257
Robotank 2.2 11.9 66.6 70.6 51.6
Seaquest 68.4 42054.7 9083.1 19183.9 5286
Space Invaders 148.0 1668.7 2893.0 4715.8 1976
Star Gunner 664.0 10250.0 55725.0 66091.2 57997
Tennis -23.8 -8.3 0.0 11.8 -2.5
Time Pilot 3568.0 5229.2 9079.4 10075.8 5947
Tutankham 11.4 167.6 214.8 268.0 186.7
Up N Down 533.4 11693.2 26231.0 19743.5 8456
Venture 0.0 1187.5 212.5 239.7 380
Video Pinball 0.0 17667.9 811610.0 685911.0 42684
Wizard Of Wor 563.5 4756.5 6804.7 7655.7 3393
Zaxxon 32.5 9173.3 11491.7 12947.6 4977

Table 1: Maximal evaluation Scores achieved by agents

We now compare our method against the results in [20]. In this paper they introduce a
new measure of performance called AUC-100, which is something similar to normalized
cumulative rewards up to 20 million frames. Table 2 displays the results for our reference
DQN and bootstrapped DQN as Boot-DQN. We reproduce their reference results for DQN

17



as DQN* and their best performing algorithm, Dynamic AE. We also present bootstrapped
DQN without head rescaling as Boot-DQN+.

DQN* Dynamic AE DQN Boot-DQN Boot-DQN+
Alien 0.15 0.20 0.23 0.23 0.33
Asteroids 0.26 0.41 0.29 0.29 0.55
Bank Heist 0.07 0.15 0.06 0.09 0.77
Beam Rider 0.11 0.09 0.24 0.46 0.79
Bowling 0.96 1.49 0.24 0.56 0.54
Breakout 0.19 0.20 0.06 0.16 0.52
Enduro 0.52 0.49 1.68 1.85 1.72
Freeway 0.21 0.21 0.58 0.68 0.81
Frostbite 0.57 0.97 0.99 1.12 0.98
Montezuma Revenge 0.00 0.00 0.00 0.00 0.00
Pong 0.52 0.56 -0.13 0.02 0.60
Qbert 0.15 0.10 0.13 0.16 0.24
Seaquest 0.16 0.17 0.18 0.23 0.44
Space Invaders 0.20 0.18 0.25 0.30 0.38
Average 0.29 0.37 0.35 0.41 0.62

Table 2: AUC-100 for di�erent agents compared to [20]

We see that, on average, both bootstrapped DQN implementations outperform Dynamic
AE, the best algorithm from previous work. The only game in which Dynamic AE produces
best results is Bowling, but this di�erence in Bowling is dominated by the implementation
of DQN* vs DQN. Bootstrapped DQN still gives over 100% improvement over its relevant
DQN baseline. Overall it is clear that Boot-DQN+ (bootstrapped DQN without rescaling)
performs best in terms of AUC-100 metric. Averaged across the 14 games it is over 50% better
than the next best competitor, which is bootstrapped DQN with gradient normalization.
However, in terms of peak performance over 200m frames Boot-DQN generally reached higher
scores. Boot-DQN+ sometimes plateaus early as in Figure 17. This highlights an important
distinction between evaluation based on best learned policy versus cumulative rewards, as
we discuss in Appendix D.2. Bootstrapped DQN displays the biggest improvements over
DQN when doing well during learning is important.

18


