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The supplementary material of this work is divided in the following three sections:

A Proofs of Fisher consistency and comparison inequality (Thm. 2).
B Universal Consistency and Generalization Bounds for Alg. 1. (Thm. 4 and 5).
C The characterization of a large family of4s satisfying Asm. 1 (Thm. 19).

Mathematical Setting

In the following we will always assume X and Y to be Polish spaces, namely separable complete
metrizable spaces, equipped with the associated Borel sigma-algebra. When referring to a probability
distribution ρ on X × Y we will always assume it to be a Borel probability measure, with ρX the
marginal distribution on X and ρ(·|x) the conditional measure on Y given x ∈ X . We recall [1]
that ρ(y|x) is a regular conditional distribution and its domain, which we will denote Dρ|X in the
following, is a measurable set contained in the support of ρX and corresponds to the support of ρX
up to a set of measure zero.

For convenience, we recall here the main assumption of our work.
Assumption 1. There exists a separable Hilbert spaceHY with inner product 〈·, ·〉HY , a continuous
embedding ψ : Y → HY and a bounded linear operator V : HY → HY , such that

4(y, y′) = 〈ψ(y), V ψ(y′)〉HY ∀y, y′ ∈ Y (10)

Basic notation We recall that a Hilbert spaceH is a vector space with inner product 〈·, ·〉H, closed
with respect to the norm ‖h‖H =

√
〈h, h〉H for any h ∈ H. We denote with L2(X , ρX ,H) the

Lebesgue space of square integrable functions on X with respect to a measure ρX and with values
in a separable Hilbert spaceH. We denote with 〈f, g〉ρX the inner product

∫
〈f(x), g(x)〉HdρX (x),

for all f, g ∈ L2(X , ρX ,H). In particular when H = R we denote with L2(X , ρX ) the space
L2(X , ρX ,R).

Given a linear operator V : H → H′ between two Hilbert spacesH,H′, we denote with Tr(V ) the
trace of V and with V ∗ : H′ → H the adjoint operator associated to V , namely such that 〈V h, h′〉′H =
〈h, V ∗h′〉H′ for every h ∈ H, h′ ∈ H′. Moreover, we denote with ‖V ‖ = suph∈H ‖V h‖H′ and
‖V ‖HS =

√
Tr(V ∗V ) respectively the operator norm and Hilbert-Schmidt norm of V . We recall

that a linear operator V is continuous if and only if ‖V ‖ < +∞ and we denote B(H,H′) the set of
all continuous linear operators fromH toH′. Moreover, we denote B2(H,H′) the set of all operators
V : H → H′ with ‖V ‖HS < +∞ and recall that B2(H,H′) is isometric to the spaceH′ ⊗H, with
⊗ denoting the tensor product. Indeed, for the sake of simplicity, with some abuse of notation we
will not make the distinction between the two spaces.

Note that in most of our results we will require Y to be non-empty and compact, so that a continuous
functional over Y always attains a minimizer on Y and therefore the operator argminy∈Y is well
defined. Note that for a finite set Y , we will always assume it endowed with the discrete topology, so
that Y is compact and any function4 : Y × Y → R is continuous.

On the Argmin Notice that for simplicity of notation, in the paper we denoted the minimizer of
Alg. 1 as

f̂(x) = argmin
y∈Y

n∑
i=1

αi(x)4 (y, yi). (23)

However note that the correct notation should be

f̂(x) ∈ argmin
y∈Y

n∑
i=1

αi(x)4 (y, yi) (24)

since a loss function4 can have more than one minimizer in general. In the following we keep this
more pedantic, yet correct notation.
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Expected Risk Minimization Note that whenever we write an expected risk minimization problem,
we implicitly assume the optimization domain to be the space of measurable functions. For instance,
Eq. (1) would be written more rigorously as

minimize
{∫
X×Y

4(f(x), y) dρ(x, y) | f : X → Y measurable
}

(25)

In the next Lemma, following [2] we show that the problem in Eq. (1) admits a measurable pointwise
minimizer.
Lemma 6 (Existence of a solution for Eq. (1)). Let4 : Y × Y → R be a continuous function. Then,
the expected risk minimization at Eq. (1) admits a measurable minimizer f∗ : X → Y such that

f∗(x) ∈ argmin
y∈Y

∫
Y
4(y, y′)dρ(y′|x) (26)

for every x ∈ Dρ|X . Moreover, the function m : X → R defined as follows, is measurable

m(x) = inf
y∈Y

r(x, y), with r(x, y) =

{ ∫
Y 4(y, y′)dρ(y′|x) if x ∈ Dρ|X

0 otherwise (27)

Proof. Since4 is continuous and ρ(y|x) is a regular conditional distribution, then r is a Carathéodory
function (see Definition 4.50 (pp. 153) of [3]), namely continuous in y for each x ∈ X and measurable
in x for each y ∈ Y . Thus, by Theorem 18.19 (pp. 605) of [3] (or Aumann’s measurable selection
principle [2, 4]), we have that m is measurable and that there exists a measurable f∗ : X → Y
such that r(x, f∗(x)) = m(x) for all x ∈ X . Moreover, by definition of m, given any measurable
f : X → Y , we have m(x) ≤ r(x, f(x)). Therefore,

E(f∗) =

∫
r(x, f∗(x))dρX (x) =

∫
m(x)dρX (x) ≤

∫
r(x, f(x))dρX (x) = E(f). (28)

We conclude E(f∗) ≤ inff :X→Y E(f) and, since f∗ is measurable, E(f∗) = minf :X→Y E(f) and
f∗ is a global minimizer.

We have an immediate Corollary to Lemma 6.

Corollary 7. With the hypotheses of Lemma 6, let f̃ : X → Y such that

f̃(x) ∈ argmin
y∈Y

∫
Y
4(y, y′)dρ(y′|x)

for almost every x ∈ Dρ|X . Then E(f̃) = inff :X→Y E(f).

Proof. The result follows directly from Lemma 6 by noting that r(x, f̃(x)) = m(x) almost ev-
erywhere on Dρ|X . Hence, since Dρ|X is equal to the support of ρX up to a set of measure zero,
E(f̃) =

∫
X m(x)dρX (x) = E(f∗) = inff E(f).

With the above basic notation and results, we can proceed to prove the results presented in this work.

A Surrogate Problem, Fisher Consistency and Comparison Inequality

In this section we focus on the surrogate framework introduced in Sec. 3 and prove that it is Fisher
consistent and that the comparison inequality. To do so, we will first characterizes the solution(s)
of the surrogate expected risk minimization introduced at Eq. (12). We recall that in our setting,
the surrogate risk was defined as the functional R(g) =

∫
X×Y ‖ψ(y)− g∗(x)‖2HY

dρ(x, y), where
ψ : Y → HY is continuous (by Asm. 1). In the following, when ψ is bounded, we will denote with
Q = supy∈Y ‖ψ(y)‖HY . Note that in most our results we will assume Y to be compact. In these
settings we always have Q = maxy∈Y ‖ψ(y)‖HY by the continuity of ψ.

We start with a preliminary lemma necessary to prove Lemma 1 and Thm. 2.
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Lemma 8. LetHY a separable Hilbert space and ψ : Y → HY measurable and bounded. Then, the
function g∗ : X → HY such that

g∗(x) =

∫
Y
ψ(y)dρ(y|x) ∀x ∈ Dρ|X (29)

and g∗(x) = 0 otherwise, belongs to L2(X , ρX ,HY) and is a minimizer of the surrogate expected
risk at Eq. (12). Moreover, any minimizer of Eq. (12) is equal to g∗ almost everywhere on the domain
of ρX .

Proof. By hypothesis, ‖ψ‖HY is measurable and bounded. Therefore, since ρ(y|x) is a regular
conditional probability, we have that g∗ is measurable on X (see for instance [2]). Moreover, the
norm of g∗ is dominated by the constant function of value Q, thus g∗ is integrable on X with respect
to ρX and in particular it is in L2(X , ρX ,HY) since ρX is a finite regular measure. Recall that since
ρ(y|x) is a regular conditional distribution, for any measurable g : X → HY , the functional in
Eq. (12) can be written as

R(g) =

∫
X×Y

‖g(x)− ψ(y)‖2HY
dρ(x, y) =

∫
X

∫
Y
‖g(x)− ψ(y)‖2HY

dρ(y|x)dρX (x). (30)

Notice that g∗(x) = argminη∈HY

∫
Y ‖η − ψ(y)‖2HY

dρ(y|x) almost everywhere on Dρ|X . Indeed,∫
Y
‖η − ψ(y)‖2HY

dρ(y|x) = ‖η‖2HY
− 2〈η,

(∫
Y
ψ(y)dρ(y|x)

)
〉+

∫
Y
‖ψ(y)‖2HY

dρ(y|x) (31)

= ‖η‖2HY
− 2〈η, g∗(x)〉HY + const. (32)

for all x ∈ Dρ|X , which is minimized by η = g∗(x) for all x ∈ Dρ|X . Therefore, since Dρ|X is
equal to the support of ρX up to a set of measure zero, we conclude thatR(g∗) ≤ infg:X→HY R(g)
and, since g∗ is measurable,R(g∗) = ming:X→HY R(g) and g∗ is a global minimizer as required.

Finally, notice that for any g : X → HY we have

R(g)−R(g∗) =

∫
X×Y

‖g(x)− ψ(y)‖2HY
− ‖g∗(x)− ψ(y)‖2HY

dρ(x, y) (33)

=

∫
X
‖g(x)‖2HY

− 2〈g(x),

(∫
Y
ψ(y)dρ(y|x)

)
〉HY + ‖g∗(x)‖2HY

dρX (x) (34)

=

∫
X
‖g(x)‖2HY

− 2〈g(x), g∗(x)〉HY + ‖g∗(x)‖2HY
dρX (x) (35)

=

∫
X
‖g(x)− g∗(x)‖2HY

dρX (x) (36)

Therefore, for any measurable minimizer g′ : X → HY of the surrogate expected risk at Eq. (12), we
haveR(g′)−R(g∗) = 0 which, by the relation above, implies g′(x) = g∗(x) a.e. on Dρ|X .

Lemma 1. Let4 : Y × Y → R satisfy Asm. 1 with ψ : Y → HY bounded. Then the expected risk
in Eq. (1) can be written as

E(f) =

∫
X
〈ψ(f(x)), V g∗(x)〉HY dρX (x) (11)

for all f : X → Y , where g∗ : X → HY minimizes

R(g) =

∫
X×Y

‖g(x)− ψ(y)‖2HY
dρ(x, y). (12)

Proof. By Lemma 8 we know that g∗(x) =
∫
Y ψ(y)dρ(y|x) almost everywhere on Dρ|X and is the

minimizer ofR. Therefore we have

〈ψ(y), V g∗(x)〉HY = 〈ψ(y), V

∫
Y
ψ(y′)dρ(y′|x)〉HY (37)

=

∫
Y
〈ψ(y), V ψ(y′)〉HYdρ(y′|x) =

∫
Y
4(y, y′)dρ(y′|x) (38)
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for almost every x ∈ Dρ|X . Thus, for any measurable function f : X → Y we have

E(f) =

∫
X×Y

4(f(x), y)dρ(x, y) =

∫
X

∫
Y
4(f(x), y)dρ(y|x)dρX (x) (39)

=

∫
X

〈ψ(f(x)), V g∗(x)〉HYdρX (x). (40)

Theorem 2. Let4 : Y × Y → R satisfy Asm. 1 with Y a compact set. Then, for every measurable
g : X → HY and d : HY → Y satisfying Eq. (13), the following holds

E(d ◦ g∗) = E(f∗) (14)

E(d ◦ g)− E(f∗) ≤ c4
√
R(g)−R(g∗). (15)

with c4 = ‖V ‖maxy∈Y ‖ψ(y)‖HY .

Proof. For the sake of clarity, the result for the fisher consistency and the comparison inequality are
proven respectively in Thm. 9, Thm. 12. The two results are proven below.

Theorem 9 (Fisher Consistency). Let 4 : Y × Y → R satisfy Asm. 1 with Y a compact set. Let
g∗ : X → HY be a minimizer of the surrogate problem at Eq. (12). Then, for any decoding
d : HY → Y satisfying Eq. (13)

E(d ◦ g∗) = inf
f :X→Y

E(f) (41)

Proof. It is sufficient to show that d ◦ g∗ satisfies Eq. (26) almost everywhere on Dρ|X . Indeed, by
directly applying Cor. 7 we have E(d ◦ g∗) = E(f∗) = inff E(f) as required.

We recall that a mapping d : HY → Y is a decoding for our surrogate framework if it satisfies
Eq. (13), namely

d(η) ∈ argmin
y∈Y

〈ψ(y), V η〉HY ∀η ∈ HY . (42)

By Lemma 8 we know that g∗(x) =
∫
Y ψ(y)dρ(y|x) almost everywhere on Dρ|X . Therefore, we

have

〈ψ(y), V g∗(x)〉HY = 〈ψ(y), V

∫
Y
ψ(y′)dρ(y′|x)〉HY (43)

=

∫
Y
〈ψ(y), V ψ(y′)〉HYdρ(y′|x) =

∫
Y
4(y, y′)dρ(y′|x) (44)

for almost every x ∈ Dρ|X . As a consequence, for any d : HY → Y satisfying Eq. (13), we have

d ◦ g∗(x) ∈ argmin
y∈Y

〈ψ(y), V g∗(x)〉HY = argmin
y∈Y

∫
Y
4(y, y′)dρ(y′|x) (45)

almost everywhere on Dρ|X . We are therefore in the hypotheses of Cor. 7 with f̃ = d ◦ g∗, as
desired.

The Fisher consistency of the surrogate problem allows to prove the comparison inequality (Thm. 12)
between the excess risk of the structured prediction problem, namely E(d◦g)−E(f∗), and the excess
riskR(g)−R(g∗) of the surrogate problem. However, before showing such relation, in the following
result we prove that for any measurable g : X → HY and measurable decoding d : HY → Y , the
expected risk E(d ◦ g) is well defined.

Lemma 10. Let Y be compact and 4 : Y × Y → R satisfying Asm. 1. Let g : X → HY be
measurable and d : HY → Y a measurable decoding satisfying Eq. (13). Then E(d ◦ g) is well
defined and moreover |E(d ◦ g)| ≤ Q2‖V ‖.
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Proof. 4(d◦ g(x), y) is measurable in both x and y since4 is continuous and d◦ g is measurable by
hypothesis (combination of measurable functions). Now,4 is pointwise bounded by Q2‖V ‖ since

| 4 (y, y′)| = |〈ψ(y), V ψ(y′)〉HY | ≤ ‖ψ(y)‖2HY
‖V ‖ ≤ Q2‖V ‖. (46)

Hence, by Theorem 11.23 pp. 416 in [3] the integral of4(d ◦ g(x), y) exists and therefore

|E(d ◦ g)| ≤
∫
X
| 4 (d ◦ g(x), y)|dρ(x, y) ≤ Q2‖V ‖ < +∞. (47)

A question introduced by Lemma 10 is whether a measurable decoding always exists. The following
result guarantees that, under the hypotheses introduced in this work, a decoding d : HY → Y
satisfying Eq. (13) always exists.
Lemma 11. Let Y be compact and ψ : Y → HY and V : HY → HY satisfy the requirements in
Asm. 1. Define m : X → R as

m(η) = min
y∈Y
〈ψ(y), V η〉HY ∀y ∈ Y, η ∈ HY . (48)

Then, m is measurable and there exists a measurable decoding d : HY → Y satisfying Eq. (13),
namely such that m(η) = 〈ψ(d(η)), V η〉HY for each η ∈ HY .

Proof. Similarly to the proof of Lemma 6, the result is a direct application of Theorem 18.19 (pp.
605) of [3] (or Aumann’s measurable selection principle [2, 4]).

We now prove the comparison inequality at Eq. (15).
Theorem 12 (Comparison Inequality). Let 4 : Y × Y → R satisfy Asm. 1 with Y a compact or
finite set. Let f∗ : X → Y and g∗ : X → HY be respectively solutions to the structured and
surrogate learning problems at Eq. (1) and Eq. (12). Then, for every measurable g : X → HY and
d : HY → Y satisfying Eq. (13)

E(d ◦ g)− E(f∗) ≤ 2Q‖V ‖
√
R(g)−R(g∗). (49)

Proof. Let us denote f = d ◦ g and f0 = d ◦ g∗. By Thm. 9 we have that E(f0) = inff :X→Y E(f)
and so E(f∗) = E(f0). Now, by combining Asm. 1 with Lemma 8, we have

E(f)− E(f∗) = E(f)− E(f0) =

∫
X×Y

4(f(x), y)−4(f0(x), y)dρ(x, y) (50)

=

∫
X×Y
〈ψ(f(x))− ψ(f0(x)), V ψ(y)〉HYdρ(x, y) (51)

=

∫
X
〈ψ(f(x))− ψ(f0(x)), V

(∫
Y
ψ(y)dρ(y|x)

)
〉HYdρX (x) (52)

=

∫
X
〈ψ(f(x))− ψ(f0(x)), V g∗(x)〉HYdρX (x) (53)

= A+B. (54)

where

A =

∫
X
〈ψ(f(x)), V (g∗(x)− g(x))〉HY dρX (x) (55)

B =

∫
X
〈ψ(f(x)), V g(x)〉HYdρX (x)−

∫
X
〈ψ(f0(x)), V g∗(x)〉HYdρX (x) (56)

Now, the term A can be minimized by taking the supremum over Y so that

A ≤
∫
X

sup
y∈Y

∣∣∣〈ψ(y), V (g∗(x)− g(x))〉HY

∣∣∣dρX (x). (57)
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For B, we observe that, by the definition of the decoding d, we have

〈ψ(f0(x)), V g∗(x)〉HY = inf
y′∈Y
〈ψ(y′), V g∗(x)〉HY , (58)

〈ψ(f(x)), V g(x)〉HY = inf
y′∈Y
〈ψ(y′), V g(x)〉HY , (59)

for all x ∈ X l. Therefore,

B =

∫
X

inf
y∈Y
〈ψ(y), V g(x)〉HY − inf

y∈Y
〈ψ(y), V g∗(x)〉HY dρX (x) (60)

≤
∫
X

sup
y∈Y

∣∣∣〈ψ(y), V (g(x)− g∗(x))〉HY

∣∣∣dρX (x) (61)

where we have used the fact that for any given two functions η, ζ : Y → R we have

| inf
y∈Y

η(y)− inf
y∈Y

ζ(y)| ≤ sup
y∈Y
|η(y)− ζ(y)|. (62)

Therefore, by combining the bounds on A and B we have

E(f)− E(f∗) ≤ 2

∫
X

sup
y∈Y

∣∣∣〈ψ(y), V (g∗(x)− g(x))〉HY

∣∣∣dρX (x)

≤ 2

∫
X

sup
y∈Y
‖V ∗ψ(y)‖HY‖g∗(x)− g(x)‖HYdρX (x)

≤ 2Q‖V ‖
∫
X
‖g∗(x)− g(x)‖HYdρX (x)

≤ 2Q‖V ‖

√∫
X
‖g∗(x)− g(x)‖2HY

dρX (x),

where for the last inequality we have used the Jensen’s inequality. The proof is concluded by recalling
that (see Eq. (33))

R(g)−R(g∗) =

∫
X
‖g(x)− g∗(x)‖2HY

dρX (x) (63)

B Learning Bounds for Structured Prediction

In this section we focus on the analysis of the structured prediction algorithm proposed in this work
(Alg. 1). In particular, we will first prove that, given the minimizer ĝ : X → HY of the empirical risk
at Eq. (4), its decoding can be computed in practice according to Alg. 1. Then, we report the proofs
for the universal consistency of such approach (Thm. 4) and generalization bounds (Thm. 5).

Notation

Let k : X ×X → R a positive semidefinite function on X , we denoteHX the Hilbert space obtained
by the completion

HX = span{k(x, ·) | x ∈ X} (64)

according to the norm induced by the inner product 〈k(x, ·), k(x′, ·)〉HX = k(x, x′). Spaces HX
constructed in this way are known as reproducing kernel Hilbert spaces and there is a one-to-one
relation between a kernel k and its associated RKHS. For more details on RKHS we refer the reader
to [5]. Given a kernel k, in the following we will denote with ϕ : X → HX the feature map
ϕ(x) = k(x, ·) ∈ HX for all x ∈ X . We say that a kernel is bounded if ‖ϕ(x)‖HX ≤ κ with κ > 0.
Note that k is bounded if and only if k(x, x′) = 〈ϕ(x), ϕ(x′)〉HX ≤ ‖ϕ(x)‖HX ‖ϕ(x′)‖ ≤ κ2 for
every x, x′ ∈ X . In the following we will always assume k to be continuous and bounded by κ > 0.
The continuity of k with the fact that X is Polish impliesHX to be separable [5].

We introduce here the ideal and empirical operators that we will use in the following to prove the
main results of this work.
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• S : HX → L2(X , ρX ) s.t. f ∈ HX 7→ 〈f, ϕ(·)〉HX ∈ L2(X , ρX ), with adjoint

• S∗ : L2(X , ρX )→ HX s.t. h ∈ L2(X , ρX ) 7→
∫
X h(x)ϕ(x)dρX (x) ∈ HX ,

• Z : HY → L2(X , ρX ) s.t. h ∈ HY 7→ 〈h, g∗(·)〉HY ∈ L2(X , ρX ), with adjoint

• Z∗ : L2(X , ρX )→ HY s.t. h ∈ L2(X , ρX ) 7→
∫
X h(x)g∗(x)dρX (x) ∈ HY ,

• C = S∗S : HX → HX and L = SS∗ : L2(X , ρX )→ L2(X , ρX ),

with g∗(x) =
∫
Y ψ(y)dρ(y|x) defined according to Eq. (29), (see Lemma 8).

Given a set of input-output pairs {(xi, yi)}ni=1 with (xi, yi) ∈ X × Y independently sampled
according to ρ on X × Y , we define the empirical counterparts of the operators just defined as

• Ŝ : HX → Rn s.t. f ∈ HX 7→ 1√
n

(〈ϕ(xi), f〉HX )ni=1 ∈ Rn, with adjoint

• Ŝ∗ : Rn → HX s.t. v = (vi)
n
i=1 ∈ Rn 7→ 1√

n

∑n
i=1 viϕ(xi),

• Ẑ : HY → Rn s.t. h ∈ HY 7→ 1√
n

(〈ψ(yi), h〉HY )ni=1 ∈ Rn, with adjoint

• Ẑ∗ : Rn → HY s.t. v = (vi)
n
i=1 ∈ Rn 7→ 1√

n

∑n
i=1 viψ(yi),

• Ĉ = Ŝ∗Ŝ : HX → HX and K = nŜŜ∗ ∈ Rn×n is the empirical kernel matrix.

In the rest of this section we denote with A + λ, the operator A + λI , for any symmetric linear
operator A, λ ∈ R and I the identity operator.

We recall here a basic result characterizing the operators introduced above.
Proposition 13. With the notation introduced above,

C =

∫
X
ϕ(x)⊗ ϕ(x)dρX (x) and Z∗S =

∫
X×Y

ψ(y)⊗ ϕ(x)dρ(x, y) (65)

where ⊗ denotes the tensor product. Moreover, when ϕ and ψ are bounded by respectively κ and Q,
we have the following facts

(i) Tr(L) = Tr(C) = ‖S‖2HS =
∫
X ‖ϕ(x)‖2HX

dρX (x) ≤ κ2

(ii) ‖Z‖2HS =
∫
X
‖g∗(x)‖2dρX (x) = ‖g∗‖2ρX < +∞.

Proof. By definition of C = S∗S, for each h, h′ ∈ HX we have

〈h,Ch′〉HX = 〈Sh, Sh′〉ρX =

∫
X
〈h, ϕ(x)〉HX 〈ϕ(x), h′〉HX dρX (x) (66)

=

∫
X

〈
h,
(
ϕ(x)〈ϕ(x), h′〉HX

)〉
HX

dρX (x) (67)

=

∫
X

〈
h,
(
ϕ(x)⊗ ϕ(x)

)
h′
〉
dρX (x) (68)

= 〈h,
(∫
X
ϕ(x)⊗ ϕ(x)dρX (x)

)
h′〉HX (69)

since ϕ(x) ⊗ ϕ(x) : HX → HX is the operator such that h ∈ HX 7→ ϕ(x)〈ϕ(x), h〉HX . The
characterization for Z∗S is analogous.

Now, (i). The relation Tr(L) = Tr(C) = Tr(S∗S) = ‖S‖2HS holds by definition. Moreover

Tr(C) =

∫
X

Tr(ϕ(x)⊗ ϕ(x))dρX (x) =

∫
X
‖ϕ(x)‖2HX

dρX (x) (70)

by linearity of the trace. (ii) is analogous. Note that ‖g∗‖2ρX < +∞. by Lemma 8 since ψ is bounded
by hypothesis.
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B.1 Reproducing Kernel Hilbert Spaces for Vector-valued Functions

We begin our analysis by introducing the concept of reproducing kernel Hilbert space (RKHS) for
vector-valued functions. Here we provide a brief summary of the main properties that will be useful
in the following. We refer the reader to [6, 7] for a more in-depth introduction on the topic.

Analogously to the case of scalar functions, a RKHS for vector-valued functions g : X → H, withH
a separable Hilbert space, is uniquely characterized by a so-called kernel of positive type, which is an
operator-valued Γ : X × X → B(H,H) generalizing the concept of scalar reproducing kernel.
Definition 14. Let X be a set andH be a Hilbert space, then Γ : X × X → B(H,H) is a kernel of
positive type if for each n ∈ N, x1, . . . , xn ∈ X , c1, . . . , cn ∈ H we have

n∑
i,j=1

〈Γ(xi, xj)ci, cj〉H ≥ 0 (71)

A kernel of positive type Γ defines an inner product 〈Γ(x, ·)c,Γ(x′, ·)c′〉G0 = 〈Γ(x, x′)c, c′〉H on the
space

G0 = span{Γ(x, ·)c | x ∈ X , c ∈ H}. (72)
Then, the completion G = G0 with respect to the norm induced by 〈·, ·〉G0 is known as the reproducing
Kernel Hilbert space (RKHS) for vector-valued functions associated to the kernel Γ. Indeed, we have
that a reproducing property holds also for RKHS of vector-valued functions, namely for any x ∈ X ,
c ∈ H and g ∈ G we have

〈g(x), c〉H = 〈g,Γ(x, ·)c〉G (73)
and that for each x ∈ X the function Γ(x, ·) : G → H is the evaluation functional in x on G, namely
Γ(x, ·)(g) = g(x).

B.1.1 Separable Vector Valued Kernels

In this work we restrict to the special case of RKHS for vector-valued functions with associated kernel
Γ : X × X → HY of the form Γ(x, x′) = k(x, x′)IHY for each x, x′ ∈ X , where k : X × X → R
is a scalar reproducing kernel and IHY is the identity operator on HY . Notice that this choice is
not restrictive in terms of the space of functions that can be learned by our algorithm. Indeed, it
was proven in [8] (see Example 14) that if k is a universal scalar kernel, then Γ(·, ·) = k(·, ·)IHY is
universal. Below, we report a useful characterization of RKHS G associated to a separable kernel.
Lemma 15. The RKHS G associated to the kernel Γ(x, x′) = k(x, x′)IHY is isometric toHY ⊗HX
and for each g ∈ G there exists a unique G ∈ HY ⊗HX such that

g(x) = Gϕ(x) ∈ HY for each x ∈ X (74)

Proof. We explicitly define the isometry T : G → HY ⊗HX as the linear operator such that
T (
∑n
i=1 αiΓ(xi, ·)ci) =

∑n
i=1 αi ci⊗ϕ(xi) for each n ∈ N, x1, . . . , xn ∈ X and c1, . . . , cn ∈ HY .

By construction, T (G0) ⊆ HY ⊗HX , with G0 the linear space defined at Eq. (72) and moreover
〈T (Γ(x, ·)c), T (Γ(x′, ·)c′)〉HS = 〈c⊗ ϕ(x)∗, c′ ⊗ ϕ(x′)∗〉HS = 〈c, c′〉HY 〈ϕ(x), ϕ(x′)〉HX (75)

= 〈k(x, x′)c, c′〉HY = 〈Γ(x, x′)c, c′〉HY = 〈Γ(x, ·)c,Γ(x′, ·)c′〉G (76)

implying that G0 is isometrically contained inHY ⊗HX . SinceHY ⊗HX is complete, also T (G0) ⊆
HY ⊗HX . Therefore G is isometrically contained in HY ⊗HX , since T (G) = T (G0) = T (G0).
Moreover note that

T (G0) = span{c⊗ ϕ(x) | x ∈ X , c ∈ HY} = span{c | c ∈ HY} ⊗ span{ϕ(x) | x ∈ X} (77)

= HY ⊗ span{ϕ(x) | x ∈ X} = HY ⊗ span{ϕ(x) | x ∈ X} = HY ⊗HX (78)
from which we conclude that G is isometric toHY ⊗HX via T .

To prove Eq. (74), let us consider x ∈ X and g ∈ G with G = T (g) ∈ HY ⊗HX . Then, ∀c ∈ HY
we have that
〈c, g(x)〉HY = 〈Γ(x, ·)c, g〉G = 〈T (Γ(x, ·)c), G〉HS (79)

= 〈c⊗ ϕ(x), G〉HS = Tr((ϕ(x)⊗ c)G) = Tr(c∗Gϕ(x)) = 〈c,Gϕ(x)〉HY . (80)
Since the equation above is true for each c ∈ HY we can conclude that g(x) = T (g)ϕ(x) as
desired.
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The isometry G ' HY ⊗HX allows to characterize the closed form solution for the surrogate risk
introduced in Eq. (12). We recall that in Lemma 8, we have shown thatR always attains a minimizer
on L2(X , ρX ,HY). In the following we show that if R attains a minimum on G ' HY ⊗HX , we
are able to provide a close form solution for one such element.

Lemma 16. Letψ andHY satisfying Asm. 1 and assume that the surrogate expected risk minimization
of R at Eq. (12) attains a minimum on G, with G ' HY ⊗HX . Then the minimizer g∗ ∈ G of R
with minimal norm ‖ · ‖G is of the form

g∗(x) = Gϕ(x), ∀x ∈ X with G = Z∗SC† ∈ HY ⊗HX . (81)

Proof. By hypothesis we have g∗ ∈ G. Therefore, by applying Lemma 15 we have that there exists a
unique linear operator G : HX → HY such that g∗(x) = Gϕ(x),∀x ∈ X . Now, expanding the least
squares loss onHY , we obtain

R(g) =

∫
X×Y

‖Gϕ(x)− ψ(y)‖2HY
dρ(x, y) (82)

= Tr(G(ϕ(x)⊗ ϕ(x))G∗)dρX (x, y)− 2Tr(G(ϕ(x)⊗ ψ(y))) +

∫
X×Y

‖ψ(y)‖2HY
(83)

= Tr(GCG∗)− 2Tr(GS∗Z) + const. (84)

where we have used Prop. 13 and the linearity of the trace. ThereforeR is a quadratic functional, and
is convex since C is positive semidefinite. We can conclude thatR attains a minimum on G if and
only if the range of S∗Z is contained in the range of C, namely Ran(S∗Z) ⊆ Ran(C) ⊂ HX (see
[9] Chap. 2). In this case G = Z∗SC† ∈ HY ⊗HX exists and is the minimum norm minimizer for
R, as desired.

Analogously to Lemma 16, a closed form solution exists for the regularized surrogate empirical risk
minimization problem introduced in Eq. (4). We recall that the associated functional is R̂λ : G → R
defined as

R̂λ(g) = R̂(g) + λ ‖g‖2G =
1

n

n∑
i=1

‖g(xi)− ψ(yi)‖2HY
+ λ ‖g‖2HY

(85)

for all g ∈ G and {(xi, yi)}ni=1 points in X × Y . The following result characterizes the closed form
solution for the empirical risk minimization when G ' HY ⊗HX and guarantees that such a solution
always exists.

Lemma 17. Let G ' HY ⊗HX . For any λ > 0, the solution ĝλ ∈ G of the empirical risk
minimization problem at Eq. (4) exists, is unique and is such that

ĝλ(x) = Ĝλϕ(x), ∀x ∈ X with Ĝλ = Ẑ∗Ŝ(Ĉ + λ)−1 ∈ HY ⊗HX . (86)

Proof. The proof of is analogous to that of Lemma 16 and we omit it. Note that, since (Ĉ + λ)−1 is
always bounded for λ > 0, its range corresponds to HX and therefore the range of S∗Z is always
contained in it. Then Ĝλ exists for any λ > 0 and is unique since ‖ · ‖2HY

is strictly convex.

The closed form solutions provided by Lemma 16 and Lemma 17 will be key in the analysis of the
structured prediction algorithm Alg. 1 in the following.

B.2 The Structured Prediction Algorithm

In this section we prove that Alg. 1 corresponds to the decoding of the surrogate empirical risk
minimizer ĝ (Eq. (4)) via a map d : HY → Y satisfying Eq. (13).

Recall that in Lemma 15 we proved that the vector-valued RKHS G induced by a kernel Γ(x, x′) =
k(x, x′)IHY , for a scalar kernel k on X , is isometric toHY ⊗HX . For the sake of simplicity, in the
following, with some abuse of notation, we will not make the distinction between G andHY ⊗HX
when it is clear from context.
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Lemma 3. Let 4 : Y × Y → R satisfy Asm. 1 with Y a compact set. Let ĝ : X → HY be the
minimizer of Eq. (4). Then, for all x ∈ X

d ◦ ĝ(x) = argmin
y∈Y

n∑
i=1

αi(x)4 (y, yi) α(x) = (K + nλI)−1Kx ∈ Rn (16)

Proof. From Lemma 17 we know that ĝ(x) = Ẑ∗Ŝ(Ĉ + λ)−1ϕ(x) for all x ∈ X . Recall that
Ĉ = Ŝ∗Ŝ and K = nŜŜ∗ ∈ Rn×n, is the empirical kernel matrix associated to the inputs,
namely such that Kij = k(xi, xj) for each i, j = 1, . . . , n. Therefore we have Ŝ(Ĉ + λ)−1 =√
n(K+λn)−1Ŝ : HX → Rn. Now, by denoting Kx =

√
nŜϕ(x) = (k(xi, x))ni=1 ∈ Rn, we have

Ŝ(Ĉ + λ)−1ϕ(x) = (K + λnI)−1Kx = α(x) ∈ Rn. (87)

Therefore, by applying the definition of the operator Ẑ : HY → Rn, we have

ĝ(x) = Ẑ∗Ŝ(Ĉ + λ)−1ϕ(x) = Ẑ∗α(x) =

n∑
i=1

αi(x)ψ(yi), ∀x ∈ X (88)

By plugging ĝ(x) in the functional minimized by the decoding (Eq. (13)),

〈ψ(y), V ĝ(x)〉HY = 〈ψ(y),V Ẑ∗α(x)〉HY = 〈ψ(y),

n∑
i=1

αi(x)ψ(yi)〉HY (89)

=

n∑
i=1

αi(x)〈ψ(y), V ψ(yi)〉HY =

n∑
i=1

αi(x)4 (y, yi), (90)

where we have used the bilinear form for4 in Asm. 1 for the final equation. We conclude that

d ◦ ĝ(x) ∈ argmin
y∈Y

〈ψ(y), V ĝ(x)〉HY = argmin
y∈Y

n∑
i=1

αi(x)4 (y, yi) (91)

as required.

Lemma 3 focuses on the computational aspects of Alg. 1. In the following we will analyze its
statistical properties.

B.3 Universal Consistency

In following, we provide a probabilistic bound on the excess risk E(d ◦ g)− E(f∗) for any g ∈ G '
HY ⊗HX that will be key to prove both universal consistency (Thm. 4) and generalization bounds
(Thm. 5). To do so, we will make use of the comparison inequality from Thm. 12 to control the
structured excess risk by means of the excess risk of the surrogate R(g) − R(g∗). Note that the
surrogate problem consists in a vector-valued kernel ridge regression estimation. In this setting, the
problem of finding a probabilistic bound has been studied (see [10] and references therein). Indeed,
our proof will consist of a decomposition of the surrogate excess risk that is similar to the one in [10].
However, note that we cannot direct apply [10] to our setting, since in [10] the operator-valued kernel
Γ associated to G is required to be such that Γ(x, x′) is trace class ∀x, x′ ∈ X , which does not hold
for the kernel used in this work, namely Γ(x, x′) = k(x, x′)IHY whenHY is infinite dimensional.

In order to express the bound on the excess risk more compactly, here we introduce a measure for the
approximation error of the surrogate problem. According to [10], we define the following quantity

A(λ) = λ‖Z∗(L+ λ)−1‖HS . (92)

Lemma 18. Let Y be compact,4 : Y × Y → R satisfying Asm. 1 and k a bounded positive definite
kernel on X with supx∈X k(x, x) ≤ κ2 and associated RKHSHX . Let ρ a Borel probability measure
on X × Y and {(xi, yi)}ni=1 independently sampled according to ρ. Let f∗ be a solution of the
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problem in Eq. (1), f̂ = d ◦ ĝ as in Alg. 1. Then, for any λ ≤ κ2 and δ > 0, the following holds with
probability 1− δ:

E(f̂)− E(f∗) ≤ 8κQ‖V ‖Q+ B(λ)√
λn

(
1 +

√
4κ2

λ
√
n

)
log2 8

δ
+ 2Q‖V ‖A(λ), (93)

with B(λ) = κ‖Z∗S(C + λ)−1‖HS .

Proof. According to Thm. 12

E(d ◦ ĝ)− E(f∗) ≤ 2Q‖V ‖
√
R(ĝ)−R(g∗). (94)

From Lemma 17 we know that ĝ(x) = Ĝϕ(x) for all x ∈ X , with Ĝ = Ẑ∗Ŝ(Ĉ+λ)−1 ∈ HY ⊗HX .
By Lemma 8, we know that g∗(x) =

∫
Y ψ(y)dρ(y|x) almost everywhere on the support of ρX .

Therefore, a direct application of Prop. 13 leads to

R(ĝ)−R(g∗) =

∫
‖ĝ(x)− g∗(x)‖2HY

dρX (x) = (95)

=

∫
X
‖Ĝϕ(x)‖2HY

− 2〈Ĝϕ(x), g∗(x)〉HY + ‖g∗(x)‖2HY
dρX (x) (96)

=

∫
X

Tr
(
Ĝ
(
ϕ(x)⊗ ϕ(x)

)
Ĝ∗
)
− 2Tr

(
Ĝ
(
ϕ(x)⊗ g∗(x)

))
+ Tr(g∗(x)⊗ g∗(x))dρX (x)

(97)

= Tr(ĜS∗SĜ)− 2Tr(ĜS∗Z) + Tr(Z∗Z) = ‖ĜS∗ − Z∗‖2HS (98)

To bound ‖ĜS∗ − Z∗‖HS , we proceed with a decomposition similar to the one in [10]. In particular
‖ĜS∗ − Z∗‖HS ≤ A1 +A2 +A3, with

A1 = ‖Ẑ∗Ŝ(Ĉ + λ)−1S∗ − Z∗S(Ĉ + λ)−1S∗‖HS (99)

A2 = ‖Z∗S(Ĉ + λ)−1S∗ − Z∗S(C + λ)−1S∗‖HS (100)

A3 = ‖Z∗S(C + λ)−1S∗ − Z∗‖HS . (101)

Let τ = δ/4. Now, for the term A1, we have

A1 ≤ ‖Ẑ∗Ŝ − Z∗S‖HS‖(Ĉ + λ)−1S∗‖. (102)

To control the term ‖Ẑ∗Ŝ − Z∗S‖HS , note that Ẑ∗Ŝ = 1
n

∑n
i=1 ζi with ζi the random variable

ζi = ψ(yi)⊗ ϕ(xi). By Prop. 13, for any 1 ≤ i ≤ n we have

Eζi =

∫
ψ(y)⊗ ϕ(x)dρ(x, y) = Z∗S, (103)

and

‖ζi‖HS ≤ sup
y∈Y
‖ψ(y)‖HY sup

x∈X
‖ϕ(x)‖HX ≤ Qκ, (104)

almost surely on the support of ρ on X × Y , and so E‖ζi‖2HS ≤ Q2κ2. Thus, by applying Lemma 2
of [11], we have

‖Ẑ∗Ŝ − Z∗S‖HS ≤
2Qκ log 2

τ

n
+

√
2Q2κ2 log 2

τ

n
≤

4Qκ log 2
τ

n
(105)

with probability 1− τ , since log 2/τ ≥ 1. To control ‖(Ĉ + λ)−1S∗‖ we proceed by recalling that
C = S∗S and that for any λ > 0 ‖(Ĉ + λ)−1‖ ≤ λ−1 and ‖Ĉ(Ĉ + λ)−1‖ ≤ 1. We have

‖(Ĉ + λ)−1S∗‖ = ‖(Ĉ + λ)−1C(Ĉ + λ)−1‖1/2 (106)

≤ ‖(Ĉ + λ)−1(C − Ĉ)(Ĉ + λ)−1‖1/2 + ‖(Ĉ + λ)−1Ĉ(Ĉ + λ)−1‖1/2 (107)

≤ ‖(Ĉ + λ)−1‖‖C − Ĉ‖1/2 + ‖(Ĉ + λ)−1‖1/2‖Ĉ(Ĉ + λ)−1‖1/2 (108)

≤ λ−1/2(1 + λ−1/2‖C − Ĉ‖1/2). (109)
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To control ‖C − Ĉ‖, note that Ĉ = 1
n

∑n
i=1 ζi where ζi is the random variable defined as ζi =

ϕ(xi)⊗ ϕ(xi) for 1 ≤ i ≤ n. Note that Eζi = C, ‖ζi‖ ≤ κ2 almost surely and so E‖ζi‖2 ≤ κ4 for
1 ≤ i ≤ n. Thus we can again apply Lemma 2 of [11], obtaining

‖C − Ĉ‖ ≤ ‖C − Ĉ‖HS ≤
2κ2 log 2

τ

n
+

√
2κ4 log 2

τ

n
≤

4κ2 log 2
τ√

n
, (110)

with probability 1− τ . Thus, by performing an intersection bound, we have

A1 ≤
4Qκ log 2

τ√
λn

1 +

√
4κ2 log 2

τ

λ
√
n

 . (111)

with probability 1− 2τ . The term A2 can be controlled as follows

A2 = ‖Z∗S(Ĉ + λ)−1S∗ − Z∗S(C + λ)−1S∗‖HS (112)

= ‖Z∗S((Ĉ + λ)−1 − (C + λ)−1)S∗‖HS (113)

= ‖Z∗S(C + λ)−1(C − Ĉ)(Ĉ + λ)−1S∗‖HS (114)

≤ ‖Z∗S(C + λ)−1‖HS‖C − Ĉ‖‖(Ĉ + λ)−1S∗‖ (115)

= k−1B(λ)‖C − Ĉ‖‖(Ĉ + λ)−1S∗‖ (116)

where we have used the fact that for two invertible operators A and B we have A−1 − B−1 =

A−1(B − A)B−1. Now, by controlling ‖C − Ĉ‖, ‖(Ĉ + λ)−1S∗‖ as for A1 and performing an
intersection bound, we have

A2 ≤
4B(λ)κ log 2

τ√
λn

1 +

√
4κ2 log 2

τ

λ
√
n

 (117)

with probability 1− 2τ . Finally the term A3 is equal to

A3 = ‖Z∗(S(C + λ)−1S∗ − I)‖HS = ‖Z∗(L(L+ λ)−1 − I)‖HS (118)

= ‖Z∗(L(L+ λ)−1 − (L+ λ)(L+ λ)−1)‖HS = λ‖Z∗(L+ λ)−1‖HS = A(λ) (119)

where I denotes the identity operator. Thus, by performing an intersection bound of the events for A1

and A2, we have

E(f̂)− E(f∗) ≤ 8κQ‖V ‖Q+ B(λ)√
λn

(
1 +

√
4κ2

λ
√
n

)
log2 2

τ
+ 2Q‖V ‖A(λ). (120)

with probability 1− 4τ . Since δ = 4τ we obtain the desired bound.

Now we are ready to give the universal consistency result.
Theorem 4 (Universal Consistency). Let4 : Y × Y → R satisfy Asm. 1, X and Y be compact sets
and k : X ×X → R a continuous universal reproducing kernel3. For any n ∈ N and any distribution
ρ on X × Y let f̂n : X → Y be obtained by Alg. 1 with {(xi, yi)}ni=1 training points independently
sampled from ρ and λn = n−1/4. Then,

lim
n→+∞

E(f̂n) = E(f∗) with probability 1 (17)

Proof. By applying Lemma 18, we have

E(f̂)− E(f∗) ≤ 8κQ‖V ‖Q+ B(λ)√
λn

(
1 +

√
4κ2

λ
√
n

)
log2 8

δ
+ 2Q‖V ‖A(λ), (121)

3This is a standard assumption for universal consistency (see [2]). An example of continuous universal kernel
is the Gaussian k(x, x′) = exp(−γ‖x− x′‖2), with γ > 0.
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with probability 1 − δ. Note that, since C = S∗S, ‖(C + λ)−1‖ ≤ λ−1 and ‖C(C + λ)−1‖ ≤ 1,
we have

κ−1B(λ) = ‖Z∗S(C + λ)−1‖HS ≤ ‖Z‖HS‖S(C + λ)−1‖ (122)

≤ ‖Z‖HS‖(C + λ)−1S∗S(C + λ)−1‖1/2 (123)

≤ ‖Z‖HS‖(C + λ)−1‖1/2‖C(C + λ)−1‖1/2 (124)

≤ ‖Z‖HSλ−1/2. (125)

Therefore

E(f̂)− E(f∗) ≤ 8κQ‖V ‖
Q+ κ√

λ
‖Z‖HS

√
λn

(
1 +

√
4κ2

λ
√
n

)
log2 8

δ
+ 2Q‖V ‖A(λ), (126)

Now by choosing λ = κ2n−1/4, we have

E(f̂n)− E(f∗) ≤ 24Q‖V ‖(Q+ ‖Z‖HS)n−1/4 log2 8

δ
+ 2Q‖V ‖A(λ), (127)

with probability 1− δ. Now we study A(λ), let L =
∑
i∈N σi ui ⊗ ui be the eigendecomposition

of the compact operator L, with σi ≥ σj > 0 for 1 ≤ i ≤ j ∈ N and ui ∈ L2(X , ρX ). Now,
let w2

i = 〈ui, ZZ∗ui〉L2(X ,ρX ,R) =
∫
〈g∗(x), ui〉2HY

dρX (x) for i ∈ N. We need to prove that
(ui)i∈N is a basis for L2(X , ρX ). Let W ⊆ X be the support of ρX , note that W is compact and
Polish since it is closed and subset of the compact Polish space X . Let L be the RKHS defined
by L = span{k(x, ·) | x ∈W}, with the same inner product of HX . By the fact that W is a
compact polish space and k is continuous, then L is separable. By the universality of k we have
that L is dense in C(W ), and, by Corollary 5 of [12], we have C(W ) = span{ui | i ∈ N}. Thus,
since C(W ) is dense in L2(X , ρX ), we have (ui)i∈N is a basis of L2(X , ρX ). Thus

∑
i∈N w

2
i =∫

‖g∗(x)‖2HY
dρX (x) = ‖Z‖2HS <∞. Therefore

A(λn)2 = λ2n‖Z∗(L+ λn)−1‖2HS =
∑
i∈N

λ2nw
2
i

(σi + λ)2
. (128)

Let tn = n−1/8, and Tn = {i ∈ N | σi ≥ tn} ⊂ N. For any n ∈ N we have

A(λn) =
∑
i∈Tn

λ2nw
2
i

(σi + λn)2
+

∑
i∈N\Tn

λ2nw
2
i

(σi + λn)2
(129)

≤ λ2n
t2n

∑
i∈Tn

w2
i +

∑
i∈N\Tn

w2
i ≤ κ4‖Z‖2HS n−1/4 +

∑
i∈N\Tn

w2
i (130)

since λn/tn = κ2n−1/4/n−1/8 = κ2n−1/8. We recall that L is a trace class operator, namely
Tr(L) =

∑+∞
i=1 σi < +∞. Therefore σi → 0 for i→ +∞, from which we conclude

0 ≤ lim
n→∞

A(λn) ≤ lim
n→∞

κ4‖Z‖2HSn−1/4 +
∑

i∈N\Tn

w2
i = 0. (131)

Now, for any n ∈ N, let δn = n−2 and En be the event associated to the equation

E(f̂n)− E(f∗) > 24Q‖V ‖(Q+ ‖Z‖HS)n−1/4 log2(8n2) + 2Q‖V ‖A(λ). (132)

By Lemma 18, we know that the probability of En is at most δn. Since
∑+∞
n=1 δn < +∞, we can

apply the Borel-Cantelli lemma (Theorem 8.3.4. pag 263 of [1]) on the sequence (En)n∈N and
conclude that the statement

lim
n→∞

E(f̂n)− E(f∗) > 0, (133)

holds with probability 0. Thus, the converse statement

lim
n→∞

E(f̂n)− E(f∗) = 0. (134)

holds with probability 1.
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B.4 Generalization Bounds

Finally, we show that under the further hypothesis that g∗ belongs to the RKHS G ' HY ⊗HX , we
are able to prove generalization bounds for the structured prediction algorithm.
Theorem 5 (Generalization Bound). Let4 : Y × Y → R satisfy Asm. 1, Y be a compact set and
k : X × X → R a bounded continuous reproducing kernel. Let f̂n denote the solution of Alg. 1 with
n training points and λ = n−1/2. If the surrogate risk R defined in Eq. (12) admits a minimizer
g∗ ∈ G, then

E(f̂n)− E(f∗) ≤ cτ2 n− 1
4 (18)

holds with probability 1− 8e−τ for any τ > 0, with c a constant not depending on n and τ .

Proof. By applying 18, we have

E(f̂)− E(f∗) ≤ 8κQ‖V ‖Q+ B(λ)√
λn

(
1 +

√
4κ2

λ
√
n

)
log2 8

δ
+ 2Q‖V ‖A(λ), (135)

with probability 1− δ. By assumption, g∗ ∈ G and therefore there exists a G ∈ HY ⊗HX such that

g∗(x) = Gϕ(x), ∀x ∈ X . (136)

This implies that Z∗ = GS∗ since, by definition of Z and S, for any h ∈ L2(X , ρX ),

Z∗h =

∫
X
g∗(x)h(x)dρX (x) =

∫
X
Gϕ(x)h(x)dρX (x) = GS∗h. (137)

Thus, since L = SS∗ and ‖(L+ λ)−1L‖ ≤ 1 and ‖(L+ λ)−1‖ ≤ λ−1 for any λ > 0, we have

A(λ) = λ‖Z∗(L+ λ)−1‖HS = λ‖GS∗(L+ λ)−1‖HS (138)

≤ λ‖G‖HS‖S∗(L+ λ)−1‖ = λ‖G‖HS‖(L+ λ)−1SS∗(L+ λ)−1‖1/2 (139)

≤ λ‖G‖HS‖(L+ λ)−1L‖1/2‖(L+ λ)−1‖1/2 (140)

≤ λ1/2‖G‖HS . (141)

Moreover, since C = S∗S, we have

κ−1B(λ) = ‖Z∗S(C + λ)−1‖HS = ‖GS∗S(C + λ)−1‖HS (142)

≤ ‖G‖HS‖C(C + λ)−1‖ (143)
≤ ‖G‖HS . (144)

Now, let λ = κ2n−1/4, we have

E(f̂)− E(f∗) ≤ 24Q‖V ‖(Q+ κ‖G‖HS)n−1/4 log2 8

δ
+ 2Q‖V ‖κn−1/4 (145)

≤ 24Q‖V ‖(Q+ κ‖G‖HS + κ)n−1/4 log2 8

δ
(146)

= cτ2n−1/4 (147)

with probability 1 − 8e−τ , where we have set δ = 8e−τ and c = 24Q‖V ‖(Q + κ‖G‖HS + κ) to
obtain the desired inequality.

C Examples of Loss Functions

In this section we prove Thm. 19 to show that a wide range of functions4 : Y × Y → R useful for
structured prediction learning satisfies the loss trick (Asm. 1). In the following we state Thm. 19,
then we use it to prove that all the losses considered in Example 1 satisfy Asm. 1. Finally we give
two lemmas, necessary to prove Thm. 19 and then conclude with its proof.
Theorem 19. Let Y be a set. A function 4 : Y × Y → R satisfy Asm. 1 when at least one of the
following conditions hold:
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1. Y is a finite set, with discrete topology.

2. Y = [0, 1]d with d ∈ N, and the mixed partial derivative L(y, y′) =
∂2d4(y1,...,yd,y

′
1,...,y

′
d)

∂y1,...,∂yd,∂y′1,...,∂y
′
d

exists almost everywhere, where y = (yi)
d
i=1, y

′ = (y′i)
d
i=1 ∈ Y , and satisfies∫

Y×Y
|L(y, y′)|1+εdydy′ <∞, with ε > 0. (148)

3. Y is compact and4 is a continuous kernel, or4 is a function in the RKHS induced by a
kernel K. Here K is a continuous kernel on Y × Y , of the form

K((y1, y2), (y′1, y
′
2)) = K0(y1, y

′
1)K0(y2, y

′
2), ∀yi, y′i ∈ Y, i = 1, 2,

with K0 a bounded and continuous kernel on Y .

4. Y is compact and
Y ⊆ Y0, 4 = 40|Y ,

that is the restriction of40 : Y0 × Y0 → R on Y , and40 satisfies Asm. 1 on Y0,

5. Y is compact and
4(y, y′) = f(y)40 (F (y), G(y′))g(y′),

with F,G continuous maps from Y to a set Z with40 : Z × Z → R satisfying Asm. 1 and
f, g : Y → R, bounded and continuous.

6. Y compact and
4 = f(41, . . . ,4p),

where f : [−M,M ]d → R is an analytic function (e.g. a polynomial), p ∈ N and
41, . . . ,4p satisfy Asm. 1 on Y . Here M ≥ sup1≤i≤p ‖Vi‖Ci where Vi is the operator
associated to the loss4i and Ci is the value that bounds the norm of the feature map ψi
associated to4i, with i ∈ {1, . . . , p}.

Below we expand Example 1 by proving that the considered losses satisfy Asm. 1. The proofs are
typically a direct application of Thm. 19 above.

1. Any loss with, Y finite. This is a direct application of Thm. 19, point 1.

2. Regression and classification loss functions. Here Y is an interval on R and the listed
loss functions satisfies Thm. 19, point 2. For example, let Y = [−π, π] the mixed partial
derivative of the Hinge loss4(y, y′) = max(0, 1− yy′) is defined almost everywhere as
L(y, y′) = −1 when yy′ < 1 and L(y, y′) = 0 otherwise. Note that L satisfies Eq. (148),
for any λ > 0.

3. Robust loss functions. Here, again Y is an interval on R. The listed loss functions
are: Cauchy γ log(1 + |y − y′|2/γ), German-McLure |y − y′|2/(1 + |y − y′|2) “Fair”
γ|y − y′| − γ2 log(1 + |y − y′|/γ) or the “L2 − L1”

√
1 + |y − y′|2 − 1. They are

differentiable on R, hence satisfy Thm. 19, point 2. The Absolute value |y − y′| is Lipschitz
and satisfies Thm. 19, point 2, as well.

4. KDE. When Y is a compact set and4 is a kernel, the point 3 of Thm. 19 is applicable.

5. Diffusion Distances on Manifolds. Let M ∈ N and Y ⊂ RM be a compact Reimannian
manifold. The heat kernel (at time t > 0), kt : Y×Y → R induced by the Laplace-Beltrami
operator of Y is a reproducing kernel [13]. The squared diffusion distance is defined in
terms of kt as follows4(y, y′) = 1− kt(y, y′). Then, point 3 of Thm. 19 is applicable.

6. Distances on Histograms/Probabilities. Let M ∈ N. A discrete probability distribution (or
a normalized histogram) over M entries can be represented as a y = (yi)

M
i=1 ∈ Y ⊂ [0, 1]M

the M -simplex, namely
∑M
i=1 yi = 1 and yi ≥ 0 ∀i = 1, . . . ,M . A typical measure of

distance on Y is the squared Hellinger (or Bhattacharya) 4H(y, y′) = (1/
√

2)‖√y −√
y′‖22, with

√
y = (

√
yi)

M
i=1. By Thm. 19, points 4, 6 we have that4H satisfies Asm. 1.
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Indeed, consider the kernel k on R, k(r, r′) = (
√
rr′ + 1)2 with feature map ϕ(r) =

(r,
√

2r, 1)> ∈ R3, Then

40(r, r′) = (
√
r−
√
r′)2 = r−2

√
rr′+r′ = ϕ(r)>V ϕ(r′) with V =

(
0 0 1
0 −1 0
1 0 0

)
.

4H is obtained byM summations of40 on [0, 1], by Thm. 19, point 6 (indeed4H(y, y′) =
f(40(y1, y

′
1), . . . ,40(yM , y

′
M )) with y = (yi)

M
i=1, y

′ = (y′i)
M
i=1 ∈ Y and the function

f : RM → R defined as f(t1, . . . , tM ) =
∑M
i=1 ti, which is analytic on RM ), and then

restriction on Y Thm. 19, point 4. A similar reasoning holds when the loss function is
the χ2 distance on histograms. Indeed the function (r − r′)2/(r + r′) satisfies point 2 on
Y = [0, 1], then point 6 and 4 are applied.

Hellinger Also the standard Hellinger loss4H(y, y′) =
∑M
i=1 |
√
yi−

√
y′i| satisfies Asm. 1.

This can be shown by using Thm. 19 (2) for the (weak) derivative of4(y, y).

To prove Thm. 19 we need the following two Lemmas.

Lemma 20 (multiple Fourier series). Let D = [−π, π]d, (f̂h)h∈Zd ∈ C and f : D → C with d ∈ N
defined as

f(y) =
∑
h∈Zd

f̂he
ih>y, ∀y ∈ D, with

∑
h∈Zd

|f̂h| ≤ B,

for a B <∞ and i =
√
−1. Then the function f is continuous and

sup
y∈D
|f(y)| ≤ B.

Proof. For the continuity, see [14] (pag. 129 and Example 2). For the boundedness we have

sup
y∈D
|f(y)| ≤ sup

y∈D

∑
h∈Zd

|f̂h||eih
>y| ≤

∑
h∈Zd

|f̂h| ≤ B.

Lemma 21. Let Y = [−π, π]d with d ∈ N, and4 : Y × Y → R defined by

4(y, z) =
∑

h,k∈Zd

4̂h,keh(y)ek(z), ∀y, z ∈ Y,

with eh(y) = eih
>y for any y ∈ Y , i =

√
−1 and 4̂h,k ∈ C for any h, k ∈ Zd. The loss4 satisfies

Asm. 1 when ∑
h,k∈Zd

|4̂h,k| <∞.

Proof. Note that by applying Lemma 20 with D = Y × Y , the function4 is bounded continuous.
Now we introduce the following sequences

αh =
∑
k∈Zd

|4̂h,k|, fh(z) =
1

αh

∑
h∈Zd

4̂hkek(z) ∀h ∈ Zd, z ∈ Y.

Note that (αh)h∈Zd ∈ `1 and that fh bounded by 1 and is continuous by Lemma 20 for any h ∈ Zd.
Therefore

4(y, z) =
∑

h,k∈Zd

4̂h,keh(y)eh(z) =
∑
h∈Zd

αheh(y)fh(z).

Now we define two feature maps ψ1, ψ2 : Y → H0, withH0 = `2(Zd), as

ψ1(y) = (
√
αheh(y))h∈Zd , ψ2(y) = (

√
αhfh(y))h∈Zd , ∀y ∈ Y.
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Now we prove that the two feature maps are continuous. Define k1(y, z) = 〈ψ1(y), ψ1(z)〉H0 and
k2(y, z) = 〈ψ2(y), ψ2(z)〉H0 for all y, z ∈ Y . We have

k1(y, z) =
∑
h∈Zd

αheh(y)eh(z), (149)

k2(y, z) =
∑
h∈Zd

αhfh(y)fh(z) =
∑
k,l∈Zd

βk,lek(y)el(z) (150)

with βk,l =
∑
h∈Zd

4̂h,k4̂h,l

αh
, for k, l ∈ Zd, therefore k1, k2 are bounded and continuous by

Lemma 20 with D = Y × Y , since
∑
h∈Zd αh <∞ and

∑
k,l∈Zd |βk,l| <∞. Note that ψ1 and ψ2

are bounded, since k1 and k2 are. Moreover for any y, z ∈ Y , we have

‖ψ1(y)− ψ1(z)‖2 = 〈ψ1(z), ψ1(z)〉H0
+ 〈ψ1(y), ψ1(y)〉H0

− 2〈ψ1(z), ψ1(y)〉H0
(151)

= k1(z, z) + k1(y, y)− 2k1(z, y) ≤ |k1(z, z)− k1(z, y)|+ |k1(z, y)− k1(y, y)|,
(152)

and the same holds for ψ2 with respect to k2. Thus the continuity of ψ1 is entailed by the continuity
of k1 and the same for ψ2 with respect to k2. Now we defineHY = H0 ⊕H0 and ψ : Y → HY and
V : HY → HY as

ψ(y) = (ψ1(y), ψ2(y)), ∀y ∈ Y and V =

(
0 I
0 0

)
,

where I : H0 → H0 is the identity operator. Note that ψ is bounded continuous, V is bounded and

〈ψ(y), V ψ(z)〉HY = 〈ψ1(y), ψ2(z)〉H0
=
∑
h∈Zd

αheh(y)fh(z) = 4(y, z).

We can now prove Thm. 19.

Proof. (Thm. 19)

1 Let N = {1, . . . , |Y|} and q : Y → N be a one-to-one function. Let HY = R|Y|,
ψ(y) : Y → HY defined by ψ(y) = eq(y) for any y ∈ Y with (ei)

|Y|
i=1 the canonical basis

for HY , finally V ∈ R|Y|×|Y| with Vi,j = 4(q−1(i), q−1(j)) for any i, j ∈ N . Then 4
satisfies Asm. 1, with ψ and V .

2 By Lemma 21, we know that any loss4 whose Fourier expansion is absolutely summable,
satisfies Asm. 1. The required conditions in points 2 are sufficient ( see Theorem 6’ pag. 291
of [15]).

3 Let Y be a compact space. For the first case let4 be a bounded and continuous reproducing
kernel on Y and let HY the associated RKHS, then there exist a bounded and continuous
map ψ : Y → HY such that 4(y, y′) = 〈ψ(y), ψ(y′)〉 for any y, y′ ∈ Y , which satisfies
Asm. 1 with V = I the identity onHY . For the second case, let K defined in terms of K0

as in equation. LetH0 be the RKHS induced by K0 and ψ the associated feature map, then,
by definition, the RKHS induced by K will be H = H0 ⊗ H0. Since 4 belongs to H,
then there exists a v ∈ H such that 4(y, y′) = 〈v, ψ(y) ⊗ ψ(y′)〉H0⊗H0 . Now note that
H = H0 ⊗ H0 is isomorphic to B2(H0,H0), that is the linear space of Hilbert-Schmidt
operators fromH0 toH0, thus, there exist an operator V ∈ B2(H0,H0) such that

4(y, y′) = 〈v, ψ(y)⊗ ψ(y′)〉H0⊗H0
= 〈ψ(y), V ψ(y′)〉H0

, ∀y, y′ ∈ Y.
Finally note that ψ is continuous and bounded, since it is K0, and V is bounded since it is
Hilbert-Schmidt. Thus4 satisfies Asm. 1.

4 Since40 satisfies Asm. 1 we have that there exists a kernel on Y0 such that Equation 10
holds. Note that the restriction of a kernel on a subset of its domain is again a kernel. Thus,
let ψ = ψ0|Y , we have that4|Y satisfies Equation 10 with ψ and the same bounded operator
V as4.
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5 Let40 : Z ×Z → R satisfy Asm. 1, then40(z, z′) = 〈ψ0(z), V0ψ0(z′)〉 for all z, z′ ∈ Z
with ψ0 : Y → H0 bounded and continuous and H0 a separable Hilbert space. Now
we define two feature maps ψ1(y) = f(y)ψ0(F (y)) and ψ2(y) = g(y)ψ0(G(y)). Note
that both ψ1, ψ2 : Y → H0 are bounded and continuous. We define HY = H0 ⊕ H0,

ψ : Y → HY as ψ(y) = (ψ1(y), ψ2(y′)) for any y ∈ Y , and V =

(
0 V0
0 0

)
. Note that

now

〈ψ(y), V ψ(y′)〉HY = (ψ1(y) ψ2(y))

(
0 V0
0 0

)(
ψ1(y)
ψ2(y)

)
= 〈ψ1(y), V0ψ2(y′)〉HY (153)

= f(y)〈ψ(F (y)), V0ψ(G(y′))〉HYg(y′) = f(y)40 (F (y), G(y′))g(y′).
(154)

6 Let Y be compact and4i satisfies Asm. 1 withHi the associated RKHS, with continuous
feature maps ψi : Y → Hi bounded by Ci and with a bounded operator Vi, for i ∈
{1, . . . , p}. Since an analytic function is the limit of a series of polynomials, first of all
we prove that a finite polynomial in the losses satisfies Asm. 1, then we take the limit.
First of all, note that α41 +β42, satisfies Asm. 1, for any α1, α2 ∈ R. Indeed we define
HY = H1 ⊕H2, and ψ(y) = (

√
|α|‖V1‖ψ1(y),

√
|β|‖V2‖ψ2(y)) for any y ∈ Y , so that

α141(y, y′)+α242(y, y′) = 〈ψ(y), V ψ(y′)〉HY , with V =

(
sign(α1)
‖V1‖ V1 0

0 sign(α2)
‖V2‖ V2

)
,

for any y, y′ ∈ Y , where ψ is continuous, supy∈Y ‖ψ‖HY ≤ |α1|‖V1‖C1 + |α2|‖V2‖C2

and ‖V ‖ ≤ 1. In a similar way we have that 4142 satisfies Asm. 1, indeed, we define
HY = H1 ⊗H2 and ψ to be ψ(y) = ψ1(y)⊗ ψ2(y) for any y ∈ Y , thus

41(y, y′)42 (y, y′) = 〈ψ(y), V ψ(y)〉HY , with V = V1 ⊗ V2,
for any y, y′ ∈ Y , where ψ is continuous, supy∈Y ‖ψ‖HY ≤ C1C2 and ‖V ‖ ≤ ‖V1‖‖V2‖.
Given a polynomial P (4), with4 = (41, . . . ,4p) we write it as

P (4) =
∑
t∈Np

αt4t, with 4t =

p∏
i=1

4tii , ∀t ∈ Np.

where the α’s are the coefficents of the polynomial and such that only a finite number of
them are non-zero. By applying the construction of the product on each monomial and of
the sum on the resulting monomials, we have that P (4) is a loss satisfying Asm. 1 for a
continuous ψ and a V such that

sup
y∈Y
‖ψ‖HY ≤ P̄ (‖V1‖C1, . . . , ‖V1‖C1)

and ‖V ‖ ≤ 1, where P̄ (4) =
∑
t∈Np |αt|4t and HY = ⊕t∈Np ⊗pi=1 H

ti
i . Note that HY

is again separable. Let now consider

f(4) =
∑
t∈Np

αt4t, f̄(4) =
∑
t∈Np

|αt| 4t .

Assume that f̄(‖V1‖C1, . . . , ‖Vp‖Cp) < ∞. Then by repeating the construction for the
polynomials, we produce a bounded ψ and a bounded V such that

f(41(y, y′), . . . ,4p(y, y′)) = 〈ψ(y), V ψ(y′)〉HY , ∀ y, y′ ∈ Y,

in particular HY is the same for the polynomial case and ψ = ⊕t∈Np

√
|αt|vt ⊗pi=1 ψ

⊗ti
i ,

with vt =
∏p
i=1 ‖Vi‖ti , for any t ∈ Np. Now we prove that ψ is continuous on Y . Let ψq be

the feature map defined for the polynomial P̄q(4) =
∑
t∈Np, ‖t‖≤q |αt|4t. We have that

sup
y∈Y
‖ψ(y)− ψq(y)‖2HY

= sup
y∈Y

∥∥∥⊕t∈Np,‖t‖>q
√
|αt|vt ⊗pi=1 ψ

⊗ti
i

∥∥∥2
HY

(155)

≤
∑

t∈Nd,‖t‖>q

|αt|vt sup
y∈Y
‖ ⊗pi=1 ψ

⊗ti
i ‖

2
HY
≤

∑
t∈Nd,‖t‖>q

|αt|vtct,

(156)
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with ct =
∏p
i=1 C

ti
i for any t ∈ Np. No note that∑

t∈Nd

|αt|vtct = f̄(‖V1‖C1, . . . , ‖Vp‖Cp) <∞,

thus limq→∞
∑
t∈Nd,‖t‖>q |αt|vtct = 0. Therefore

lim
q→∞

sup
y∈Y
‖ψ(y)− ψq(y)‖2HY

≤ lim
q→∞

∑
t∈Np, ‖t‖>q

|αt|vtct = 0. (157)

Now, since ψq is a sequence of continuous bounded functions, and the sequence converges
uniformly to ψ, then ψ is continuous bounded. So f(4) is a loss function satisfying Asm. 1,
with a continuous ψ and an operator V such that

sup
y∈Y
‖ψ‖HY ≤ f̄(‖V1‖C1, . . . , ‖V1‖C1),

and ‖V ‖ ≤ 1.
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