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Sapienza University of Rome
j.lacki@mimuw.edu.pl

Silvio Lattanzi
Google

silviol@google.com

Stefano Leonardi
Sapienza University of Rome
leonardi@dis.uniroma1.it

Mohammad Mahdian
Google

mahdian@google.com

Abstract

Clustering is a fundamental step in many information-retrieval and data-mining ap-
plications. Detecting clusters in graphs is also a key tool for finding the community
structure in social and behavioral networks. In many of these applications, the input
graph evolves over time in a continual and decentralized manner, and, to maintain
a good clustering, the clustering algorithm needs to repeatedly probe the graph.
Furthermore, there are often limitations on the frequency of such probes, either
imposed explicitly by the online platform (e.g., in the case of crawling proprietary
social networks like twitter) or implicitly because of resource limitations (e.g., in
the case of crawling the web).
In this paper, we study a model of clustering on evolving graphs that captures
this aspect of the problem. Our model is based on the classical stochastic block
model, which has been used to assess rigorously the quality of various static
clustering methods. In our model, the algorithm is supposed to reconstruct the
planted clustering, given the ability to query for small pieces of local information
about the graph, at a limited rate. We design and analyze clustering algorithms
that work in this model, and show asymptotically tight upper and lower bounds on
their accuracy. Finally, we perform simulations, which demonstrate that our main
asymptotic results hold true also in practice.

1 Introduction

This work studies the problem of detecting the community structure of a dynamic network according
to the framework of evolving graphs [3]. In this model the underlying graph evolves over time,
subject to a probabilistic process that modifies the vertices and the edges of the graph. The algorithm
can learn the changes that take place in the network only by probing the graph at a limited rate. The
main question for the evolving graph model is to design strategies for probing the graph, such as to
obtain information that is sufficient to maintain a solution that is competitive with a solution that can
be computed if the entire underlying graph is known.

The motivation for studying this model comes from the the inadequacy of the classical computational
paradigm, which assumes perfect knowledge of the input data and an algorithm that terminates. The
evolving graph model captures the evolving and decentralized nature of large-scale online social
networks. An important part of the model is that only a limited number of probes can be made at
each time step. This assumption is motivated by the limitations imposed by many social network
platforms such as Twitter or Facebook, where the network is constantly evolving and the access to the
structure is possible through an API that implements a rate-limited oracle. Even in cases where such
rate-limits are not exogenously imposed (e.g., when the network under consideration is the Web),
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resource constraints often prohibit us from making too many probes in each time step (probing a
large graphs stored across many machines is a costly operation). The evolving graph model has been
considered for PageRank computation [4] and connectivity problems [3]. This work is the first to
address the problem of community detection in the evolving graph model.

Our probabilistic model of the evolution of the community structure of a network is based on the
stochastic block model (SBM) [1, 2, 5, 10]. It is a widely accepted model of probabilistic networks
for the study of community-detection methods, which generates graphs with an embodied community
structure. In the basic form of the model, vertices of a graph are first partitioned into k disjoint
communities in a probabilistic manner. Then, two nodes of the same community are linked with
probability p, and two nodes of distinct communities are linked with probability q, where p > q. All
the connections are mutually independent.

We make a first step in the study of community detection in the evolving-graph model by considering
an evolving stochastic block model, which allows nodes to change their communities according to a
given stochastic process.

1.1 Our Contributions

Our first step is to define a meaningful model for community detection on evolving graphs. We do
this by extending the stochastic block model to the evolving setting. The evolving stochastic block
model generates an n-node graph, whose nodes are partitioned into k communities. At each time
step, some nodes may change their communities in a random fashion. Namely, with probability 1/n
each node is reassigned; when this happens it is moved to the ith community Ci (which we also
call a cluster Ci) with probability αi, where {αi}ki=1 form a probability distribution. After being
reassigned, the neighborhood of the node is updated accordingly.

While these changes are being performed, we are unaware of them. Yet, at each step, we have a
budget of β queries that we can perform to the graph (later we will specify values for β that allow
us to obtain meaningful results—a value of β that is too small may not allow the algorithm to catch
up with the changes; a value that is too large makes the problem trivial and unrealistic). A query of
the algorithm consists in choosing a single node. The result of the query is the list of neighbors of
the chosen node at the moment of the query. Our goal is to design an algorithm that is able to issue
queries over time in such a way that at each step it may report a partitioning {Ĉ1, . . . , Ĉk} that is
as close as possible to the real one {C1, . . . , Ck}. A difficulty of the evolving-graph model is that,
because we observe the process for an infinite amount of time, even events with negligible probability
will take place. Thus we should design algorithms that are able to provide guarantees for most of the
time and recover even after highly unlikely events take place.

Let us now present our results at a high level. For simplicity of the description, let us assume that
p = 1, q = 0 and that the query model is slightly different, namely the algorithm can discover the
entire contents of a given cluster with one query.1

We first study algorithms that at each step pick the cluster to query independently at random from
some predefined distribution. One natural idea is to pick a cluster proportionally to its size (which
is essentially the same as querying the cluster of a node chosen uniformly at random). However,
we show that a better strategy is to query a cluster proportionally to the square root of its size.
While the two strategies are equivalent if the cluster probabilities {αi}ki=1 are uniform, the latter
becomes better in the case of skewed distributions. For example, if we have n1/3 clusters, and
the associated probabilities are αi ∼ 1/i2, the first strategy incorrectly classifies O(n1/3) nodes in
each step (in expectation), compared to only O(log2 n) nodes misclassified by the second strategy.
Furthermore, our experimental analysis suggests that the the strategy of probing a cluster with a
frequency proportional to the square root of its size is not only efficient in theory, but it may be a
good choice for practical application as well.

We later improve this result and give an algorithm that uses a mixture of cluster and node queries.
In the considered example when αi ∼ 1/i2, at each step it reports clusterings with only O(1)
misclassified nodes (in expectation). Although the query strategy and the error bound expressed in

1In our analysis we show that the assumption about the query model can be dropped at the cost of increasing
the number of queries that we perform at each time step by a constant factor.
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terms of {αi}ki=1 are both quite complex, we are able show that the algorithm is optimal, by giving a
matching lower bound.

Finally, we also show how to deal with the case when 1 ≥ p > q ≥ 0. In this case querying node v
provides us with only partial information about its cluster: it is connected to only a subset of the nodes
in C. In this case we impose some assumptions on p and q, and we provide an algorithm that given
a node can discover the entire contents of its cluster with O(log n/p) node queries. This algorithm
allows us to extend the previous results to the case when p > q > 0 (and p and q are sufficiently
far from each other), at the cost of performing β = O(log n/p) queries per step. Even though the
evolving graph model requires the algorithm to issue a low number of queries, our analysis shows
that (under reasonable assumptions on p and q) this small number of queries is sufficient to maintain
a high-quality clustering.

Our theoretical results hold for large enough n. Therefore, we also perform simulations, which
demonstrate that our final theoretically optimal algorithm is able to beat the other algorithms even for
small values of n.

2 Related Work

Clustering and community-detection techniques have been studied by hundreds of researchers. In
social networks, detecting the clustering structure is a basic primitive for finding communities of
users, that is, sets of users sharing similar interests or affiliations [12, 16]. In recommendation
networks cluster discovery is often used to improve the quality of recommendation systems [13].
Other relevant applications of clustering can be found in image processing, bioinformatics, image
analysis and text classification.

Prior to the evolving model, a number of dynamic computation models have been studied, such as
online computation (the input data are revealed step by step), dynamic algorithms and data structures
(the input data are modified dynamically), and streaming computation (the input data are revealed
step by step while the algorithm is space constrained). Hartamann et al. [9] presented a survey of
results for clustering dynamic networks in some of the previously mentioned models. However, none
of the aforementioned models capture the relevant features of the dynamic evolution of large-scale
data sets: the data evolves at a slow pace and an algorithm can learn the data changes only by probing
specific portions of the graph at some cost.

The stochastic block model, used by sociologists [10], has recently received a growing attention in
computer science, machine learning, and statistics [1, 2, 5, 6, 17]. At the theoretical level, most work
has studied the range of parameters, for which the communities can be recovered from the generated
graph, both in the case of two [1, 7, 11, 14, 15] or more [2, 5] communities.

Another line of research focused on studying different dynamic versions of the stochastic block
model [8, 18, 19, 20]. Yet, there is a lack of theoretical work on modeling and analyzing stochastic
block models, and more generally community detection on evolving graph. This paper makes the
first step in this direction.

3 Model

In this paper we analyze an evolving extension of the stochastic block model [10]. We call this new
model the evolving stochastic block model. In this model we consider a graph of n nodes, which
are assigned to one of k clusters, and the probability that two nodes have an edge between them
depends on the clusters to which they are assigned. More formally, consider a probability distribution
α1, . . . , αk (i.e., αi > 0 and

∑
i αi = 1). Without loss of generality, throughout the paper we assume

α1 ≥ . . . ≥ αk. Also, for each 1 ≤ i ≤ k we also assume that αi < 1 − εα for some constant
0 < εα < 1.

At the beginning, each node independently picks one of the k clusters. The probability that the node
picks cluster i is αi. We denote this clustering of the nodes by C. Nodes that pick the same cluster
i are connected with a fixed probability pi (which may depend on n), whereas pairs of nodes that
pick two different clusters i and j are connected with probability qij (also possibly dependent on n).
Note that qij = qji and the edges are independent of each other. We denote p := min1≤i≤k pi and
q := max1≤i,j≤k qi,j .
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So far, our model is very similar to the classic stochastic block model. Now we introduce its main
distinctive property, namely the evolution dynamics.

Evolution model: In our analysis, we assume that the graph evolves in discrete time steps indexed
by natural numbers. The nodes change their cluster in a random manner. At each time step, every
node v is reassigned with probability 1/n (independently from other nodes). When this happens, v
first deletes all the edges to its neighbors, then selects a new cluster i with probability αi and finally
adds new edges with probability pi to nodes in cluster i and with probability qij to nodes in cluster j,
for every j 6= i. For 1 ≤ i ≤ k and t ∈ N, we denote by Cti the set of nodes assigned to cluster i
just after the reassignments in time step t. Note that we use Ci to denote the cluster itself, but Cti to
denote its contents.

Query model: We assume that the algorithm may gather information about the clusters by issuing
queries. In a single query the algorithm chooses a single node v and learns the list of current neighbors
of v. In each time step, the graph is probed after all reassignments are made.

We study algorithms that learn the cluster structure of the graph. The goal of our algorithm is to
report an approximate clustering Ĉ of the graph at the end of each time step, that is close to the true
clustering C. We define the distance between two clusterings (partitions) C = {C1, C2, . . . , Ck} and
Ĉ = {Ĉ1, Ĉ2, . . . , Ĉk} of the nodes as

d(C, Ĉ) = min
π

k∑
i=1

|Ci4Ĉπ(i)|,

where the minimum is taken over all the permutations π of {1, . . . , k}, and4 denotes the symmetric
difference between two sets, i.e., A4B = (A \ B) ∪ (B \ A).2 The distance d(C, Ĉ) is called the
error of the algorithm (or of the returned clustering).

Finally, in our analysis we assume that p and q are far apart, more formally we assume that:

Assumption 1. For every i ∈ [k], and parameters K, λ and λ′ that we fix later, we have: (i)
pαi > Kq, (ii) p2αin ≥ λ log n and (iii) pαin ≥ λ′ log n.

Let us now discuss the above assumptions. Observe that (iii) follows from (ii). However, we prefer
to make them separate, as we mostly rely only on (iii). Assumption (iii) is necessary to assure that
most of the nodes in the cluster have at least a single edge to another node in the same cluster. In the
analysis, we set λ′ to be large enough (yet, still constant), to assure that for every given time t each
node has Ω(log n) edges to nodes of the same cluster, with high probability.

We use Assumption 1 in an algorithm that, given a node v, finds all nodes of the cluster of v (correctly
with high probability3) and issues only O(log n/p) queries. Our algorithm also uses (ii), which is
slightly stronger than (iii) (it implies that two nodes from the same cluster have many neighbors in
common), as well as (i), which guarantees that (on average) most neighbors of a node v belong to the
cluster of v.

Discussion: The assumed graph model is relatively simple—certainly not complex enough to claim
that it accurately models real-world graphs. Nevertheless, this work is the first attempt to formally
study clustering in dynamic graphs and several simplifying assumptions are necessary to obtain
provable guarantees. Even with this basic model, the analysis is rather involved. Dealing with difficult
features of a more advanced model would overshadow our main findings.

We believe that if we want to keep the number of queries low, that is, O(log n/p), Assumption 1
cannot be relaxed considerably, that is, p and q cannot be too close to each other. At the same time,
recovery of clusters in the (nonevolving) stochastic block model has also been studied for stricter
ranges of parameters. However, the known algorithms in such settings inspect considerably more
nodes and require that the cluster probabilities {αi}ki=1 are close to being uniform [5]. The results
that apply to the case with many clusters with nonuniform sizes require that p and q are relatively far
apart. We note that in studying the classic stochastic block model it is a standard assumption to know
p and q, so we also assume it in this work for the sake of simplicity.

2Note that we can extend this definition to pairs of clusterings with different numbers of clusters just by
adding empty clusters to the clustering with a smaller number of clusters.

3We define the term with high probability in Section 4.
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Our model assumes that (in expectation) only one node changes its cluster at every time step. However,
we believe that the analysis can be extended to the case when c > 1 nodes change their cluster every
step (in expectation) at the cost of using c times more queries.

Generalizing the results of this paper to more general models is a challenging open problem. Some
interesting directions are, for example, using graphs models with overlapping communities or
analyzing a more general model of moving nodes between clusters.

4 Algorithms and Main Results

In this section we outline our main results. For simplicity, we omit some technical details, mostly
concerning probability. In particular, we say that an event happens with high probability, if it happens
with probability at least 1− 1/nc, for some constant c > 1, but in this section we do not specify how
this constant is defined.4

We are interested in studying the behavior of the algorithm in an arbitrary time step. We start by
stating a lemma showing that to obtain an algorithm that can run indefinitely long, it suffices to
designing an algorithm that uses β queries per step, initializes in O(n log n) steps and works with
high probability for n2 steps.

Lemma 1. Assume that there exists an algorithm for clustering evolving graphs that issues β queries
per step and that at each time step t such that t = Ω(n log n) and t ≤ n2 it reports a clustering of
expected error E correctly with high probability.

Then, there exists an algorithm for clustering evolving graphs that issues 2β queries per step and at
each time step t such that t = Ω(n log n) it reports a clustering of expected error O(E).

To prove this lemma, we show that it suffices to run a new instance of the assumed algorithm every
n2 steps. In this way, when the first instance is no longer guaranteed to work, the second one has
finished initializing and can be used to report clusterings.

4.1 Simulating Node Queries

We now show how to reduce the problem to the setting in which an algorithm can query for the entire
contents of a cluster. This is done in two steps. As a first step, we give an algorithm for detecting the
cluster of a given node v by using only O(log n/p) node queries.

This algorithm maintains score of each node in the graph. Initially, the scores are all equal to 0. The
algorithm queries O(log n/p) neighbors of v and adds a score of 1 to every neighbor of neighbor
of v. We use Assumption 1 to prove that after this step, with high probability there is a gap between
the minimum score of a node inside the cluster of v and the maximum score of a node outside it.

Lemma 2. Suppose that Assumption 1 holds. Then, there exists an algorithm that, given a node v,
correctly identifies all nodes in the cluster of v with high probability. It issues O(log n/p) queries.

Observe that Lemma 2 effectively reduces our problem to the case when p = 1 and q = 0: a single
execution of the algorithm gives us the entire cluster of a node, just like a single query for this node
in the case when p = 1 and q = 0.

In the second step, we give a data structure that maintains an approximate clustering of the nodes and
detects the number of cluster k together with (approximate) cluster probabilities. Internally, it uses
the algorithm of Lemma 2.

Lemma 3. Suppose that Assumption 1 holds. Then there exists a data structure that at each time
step t = Ω(n) may answer the following queries:

1. Given a cluster number i, return a node v, such that Pr(v ∈ Cti ) ≥ 1/2.

2. Given Cti (the contents of cluster Ci) return i.

3. Return k and a sequence α′1, . . . , α
′
k, such that for each 1 ≤ i ≤ k, we have αi/2 ≤ α′i ≤

3αi/2.

4Usually, the constant c can be made arbitrarily large, by tuning the constants of Assumption 1.
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The data structure runs correctly for n2 steps with high probability and issues O(log n/p) queries
per step.

Furthermore if p = 1 and q = 0, it makes only 1 query per step.

Note that because the data structure can only use node queries to access the graph, it imposes its own
numbering on the clusters that it uses consistently. Let us now describe the high-level idea behind it.

In each step the data structure selects a node uniformly at random and discovers its entire cluster using
the algorithm of Lemma 2. We show that this implies that within any n/16 time steps each cluster
is queried at least once with high probability. The main challenge lies in refreshing the knowledge
about the clusters. The data structure internally maintains a clustering D1, . . . , Dk. However, when
it queries some cluster C, it is not clear which of D1, . . . , Dk does C correspond to. To deal with
that we show that the number of changes in each cluster within n/16 time steps is so low (again, with
high probability), that there is a single cluster D ∈ {D1, . . . , Dk}, for which |D ∩ C| > |C| /2.

The data structure of Lemma 3 can be used to simulate queries for cluster in the following way.
Assume we want to discover the contents of cluster i. First, we use the data structure to get a node v,
such that Pr(v ∈ Cti ) ≥ 1/2. Then, we can use algorithm of Lemma 2 to get the entire cluster C ′ of
node v. Finally, we may use the data structure again to verify whether C ′ is indeed Cti . This is the
case with probability more at least 1/2.

Moreover, the data structure allows us to assume that the algorithms are initially only given the
number of nodes n and the values of p and q, because the data structure can provide to the algorithms
both the number of clusters k and their (approximate) probabilities.

4.2 Clustering Algorithms

Using the results of Section 4.1, we may now assume that algorithms may query the clusters directly.
This allows us to give a simple clustering algorithm. The algorithm first computes a probability
distribution ρ1, . . . , ρk on the clusters, which is a function of the cluster probability distribution
α1, . . . , αk. Although the cluster probability distribution is not a part of the input data, we may use an
approximate distribution α′1, . . . , α

′
k given by the data structure of Lemma 3—this increases the error

of the algorithm only by a constant factor. In each step the algorithm picks a cluster independently at
random from the distribution ρ1, . . . , ρk and queries it.

In order to determine the probability distribution ρ1, . . . , ρk, we express the upper bound on the error
in terms of this distribution and then find the sequence ρ1, . . . , ρk that minimizes this error.

Theorem 4. Suppose that Assumption 1 holds. Then there exists an algorithm for clustering evolving
graphs that issues O(log n/p) queries per step and that for each time step t = Ω(n) reports a

clustering of expected error O
((∑k

i=1

√
αi

)2)
. Furthermore if p = 1 and q = 0, it issues only

O(1) queries per step.

The clusterings given by this algorithm already have low error, but still we are able to give a better
result. Whenever the algorithm of Theorem 4 queries some cluster Ci, it finds the correct cluster
assignment for all nodes that have been reassigned to Ci since it has last been queried. These nodes
are immediately assigned to the right cluster. However, by querying Ci the algorithm also discovers
which nodes have been recently reassigned from Ci (they used to be in Ci when it was last queried,
but are not there now). Our improved algorithm maintains a queue of such nodes and in each step
removes two nodes from this queue and locates them. In order to locate a single node v, we first
discover its cluster C(v) (using algorithm of Lemma 2) and then use the data structure of Lemma 3
to find the cluster number of C(v). Once we do that, we can assign v to the right cluster immediately.
This results in a better bound on the error.

Theorem 5. Assume that α1 ≥ . . . ≥ αk. Suppose that Assumption 1 holds. Then there exists an
algorithm for clustering evolving graphs that issues O(log n/p) queries per step and that for each

time step t = Ω(n log n) reports a clustering of expected error O
((∑

1≤i≤k

√
αi
∑
i<j≤k αj

)2)
.

Furthermore if p = 1 and q = 0, it issues only O(1) queries per step.
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Note that the assumption that α1 ≥ . . . ≥ αk is not needed for the theorem to be true. However, this
particular ordering minimizes the value of the bound in the theorem statement.

Let us compare the upper bounds of Theorems 4 and 5. For uniform distributions, where α1 =
. . . = αk = 1/k, both analyses give an upper bound of O(k), which means that on average only
a constant number of nodes per cluster contribute to the error. Now consider a distribution, where
k = Θ(

√
n/ log n) and ai = Θ(1/i2) for 1 ≤ i ≤ k. The error of the first algorithm is O(log2 n),

whereas the second one has only O(1) expected error. Furthermore in some cases, the difference can
be even bigger. Namely, let us define the distribution as follows. Let k = b(n/ log n)2/3c+ 2 and
ε = ((log n)/n)1/3. We set a1 = a2 = (1− ε)/2 and ai = ε/(k − 2) for 3 ≤ i ≤ k. Then, the error

of the first algorithm is O
((

n
logn

)1/3)
, but for the second it is still O(1).

4.3 Lower Bound

Finally, we provide a lower bound for the problem of detecting clusters in evolving stochastic block
model. In particular, it implies that in the case when p = 1 and q = 0 the algorithm of Theorem 5 is
optimal (up to constant factor).
Theorem 6. Every algorithm that issues one query per time step for detecting clusters in the evolving
stochastic block model and runs for n/ log n steps has average expected error

Ω


 k∑
i=1

√√√√αi

k∑
j=i+1

αj

2


We note here that Theorem 6 can be extended also to algorithms that are allowed β queries by losing a
multiplicative factor 1/β. The proof is based on the observation that if the algorithm has not queried
some clusters long enough, it is unaware of the nodes that have been reassigned between them. In
particular, if a node v moves from Ci to Cj at time t and the algorithm does not query one of the
two clusters after time t it has small chances of guessing the cluster of v. Some nontrivial analysis is
needed to show that a sufficiently large number of such nodes exist, regardless of the choices of the
algorithm.

5 Experiments

In this section we compare our optimal algorithm with some benchmarks and show experimentally
its effectiveness. More precisely, we compare three different strategies to select the node to explore
in each step of our algorithm:

• the optimal algorithm of Theorem 5,
• the strategy that probes a random node,
• the strategy that selects first a random cluster and then probes a random node in the cluster.

To compare these three probing strategies we construct a synthetic instance of our model as follows.
We build a graph with 10000 nodes with communities of expected size between 50 and 250. The
number of communities with expected size ` is proportional to `−c for c = 0, 1, 2, 3. So the
distribution of communities’ size follows a power-law distribution with parameter c ∈ {0, 1, 2, 3}.
To generate random communities in our experiment we use p = 0.5 and q = 0.001.

Note that in our experiments the number of communities depends on the various parameters. For
simplicity in the remaining of the section we use k to denote the number of communities in a specific
experiment instance.

In the first step of the experiment we generate a random graph with the parameters described above.
Then the random evolution starts and in each step a single node changes its cluster. In the first 10k
evolution steps, we construct the data structure described in Lemma 3 by exploring the clusters of a
single random node per step. Finally, we run the three different strategies for 25k additional steps in
which we update the clusterings by exploring a single node in each step and by retrieving its cluster.
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(a) c=0 (b) c=1

(c) c=2 (d) c=3

Figure 1: Comparing the performance of different algorithms on graphs with different community
distributions.

At any point during the execution of the algorithm we compute the cluster of a node by exploring at
most 30 of its neighbors.

In Figure 1 we show the experimental results for different values of c ∈ {0, 1, 2, 3}. We repeat all
the experiments 5 times and we show the average value and the standard deviation. It is interesting
to note that the optimal queue algorithm outperforms significantly all the other strategies. It is also
interesting to note that the quality of the clustering worsens with time, this is probably because of the
fact that after many steps the data structure become less reliable.

Finally, notice that as c decreases and the communities’ size distribution becomes less skewed, the
performance of the 3 algorithms worsens and becomes closer to one another, as suggested by our
theoretical analysis.
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