
Learning feed-forward one-shot learners
Supplementary material

Luca Bertinetto∗
University of Oxford

luca@robots.ox.ac.uk

João F. Henriques∗
University of Oxford

joao@robots.ox.ac.uk

Jack Valmadre∗
University of Oxford

jvlmdr@robots.ox.ac.uk

Philip H. S. Torr
University of Oxford

philip.torr@eng.ox.ac.uk

Andrea Vedaldi
University of Oxford

vedaldi@robots.ox.ac.uk

A Basis filters

This appendix provides an additional interpretation for the role of the predicted filters in a factorized
convolutional layer (Section 2.3).

To make the presentation succint, we will use a notation that is slightly different from the main text.
Let x be a tensor of activations, then xi denotes channel i of x. If a is a multi-channel filter, then aij
denotes the filter for output channel i and input channel j. That is, if a is m× n× p× q then aij is
m× n for i ∈ [p], j ∈ [q]. The set {1, . . . , n} is denoted [n].

The factorised convolution is
y = Ax = M ′WMx . (1)

where M and M ′ are pixel-wise projections and W is a diagonal convolution. While a general
convolution computes

(Av)i =
∑

j aij ∗ vj (2)

where each aij is a single-channel filter, a diagonal convolution computes

(Wv)i = wi ∗ vi (3)

where each wi is a single-channel filter, and a pixel-wise projection computes

(Mv)i =
∑

j mijvj (4)

where each mij is a scalar.

Let q be the number of channels of x, let p be the number of channels of y and let r be the number of
channels of the intermediate activations. Combining the above gives

(WMx)k = wk ∗
(∑

j∈[q] mkjxj

)
=
∑

j∈[q] mkjwk ∗ xj (5)

(M ′WMx)i =
∑

k∈[r] m
′
ik

(∑
j∈[q] mkjwk ∗ xj

)
=
∑

j∈[q]

(∑
k∈[r] m

′
ikmkjwk

)
∗ xj . (6)

This is therefore equivalent to a general convolution y = Ax where each filter aij is a combination of
r single-channel basis filters wk

aij =
∑

k∈[r] m
′
ikmkjwk (7)

The predictions used in the dynamic convolution (Section 2.3) essentially modify these r basis filters.

∗The first three authors contributed equally, and are listed in alphabetical order.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



B Additional results on object tracking

Table 1: Architectures are grouped by size of the main network. In addition to the official measures of
the VOT toolkit, we report validation and training error for two measures that we use, together with
the objective, to monitor the training phase. The displacement error measures the average euclidean
distance between the peak of the output of the cross-correlation layer (the response) and the ground
truth. The classification error, instead, expresses the likelihood that a random positive pair presents a
response magnitude that is higher than the one of a random negative pair. For each group, the best
entry for each column is in bold. Best overall entries are underlined.

Architecture Validation (training) error VOT2015 scores
Variant Displacement Classification Objective Accuracy Failures

Siamese (ϕ=B) 7.40 (6.26) 0.426 (0.0766) 0.156 (0.0903) 0.465 105
Siamese (ϕ=B; unshared) 9.29 (6.95) 0.514 (0.120) 0.137 (0.0910) 0.447 131
Siamese (ϕ=B; factorised) 8.58 (7.85) 0.564 (0.160) 0.141 (0.104) 0.444 138
Siamese learnet (ϕ=B; ω=A) 7.19 (5.86) 0.356 (0.0627) 0.137 (0.0763) 0.500 87
Siamese learnet (ϕ=B; ω=B) 7.11 (5.89) 0.351 (0.0515) 0.141 (0.0762) 0.497 93

Siamese (ϕ=C) 8.13 (7.5) 0.589 (0.192) 0.157 (0.112) 0.466 120
Siamese (ϕ=C; factorised) 9.80 (8.96) 0.539 (0.277) 0.141 (0.117) 0.435 132
Siamese learnet (ϕ=C; ω=A) 7.51 (6.49) 0.389 (0.0863) 0.134 (0.0856) 0.483 105
Siamese learnet (ϕ=C; ω=C) 7.47 (6.96) 0.326 (0.118) 0.142 (0.0940) 0.491 106

LearnetVOT14
winner

VOT15
winner

Figure 1: Accuracy-Robustness ranking plot (as produced by the VOT toolkit) for all the 62 trackers
that participated to the VOT 2015 [1] challenge. Note that these rankings are produced based on a
statistical method described in [1], and being relative rankings they are not comparable across papers;
for this reason we supply the raw (absolute) metrics in the main paper. We use the variant B+A of
our proposed (siamese) learnet. Best trackers are closer to the top right corner of the plot. Despite
being only a proof-of-concept without online update of the model, our method is among the best.
We remark that the top-ranking tracker, MDNet [2], fine-tunes a network with SGD during tracking,
which is computationally expensive (1 frame per second on a GPU), while all our networks operate in
feed-forward mode during tracking and run at at least 60 FPS. Moreover, MDNet is trained on videos
from other benchmarks that are very similar to the ones of the test set, practice which has since been
prohibited by the VOT committee.

References
[1] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin, G. Fernandez, T. Vojir, G. Hager,

G. Nebehay, and R. Pflugfelder. The VOT2015 challenge results. In ICCV Workshop, 2015.

[2] H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual tracking.
arXiv, 2015.

2



Initialization Frame 100 Frame 200 Frame 400

Figure 2: Bounding box outputs of our tracker using the variant siamese learnet B+A. Even if our
method uses exclusively the first frame as exemplar and does not perform any form of online update,
it is robust to challenging tracking situations like change of appearance, motion blur and scale change.
The snapshots have always been generated from frames 1, 100, 200 and 400. All the sequences
belong to the VOT15 benchmark. From top to bottom: iceskater2, basketball, car1, girl, helicopter,
gymnastics1, road and pedestrian2.

3


	Basis filters
	Additional results on object tracking

