Learning feed-forward one-shot learners Supplementary material

Luca Bertinetto[∗] University of Oxford luca@robots.ox.ac.uk

João F. Henriques[∗] University of Oxford joao@robots.ox.ac.uk

Jack Valmadre[∗] University of Oxford jvlmdr@robots.ox.ac.uk

Philip H. S. Torr University of Oxford philip.torr@eng.ox.ac.uk

Andrea Vedaldi University of Oxford vedaldi@robots.ox.ac.uk

A Basis filters

This appendix provides an additional interpretation for the role of the predicted filters in a factorized convolutional layer (Section 2.3).

To make the presentation succint, we will use a notation that is slightly different from the main text. Let x be a tensor of activations, then x_i denotes channel i of x. If a is a multi-channel filter, then a_{ij} denotes the filter for output channel i and input channel j. That is, if a is $m \times n \times p \times q$ then a_{ij} is $m \times n$ for $i \in [p], j \in [q]$. The set $\{1, \ldots, n\}$ is denoted $[n]$.

The factorised convolution is

$$
y = Ax = M'WMx \tag{1}
$$

where M and M' are pixel-wise projections and W is a diagonal convolution. While a general convolution computes

$$
(Av)_i = \sum_j a_{ij} * v_j \tag{2}
$$

where each a_{ij} is a single-channel filter, a diagonal convolution computes

$$
(Wv)_i = w_i * v_i \tag{3}
$$

where each w_i is a single-channel filter, and a pixel-wise projection computes

$$
(Mv)_i = \sum_j m_{ij} v_j \tag{4}
$$

where each m_{ij} is a scalar.

Let q be the number of channels of x, let p be the number of channels of y and let r be the number of channels of the intermediate activations. Combining the above gives

$$
(WMx)_k = w_k * \left(\sum_{j \in [q]} m_{kj} x_j\right) = \sum_{j \in [q]} m_{kj} w_k * x_j \tag{5}
$$

$$
(M'WMx)_i = \sum_{k \in [r]} m'_{ik} \left(\sum_{j \in [q]} m_{kj} w_k * x_j \right) = \sum_{j \in [q]} \left(\sum_{k \in [r]} m'_{ik} m_{kj} w_k \right) * x_j \quad (6)
$$

This is therefore equivalent to a general convolution $y = Ax$ where each filter a_{ij} is a combination of r single-channel basis filters w_k

$$
a_{ij} = \sum_{k \in [r]} m'_{ik} m_{kj} w_k \tag{7}
$$

The predictions used in the dynamic convolution (Section 2.3) essentially modify these r basis filters.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

[∗]The first three authors contributed equally, and are listed in alphabetical order.

B Additional results on object tracking

Table 1: Architectures are grouped by size of the main network. In addition to the official measures of the VOT toolkit, we report validation and training error for two measures that we use, together with the objective, to monitor the training phase. The displacement error measures the average euclidean distance between the peak of the output of the cross-correlation layer (the response) and the ground truth. The classification error, instead, expresses the likelihood that a random positive pair presents a response magnitude that is higher than the one of a random negative pair. For each group, the best entry for each column is in bold. Best overall entries are underlined.

Architecture	Validation (training) error			VOT2015 scores	
Variant	Displacement	Classification	Objective	Accuracy	Failures
Siamese $(\varphi = B)$	7.40(6.26)	0.426(0.0766)	0.156(0.0903)	0.465	105
Siamese (φ =B; unshared)	9.29(6.95)	0.514(0.120)	0.137(0.0910)	0.447	131
Siamese (φ =B; factorised)	8.58 (7.85)	0.564(0.160)	0.141(0.104)	0.444	138
Siamese learnet (φ =B; ω =A)	7.19(5.86)	0.356(0.0627)	0.137(0.0763)	0.500	87
Siamese learnet ($\varphi = B$; $\omega = B$)	7.11(5.89)	0.351(0.0515)	0.141(0.0762)	0.497	93
Siamese $(\varphi = C)$	8.13(7.5)	0.589(0.192)	0.157(0.112)	0.466	120
Siamese (φ =C; factorised)	9.80(8.96)	0.539(0.277)	0.141(0.117)	0.435	132
Siamese learnet (φ =C; ω =A)	7.51(6.49)	0.389(0.0863)	0.134(0.0856)	0.483	105
Siamese learnet (φ =C; ω =C)	7.47(6.96)	0.326(0.118)	0.142(0.0940)	0.491	106

Figure 1: Accuracy-Robustness ranking plot (as produced by the VOT toolkit) for all the 62 trackers that participated to the VOT 2015 [\[1\]](#page-1-0) challenge. Note that these rankings are produced based on a statistical method described in [\[1\]](#page-1-0), and being relative rankings they are not comparable across papers; for this reason we supply the raw (absolute) metrics in the main paper. We use the variant B+A of our proposed (siamese) learnet. Best trackers are closer to the top right corner of the plot. Despite being only a proof-of-concept without online update of the model, our method is among the best. We remark that the top-ranking tracker, MDNet [\[2\]](#page-1-1), fine-tunes a network with SGD during tracking, which is computationally expensive (1 frame per second on a GPU), while all our networks operate in feed-forward mode during tracking and run at at least 60 FPS. Moreover, MDNet is trained on videos from other benchmarks that are very similar to the ones of the test set, practice which has since been prohibited by the VOT committee.

References

- [1] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin, G. Fernandez, T. Vojir, G. Hager, G. Nebehay, and R. Pflugfelder. The VOT2015 challenge results. In *ICCV Workshop*, 2015.
- [2] H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual tracking. *arXiv*, 2015.

Figure 2: Bounding box outputs of our tracker using the variant siamese learnet B+A. Even if our method uses exclusively the first frame as exemplar and does not perform any form of online update, it is robust to challenging tracking situations like change of appearance, motion blur and scale change. The snapshots have always been generated from frames 1, 100, 200 and 400. All the sequences belong to the VOT15 benchmark. From top to bottom: *iceskater2*, *basketball*, *car1*, *girl*, *helicopter*, *gymnastics1*, *road* and *pedestrian2*.