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1 Some Notes On Real Data Experiments9

Tables 1 and 2 has the overall (averaged over all types) empirical observation probability matrix for10

triangle query for Dogs3 dataset and Birds5 dataset respectively. The column is the true configuration11

and the rows are the observed configuration.12

Note that the diagonal is dominant in both row and column. So,13

Pr(kkk|kkk) > Pr(kkk|? 6= kkk) and Pr(kkk|kkk) > Pr(? 6= kkk|kkk).

Further note that kkk is roughly equally confused as kkl, klk, lkk. Similarly, kkl is roughly equally14

confused as klk and lkk etc.15

kkk kkl klk lkk klj
kkk 0.56 0.08 0.09 0.09 0.04
kkl 0.13 0.60 0.04 0.05 0.11
klk 0.12 0.03 0.58 0.04 0.1
lkk 0.10 0.03 0.05 0.56 0.09
klj 0.09 0.26 0.24 0.26 0.66

Table 1: Empirical observation probability matrix
for triangle query for Dogs3 dataset.

kkk kkl klk lkk klj
kkk 0.79 0.1 0.09 0.08 0.02
kkl 0.07 0.76 0.04 0.03 0.08
klk 0.05 0.02 0.71 0.01 0.08
lkk 0.04 0.01 0.02 0.73 0.08
klj 0.05 0.11 0.14 0.15 0.74

Table 2: Empirical observation probability
matrix for triangle query for Birds5 dataset.

The empirical observation probability matrix for triangle query for Norfolk Terrier in Dogs3 Dataset16

is shown in Table 3. We can make similar observation as in case of Table 1.17

We have chosen the Birds5 dataset such that there is sufficient confusion. There are two categories,18

Cardinal (red in color) and Green Jay that are vibrant in color (Figure 2). Whereas, Albatross, Least19

Tern and Arctic Tern are all white birds (Figure 1). Furthermore, the difference between Least Tern20

and Arctic Tern is subtle (they have different beak and feet color).21
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111 112 121 211 113 131 311 123
kkk 0.5710 0.0552 0.0745 0.0950 0.0734 0.0950 0.0988 0.0381
kkl 0.1081 0.6310 0.0353 0.0329 0.6409 0.0372 0.0277 0.0894
klk 0.1216 0.0241 0.6039 0.0329 0.0193 0.6446 0.0277 0.0970
lkk 0.1250 0.0241 0.0431 0.5766 0.0232 0.0372 0.5850 0.1136
klj 0.0743 0.2655 0.2431 0.2628 0.2432 0.1860 0.2608 0.6618

Table 3: Empirical observation probability matrix for triangle query for Norfolk Terrier in Dogs3 dataset.

(1)Albatross, (3),Arc/c,Tern,(2),Least,Tern,
Figure 1: Sample Images of (1)Albatross, (2) Least Tern and (3) Arctic Tern.

Note that Table 2 is averaged over all the 5 categories plus outliers of birds in the dataset. A subset22

of columns of empirical observation probability matrix for triangle query for Least Tern in Birds523

Dataset is shown in Table 4. Least Tern is indexed by 2, Arctic Tern by 3 and Albatross by 1. Since24

Least Tern and Arctic Tern are very close to each other compared to Albatross(Figure 1), there is25

more confusions between them. So, kkl with Least Tern and Arctic Tern is more likely to get mapped26

as kkk.

222 221 212 122 223 232 322
kkk 0.770 0.219 0 0.132 0.485 0.4 0.548
kkl 0.077 0.531 0.093 0 0.242 0.171 0.032
klk 0.077 0.094 0.688 0.053 0.121 0.229 0.129
lkk 0.038 0 0 0.71 0.061 0.057 0.161
klj 0.038 0.156 0.219 0.105 0.091 0.143 0.130

Table 4: Empirical observation probability matrix for triangle query for Least Tern in Birds5 dataset.

27

Outlier Detection: If the output of the convex program has all zero row (or column), then that node28

is an outlier. Recall that we have 50 outliers in Birds5 dataset. Convex Program was able to find 1129

outliers out of these and another from Albatross using data from edge queries. The one picked from30

Albatross indeed looks weird 3, so it is not unreasonable to expect it as an outlier. From triangle31

queries, it was able to find 21 out of 50 outliers.32

2 Edge Density and Edge Errors33

If we make E edge queries, then the probability of observing an edge is, r = E/
(
n
2

)
. If we make T34

triangle queries, the probability of observing an edge is rt = 3T/
(
n
2

)
. Let rpE (rtpT ) and rqE (rtqT )35

be the edge probability in side the clusters and between the clusters respectively, in A which is36

partially filled via edge (triangle) queries.37

For simplicity consider a graph with K clusters of size m each (n = Km). The probability that a38

randomly chosen edge in A filled via edge query is in error can be computed as:39

pedgeerr := (1− rpE) (m− 1)/(n− 1) + rqE (n−m)/(n− 1)

Similarly, we can write40

p∆
err := (1− rtpT ) (m− 1)/(n− 1) + rT qT (n−m)/(n− 1)

2.1 One-coin Model41

For edge query: rpE = r (1− ζ) and rqE = r ζ.42
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(4)$Cardinal$ (5)$Green$Jay$

Figure 2: Sample Images of (4)Cardinal and (5) Green Jay.

Figure 3: Outlier found in Albatross

For triangle query:

rtpT = rt

(
m− 2

n− 2
(1− ζ +

ζ

4
) +

n−m
n− 2

(
ζ

4
+ 1− ζ)

)
= rt (1− 3ζ

4
)

rtqT = rt

(
2
m− 1

n− 2

2ζ

4
+
n− 2m

n− 2

2ζ

4

)
= rt

ζ

2

When r = rt, qT = ζ/2 < qE and pT = 1− 3ζ/4 > pE , and hence p∆
err < pedgeerr . If r < rt < 2r,43

we still get rtpT > rpE , rtqT < rqE and p∆
err < pedgeerr .44

2.2 Triangle Block Model45

Since TBM is derived from SBM, rpE = r p and rqE = r q.46

Assume p > 1/2 > q.47

rtpT = rt

(
m− 2

n− 2
(p3 + 3p2(1− p) + p(1− p)2) +

n−m
n− 2

(pq2 + p(1− q)2 + (1− p)q2 + 2pq(1− q))
)

= rt p+ rt(1− p)
(
m− 2

n− 2
p2 +

n−m
n− 2

q2

)
> rt p

3
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Figure 4: Edge error probability for Conditional Block Model, n = 900 with K = 3 clusters of size m = 300 each.
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Figure 5: Edge error probability for Conditional Block Model, n = 1200 with K = 12 clusters of size m = 100
each.

rtqT =

(
2
m− 1

n− 2
(pq2 + (1− p)q(1− q)) +

n− 2m

n− 2
(q3 + q(1− q)2)

)
= rt q

(
1− q − (1− 2q)

(
2
m− 1

n− 2
p+

n− 2m

n− 2
q

))
< rt q (1− q) since p > 1/2 > q.

When rt = r, pT = pE + positive term > p and qT = qE − positive term < q, and hence48

p∆
err < pedgeerr .49

If r < rt < r/(1− q), we get rtpT > rpE and rtqT < rqE .50

2.3 Conditional Block Model51

Since CBM is derived from SBM, rpE = r p and rqE = r q.52
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Figure 6: Edge error probability for Conditional Block Model, n = 900 with K = 3 clusters of size m = 300 each.
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Figure 7: Edge error probability for Conditional Block Model, n = 1200 with K = 12 clusters of size m = 100
each.
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rtpT = Pr(obs) (Pr(kkk)Pr(kkk, kkl|kkk) + Pr(kkl)Pr(kkk, kkl|kkl))

= rt

(
m− 2

n− 2

p3 + p(1− p)2

3p3 − 3p2 + 1
+
n−m
n− 2

pq2 + p(1− q)2

3pq2 − 2pq − q2 + 1

)
= rt p

(
m− 2

n− 2

1 + 2p2 − 2p

3p3 − 3p2 + 1
+
n−m
n− 2

1 + 2q2 − 2q

3pq2 − 2pq − q2 + 1

)
≈ rtp

(
1

K

1 + 2p2 − 2p

3p3 − 3p2 + 1
+ (K − 1)

1 + 2q2 − 2q

3pq2 − 2pq − q2 + 1

)
for large n.

rtqT = Pr(obs) (Pr(klk)Pr(kkk, kkl|klk) + Pr(kkl)Pr(kkk, kkl|lkk) + Pr(klj)Pr(kkk, kkl|klj))

= rt

(
2
m− 1

n− 2

pq2 + (1− p)q(1− q)
3pq2 − 2pq − q2 + 1

+
n− 2m

n− 2

q3 + q(1− q)2

3q3 − 3q2 + 1

)
= rtq

(
2
m− 1

n− 2

pq + (1− p)(1− q)
3pq2 − 2pq − q2 + 1

+
n− 2m

n− 2

q2 + (1− q)2

3q3 − 3q2 + 1

)
= rtq

(
2
m− 1

n− 2

2pq + 1− p− q
3pq2 − 2pq − q2 + 1

+
n− 2m

n− 2

2q2 + 1− 2q

3q3 − 3q2 + 1

)
≈ rt q

(
2

K

2pq + 1− p− q
3pq2 − 2pq − q2 + 1

+ (K − 2)
2q2 + 1− 2q

3q3 − 3q2 + 1

)
for large n.

Consider two examples:53

1. Large Clusters: A graph on n = 900 nodes with K = 3 clusters of equal size m = 30054

(m = n/3).55

2. Small Clusters: A graph on n = 1200 nodes with K = 12 clusters of equal size m = 100. Note56

that
√

1200 ≈ 35. So, m ≈ 3
√
n.57

Figures 4 and 5 show the probability of edge errors for the conditional block model p∆
err compared to58

the SBM for edge query, pedgeerr for q = 0.15, 0.25 and 0.35 for the two cases considered. The first row59

is when rt = r and the second row is when rt is scaled according to entropy, that is, rt = 3rHE/H∆.60

Note that p∆
err < pedgeerr .61

When we push q closer to 1/2, we can expect the edge errors in conditional query query model to62

start getting worse. This is because a lot of triangle queries of the form kkl, klk, lkk, klj are easily63

confused to kkk. So the more queries of these kinds (which are plently, especially when clusters64

are small) we make, the more edges with errors are obtained. Figures 6 and 7 show the probability65

of edge errors for the conditional block model p∆
err compared to the SBM for edge query, pedgeerr for66

q = 0.45, 0.47 and 0.49 for the two cases considered. Note that still p∆
err < pedgeerr in all except when67

q = 0.49 with small clusters and more edges are revealed.68

3 Proof Details69

Recall that we use the following Convex Program from [1]:70

minimize
L,S

‖L‖? + λ‖S‖1 (3.1)

s. t. 1 ≥ Li,j ≥ Si,j ≥ 0 for all i, j ∈ {1, 2, . . . n}, Li,j = Si,j whenever Ai,j = 0,

n∑
i,j=1

Lij ≥ |R|

where ‖.‖? is the nuclear norm (sum of the singular values of the matrix), and ‖.‖1 is the l1-norm71

(sum of absolute values of the entries of the matrix) and λ ≥ 0 is the regularization parameter. L72

is the low-rank matrix corresponding to the true adjacency matrix, S is the sparse error matrix that73

accounts only for the missing edges inside the clusters.74
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Figure 8: Illustration of {Ri,j} dividing [n]× [n] into disjoint regions similar to a grid

The true G∗ is a union of cliques. So, the true adjacency matrix is of the form:75

L0
i,j =

{
1 if both {i, j} ∈ Cl for some l ≤ K,
0 otherwise.

(3.2)

where Cl denotes the set of nodes that belong to cluster l.76

Note that, L0 = UΛUT , where Λ = diag{n1, n2, . . . , nK}, with ni = |Ci| being the size of cluster77

i and U = [u1 . . . uK ] ∈ Rn×K ,78

ul,i =

{
1√
nl

if i ∈ Cl
0 else

(3.3)

Let:79

S0
i,j =

{
1 if both {i, j} ∈ Cl for some l ≤ K, and Ai,j = 0,

0 otherwise.

Our claim is that (L0,S0) is the unique optimal solution to the Program 3.1. Our proof closely80

follows the analysis in [1].81

LetRi,j = Ci × Cj for 1 ≤ i, j ≤ K + 1. One can see that {Ri,j} divides [n]× [n] into (K + 1)282

disjoint regions similar to a grid which is illustrated in the Figure 8. Thus,Ri,i is the region induced83

by i’th cluster for any 1 ≤ i ≤ K. Let A1 denote the entries of A that are observed to be 1 and A084

are entries of A that are observed to be 0.85

It is easy to see that the (L0,S0) pair is feasible. To show that it is unique optimal solution, we need86

the following to hold:87

‖L0 + EL‖? + λ ‖S0 + ES‖1 − (‖L0‖? + λ ‖S0‖1) ≥ 〈∂‖L0‖?,EL〉+ λ〈∂‖S0‖1,ES〉 > 0,

for any feasible perturbation (EL,ES). Note that ∂‖L0‖? and ∂‖S0‖1 are subgradients of nuclear88

norm and `1-norm respectively at the points
(
L0,S0

)
.89

∂‖L0‖? is of the form UUT + W such that W ∈MU := {X : XU = UTX = 0, ‖X‖ ≤ 1}. and90

∂‖S0‖1 is of the form sign(S0) + Q where Qi,j = 0 if S0
i,j 6= 0 and ‖Q‖∞ ≤ 1.91

‖L0 + EL‖? + λ ‖S0 + ES‖1 − (‖L0‖? + λ ‖S0‖1) ≥ 〈∂‖L0‖?,EL〉+ λ〈∂‖S0‖1,ES〉
= 〈UUT + W,EL〉+ λ〈sign(S0) + Q,ES〉

Note that, Li,j = Si,j whenever Ai,j = 0. So, L0
A0

= S0
A0

. Further, S can be split as S = §1 + §2,92

where §1 corresponds to entries that are observed in A and Srest denotes the entries of S other than93

those corresponding to the observed entries of A. We note that at the optimal, §2 = 0, since if94

otherwise, the objective can be strictly decreased by setting Srest = 0. So, without loss of generality,95

96

S0 = L0
A0
. (3.4)
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Using sign(S0) = 1
n×n
A0∩R, and choosing Q = 1

n×n
A0−(A0∩R), we get,97

‖L0 + EL‖? + λ ‖S0 + ES‖1 − (‖L0‖? + λ ‖S0‖1) ≥
〈
W,EL

〉
+

K∑
i=1

1

ni
sum(EL

Ri,i
) + λ

(
sum(EL

A0
)
)

︸ ︷︷ ︸
:=g(EL)

(3.5)

for any W ∈M. Note that sum(M) denotes sum of all the entries of matrix M.98

Define,99

g(E) :=

K∑
i=1

1

ni
sum(ERi,i

) + λsum(EA0
)). (3.6)

Also, define f (E,W) := g (E) + 〈W,E〉. Our aim is to show that for all feasible perturbations E,100

there exists W such that,101

f (E,W) = g(E) + 〈W,E〉 > 0. (3.7)
Note that g(E) does not depend on W.102

We can use the following lemma from [1]:103

Lemma 3.1. Given E, assume there exists W ∈MU with ‖W‖ < 1 such that f(E,W) ≥ 0. Then104

at least one of the followings holds:105

• There exists W∗ ∈MU with ‖W∗‖ ≤ 1 and f(E,W∗) > 0.106

• For all W ∈MU, 〈E,W〉 = 0.107

Proof. Let c = 1 − ‖W‖. Assume 〈E,W′〉 6= 0 for some W′ ∈ MU. If 〈E,W′〉 > 0, choose108

W∗ = W + cW′. Otherwise, choose W∗ = W − cW′. Since ‖W′‖ ≤ 1, we have, ‖W∗‖ ≤ 1109

and W∗ ∈MU. Consequently,110

f(E,W∗) = f(E,W) + 〈E, cW′〉 > f(E,W) ≥ 0 (3.8)

111

The following two steps are required to conclude that (L0,S0) is the unique optimal with high112

probability:113

1. Construct W ∈MU with ‖W‖ < 1, such that f(E,W) ≥ 0 for all feasible perturbations E.114

2. For all non-zero feasible E ∈M⊥U, show that g(E) > 0.115

The analysis in [1] relies on the independence of entries of A to use Bernstein-type concentration116

inequalities for the sum of independent random variables and the bound on spectral norm of random117

matrices with independent entries. We make the following observation: Split A filled via random118

triangle queries into three parts, A = A1 + A2 + A3. For each triangle query, allocate one edge119

to each part randomly. If an edge gets queried as a part of multiple triangle queries, keep one of120

them randomly. Each Ai now contains independent entries. The edge density in Ai is rtpT /3 and121

rtqT /3 inside the clusters and outside respectively. This allows us to use the results on concentration122

of sum of independent random variables. So step 2 follows the same arguments from [1]. For the123

construction of dual certificate, we need to show that the candidate in the analysis of [1] still works,124

and provide suitable bound on its spectral norm accounting for the fact that we have dependent125

entries.126

3.1 Dual Certificate Candidate127

The dual certificate candidate is of the form:128

W0 =

K∑
i=1

ci1
n×n
Ri,i

+ c1n×n − λ1n×n
Ac

1
, (3.9)
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where {ci}Ki=1, c are real numbers to be determined andA1 refers to the locations of A that are 1. Set129

Sc is complement of the set S . The notation 1n×n
S a matrix that has 1’s in the entries corresponding130

the locations in set S and zero everywhere else. So, 1n×n
Ac

1
has entries equal to 1 whenerver A has a131

zero in it. Ri,i denotes the positions in A that correspond to the nodes in cluster i, that is inside of132

the cluster i. 1n×n denotes a matrix with all its entries equal to 1.133

We split W0 into three parts:134

W0 = W
(1)
0 + W

(2)
0 + W

(3)
0 ,

with135

W
(i)
0 =

K∑
i=1

ci
3
1
n×n
Ri,i

+
c

3
1
n×n − λ

3
1
n×n
(Ai)c1

,

where (Ai)1 referes to the locations of Ai that are 1.136

Expected value of an entry of W0 inside cluster regionRi,i is137

ci
3

+
c

3
− λ(1− rt

pT
3

),

and between the clusters is138
c

3
− λ

(
1− rt

qT
3

)
.

To get zero mean entries, we set:139

c = 3λ
(

1− rt
qT
3

)
, and, ci = −λrt(pT − qT ).

Thus the entries of W(i)
0 inside the cluster regionRi,i is λ

(
1− rT pT

3

)
w.p rt pT

3 and −λrt pT

3 w.p140

1− rt pT

3 . Between the clusters, it is λ(1− rt qT3 ) w.p qT
3 and −λrt qT3 w.p 1− rt qT3 . And the entries141

are all independent. Hence we can use the results on spectral norm of random matrices with mean142

zero entries that are independent. Note that the randomness in W
(i)
0 is from due to the randomness in143

Ai. Using the same arguments as in [1], we can conclude,144

|| 1
λ
W

(i)
0 || ≤ 2

√
n

√
rt
qT
3

(1− rt
qT
3

) + 2
√
nmax

√
rt
qT
3

(1− rt
qT
3

) + rt
pT
3

(1− rt
pT
3

)

Since, W0 = W
(1)
0 + W

(2)
0 + W

(3)
0 , by triangle inequaly,145

||W0|| ≤ λ3

(
2
√
n

√
rt
qT
3

(1− rt
qT
3

) + 2
√
nmax

√
rt
qT
3

(1− rt
qT
3

) + rt
pT
3

(1− rt
pT
3

)

)
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