
Tree-Structured Reinforcement Learning for
Sequential Object Localization

Zequn Jie1, Xiaodan Liang2, Jiashi Feng1, Xiaojie Jin1, Wen Feng Lu1, Shuicheng Yan1

1 National University of Singapore, Singapore
2 Carnegie Mellon University, USA

Abstract

Existing object proposal algorithms usually search for possible object regions over
multiple locations and scales separately, which ignore the interdependency among
different objects and deviate from the human perception procedure. To incorporate
global interdependency between objects into object localization, we propose an ef-
fective Tree-structured Reinforcement Learning (Tree-RL) approach to sequentially
search for objects by fully exploiting both the current observation and historical
search paths. The Tree-RL approach learns multiple searching policies through
maximizing the long-term reward that reflects localization accuracies over all the
objects. Starting with taking the entire image as a proposal, the Tree-RL approach
allows the agent to sequentially discover multiple objects via a tree-structured
traversing scheme. Allowing multiple near-optimal policies, Tree-RL offers more
diversity in search paths and is able to find multiple objects with a single feed-
forward pass. Therefore, Tree-RL can better cover different objects with various
scales which is quite appealing in the context of object proposal. Experiments on
PASCAL VOC 2007 and 2012 validate the effectiveness of the Tree-RL, which can
achieve comparable recalls with current object proposal algorithms via much fewer
candidate windows.

1 Introduction

Modern state-of-the-art object detection systems [1, 2] usually adopt a two-step pipeline: extract
a set of class-independent object proposals at first and then classify these object proposals with a
pre-trained classifier. Existing object proposal algorithms usually search for possible object regions
over dense locations and scales separately [3, 4, 5]. However, the critical correlation cues among
different proposals (e.g., relative spatial layouts or semantic correlations) are often ignored. This
in fact deviates from the human perception process — as claimed in [6], humans do not search
for objects within each local image patch separately, but start with perceiving the whole scene and
successively explore a small number of regions of interest via sequential attention patterns. Inspired
by this observation, extracting one object proposal should incorporate the global dependencies of
proposals by considering the cues from the previous predicted proposals and future possible proposals
jointly.

In this paper, in order to fully exploit global interdependency among objects, we propose a novel
Tree-structured Reinforcement Learning (Tree-RL) approach that learns to localize multiple objects
sequentially based on both the current observation and historical search paths. Starting from the
entire image, the Tree-RL approach sequentially acts on the current search window either to refine
the object location prediction or discover new objects by following a learned policy. In particular,
the localization agent is trained by deep RL to learn the policy that maximizes a long-term reward
for localizing all the objects, providing better global reasoning. For better training the agent, we

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

scaling local translation

scaling scalinglocal translation local translation

Figure 1: Illustration of Tree-RL. Starting from the whole image, the agent recursively selects the
best actions from both action groups to obtain two next windows for each window. Red and orange
solid windows are obtained by taking scaling and local translation actions, respectively. For each
state, green dashed windows are the initial windows before taking actions, which are result windows
from the last level.

propose a novel reward stimulation that well balances the exploration of uncovered new objects and
refinement of the current one for quantifying the localization accuracy improvements.

The Tree-RL adopts a tree-structured search scheme that enables the agent to more accurately find
objects with large variation in scales. The tree search scheme consists of two branches of pre-defined
actions for each state, one for locally translating the current window and the other one for scaling the
window to a smaller one. Starting from the whole image, the agent recursively selects the best action
from each of the two branches according to the current observation (see Fig. 1). The proposed tree
search scheme enables the agent to learn multiple near-optimal policies in searching multiple objects.
By providing a set of diverse near-optimal policies, Tree-RL can better cover objects in a wide range
of scales and locations.

Extensive experiments on PASCAL VOC 2007 and 2012 [7] demonstrate that the proposed model
can achieve a similar recall rate as the state-of-the-art object proposal algorithm RPN [5] yet using a
significantly smaller number of candidate windows. Moreover, the proposed approach also provides
more accurate localizations than RPN. Combined with the Fast R-CNN detector [2], the proposed
approach also achieves higher detection mAP than RPN.

2 Related Work

Our work is related to the works which utilize different object localization strategies instead of sliding
window search in object detection. Existing works trying to reduce the number of windows to be
evaluated in the post-classification can be roughly categorized into two types, i.e., object proposal
algorithms and active object search with visual attention.

Early object proposal algorithms typically rely on low-level image cues, e.g., edge, gradient and
saliency [3, 4, 8]. For example, Selective Search [9] hierarchically merges the most similar segments
to form proposals based on several low-level cues including color and texture; Edge Boxes [4] scores
a set of densely distributed windows based on edge strengths fully inside the window and outputs the
high scored ones as proposals. Recently, RPN [5] utilizes a Fully Convolutional Network (FCN) [10]
to densely generate the proposals in each local patch based on several pre-defined “anchors” in
the patch, and achieves state-of-the-art performance in object recall rate. Nevertheless, object
proposal algorithms assume that the proposals are independent and usually perform window-based
classification on a set of reduced windows individually, which may still be wasteful for images
containing only a few objects.

Another type of works attempts [11, 12, 13, 14] to reduce the number of windows with an active
object detection strategy. Lampert et al. [15] proposed a branch-and-bound approach to find the
highest scored windows while only evaluating a few locations. Alexe et al. [11] proposed a context
driven active object searching method, which involves a nearest-neighbor search over all the training

2

scaling actions

local translation actions

Figure 2: Illustration of the five scaling actions and eight local translation actions. Each yellow
window with dashed lines represents the next window after taking the corresponding action.

images. Gonzeles-Garcia et al. [12] proposed an active search scheme to sequentially evaluate
selective search object proposals based on spatial context information.

Visual attention models are also related to our work. These models are often leveraged to facilitate
the decision by gathering information from previous steps in the sequential decision making vision
tasks. Xu et al. [16] proposed an attention model embedded in recurrent neural networks (RNN)
to generate captions for images by focusing on different regions in the sequential word prediction
process. Minh et al. [17] and Ba et al. [18] also relied on RNN to gradually refine the focus regions
to better recognize characters.

Perhaps [19] and [20] are the closest works to ours. [19] learned an optimal policy to localize a single
object through deep Q-learning. To handle multiple objects cases, it runs the whole process starting
from the whole image multiple times and uses an inhibition-of-return mechanism to manually mark
the objects already found. [20] proposed a top-down search strategy to recursively divide a window
into sub-windows. Then similar to RPN, all the visited windows serve as “anchors” to regress the
locations of object bounding boxes. Compared to them, our model can localize multiple objects in a
single run starting from the whole image. The agent learns to balance the exploration of uncovered
new objects and the refinement of covered ones with deep Q-learning. Moreover, our top-down tree
search does not produce “anchors” to regress the object locations, but provides multiple near-optimal
search paths and thus requires less computation.

3 Tree-Structured Reinforcement Learning for Object Localization

3.1 Multi-Object Localization as a Markov Decision Process

The Tree-RL is based on a Markov decision process (MDP) which is well suitable for modeling the
discrete time sequential decision making process. The localization agent sequentially transforms
image windows within the whole image by performing one of pre-defined actions. The agent aims
to maximize the total discounted reward which reflects the localization accuracy of all the objects
during the whole running episode. The design of the reward function enables the agent to consider
the trade-off between further refinement of the covered objects and searching for uncovered new
objects. The actions, state and reward of our proposed MDP model are detailed as follows.

Actions: The available actions of the agent consist of two groups, one for scaling the current
window to a sub-window, and the other one for translating the current window locally. Specifically,
the scaling group contains five actions, each corresponding to a certain sub-window with the size
0.55 times as the current window (see Fig. 2). The local translation group is composed of eight
actions, with each one changing the current window in one of the following ways: horizontal
moving to left/right, vertical moving to up/down, becoming shorter/longer horizontally and becoming
shorter/longer vertically, as shown in Fig. 2, which are similar to [19]. Each local translation action
moves the window by 0.25 times of the current window size. The next state is then deterministically
obtained after taking the last action. The scaling actions are designed to facilitate the search of objects
in various scales, which cooperate well with the later discussed tree search scheme in localizing
objects in a wide range of scales. The translation actions aim to perform successive changes of
visual focus, playing an important role in both refining the current attended object and searching for
uncovered new objects.

3

States: At each step, the state of MDP is the concatenation of three components: the feature vector
of the current window, the feature vector of the whole image and the history of taken actions. The
features of both the current window and the whole image are extracted using a VGG-16 [21] layer
CNN model pre-trained on ImageNet. We use the feature vector of layer “fc6” in our problem. To
accelerate the feature extraction, all the feature vectors are computed on top of pre-computed feature
maps of the layer “conv5_3” after using ROI Pooling operation to obtain a fixed-length feature
representation of the specific windows, which shares the spirit of Fast R-CNN. It is worth mentioning
that the global feature here not only provides context cues to facilitate the refinement of the currently
attended object, but also allows the agent to be aware of the existence of other uncovered new objects
and thus make a trade-off between further refining the attended object and exploring the uncovered
ones. The history of the taken actions is a binary vector that tells which actions have been taken in
the past. Therefore, it implies the search paths that have already been gone through and the objects
already attended by the agent. Each action is represented by a 13-d binary vector where all values are
zeros except for the one corresponding to the taken action. 50 past actions are encoded in the state to
save a full memory of the paths from the start.

Rewards: The reward function r(s, a) reflects the localization accuracy improvements of all the
objects by taking the action a under the state s. We adopt the simple yet indicative localization quality
measurement, Intersection-over-Union (IoU) between the current window and the ground-truth object
bounding boxes. Given the current window w and a ground-truth object bounding box g, IoU between
w and g is defined as IoU(w, g) , area(w ∩ g)/area(w ∪ g). Assuming that the agent moves from
state s to state s′ after taking the action a, each state s has an associated window w, and there are n
ground-truth objects g1 ... gn, then the reward r(s, a) is defined as follows:

r(s, a) = max
1≤i≤n

sign(IoU(w′, gi)− IoU(w, gi)). (1)

This reward function returns +1 or −1. Basically, if any ground-truth object bounding box has a
higher IoU with the next window than the current one, the reward of the action moving from the
current window to the next one is +1, and −1 otherwise. Such binary rewards reflect more clearly
which actions can drive the window towards the ground-truths and thus facilitate the agent’s learning.
This reward function encourages the agent to localize any objects freely, without any limitation
or guidance on which object should be localized at that step. Such a free localization strategy is
especially important in a multi-object localization system for covering multiple objects by running
only a single episode starting from the whole image.

Another key reward stimulation +5 is given to those actions which cover any ground-truth objects
with an IoU greater than 0.5 for the first time. For ease of explanation, we define fi,t as the hit
flag of the ground-truth object gi at the tth step which indicates whether the maximal IoU between
gi and all the previously attended windows {wj}tj=1 is greater than 0.5, and assign +1 to fi,t if
max1≤j≤t IoU(wj , gi) is greater than 0.5 and −1 otherwise. Then supposing the action a is taken at
the tth step under state s, the reward function integrating the first-time hit reward can be written as
follows:

r(s, a) =

 +5, if max
1≤i≤n

(fi,t+1 − fi,t) > 0

max
1≤i≤n

sign(IoU(w′, gi)− IoU(w, gi)), otherwise.
(2)

The high reward given to the actions which hit the objects with an IoU > 0.5 for the first time avoids
the agent being trapped in the endless refinement of a single object and promotes the search for
uncovered new objects.

3.2 Tree-Structured Search

The Tree-RL relies on a tree structured search strategy to better handle objects in a wide range of
scales. For each window, the actions with the highest predicted value in both the scaling action
group and the local translation action group are selected respectively. The two best actions are both
taken to obtain two next windows: one is a sub-window of the current one and the other is a nearby
window to the current one after local translation. Such bifurcation is performed recursively by each
window starting from the whole image in a top-down fashion, as illustrated in Fig. 3. With tree
search, the agent is enforced to take both scaling action and local translation action simultaneously at

4

level 1

level 2

level 3

level 4

pre-computed
conv5_3 feature map

RoI

RoI pooling
layer

650-d action
history

4096-d image
feature

4096-d RoI
feature

4096-d

1024-d 1024-d 1024-d

13
actions

Figure 3: Illustration of the top-down tree
search. Starting from the whole image, each
window recursively takes the best actions
from both action groups. Solid arrows and
dashed arrows represent scaling actions and
local translation actions, respectively.

Figure 4: Illustration of our Q-network. The regional
feature is computed on top of the pre-computed “con-
v5_3” feature maps extracted by VGG-16 pre-trained
model. It is concatenated with the whole image feature
and the history of past actions to be fed into an MLP.
The MLP predicts the estimated values of the 13 actions.

each state, and thus travels along multiple near-optimal search paths instead of a single optimal path.
This is crucial for improving the localization accuracy for objects in different scales. Because only
the scaling actions significantly change the scale of the attended window while the local translation
actions almost keep the scale the same as the previous one. However there is no guarantee that the
scaling actions are often taken as the agent may tend to go for large objects which are easier to be
covered with an IoU larger than 0.5, compared to scaling the window to find small objects.

3.3 Deep Q-learning

The optimal policy of maximizing the sum of the discounted rewards of running an episode starting
from the whole image is learned with reinforcement learning. However, due to the high-dimensional
continuous image input data and the model-free environment, we resort to the Q-learning algorithm
combined with the function approximator technique to learn the optimal value for each state-action
pair which generalizes well to unseen inputs. Specifically, we use the deep Q-network proposed
by [22, 23] to estimate the value for each state-action pair using a deep neural network. The detailed
architecture of our Q-network is illustrated in Fig. 4. Please note that similar to [23], we also use the
pre-trained CNN as the regional feature extractor instead of training the whole hierarchy of CNN,
considering the good generalization of the CNN trained on ImageNet [24].

During training, the agent runs sequential episodes which are paths from the root of the tree to its
leafs. More specifically, starting from the whole image, the agent takes one action from the whole
action set at each step to obtain the next state. The agent’s behavior during training is ε-greedy.
Specifically, the agent selects a random action from the whole action set with probability ε, and
selects a random action from the two best actions in the two action groups (i.e. scaling group and
local translation group) with probability 1− ε, which differs from the usual exploitation behavior that
the single best action with the highest estimated value is taken. Such exploitation is more consistent
with the proposed tree search scheme that requires the agent to take the best actions from both action
groups. We also incorporate a replay memory following [23] to store the experiences of the past
episodes, which allows one transition to be used in multiple model updates and breaks the short-time
strong correlations between training samples. Each time Q-learning update is applied, a mini batch
randomly sampled from the replay memory is used as the training samples. The update for the
network weights at the ith iteration θi given transition samples (s, a, r, s′) is as follows:

θi+1 = θi + α(r + γmax
a′

Q(s′, a′; θi)−Q(s, a; θi))∇θiQ(s, a; θi), (3)

where a′ represents the actions that can be taken at state s′, α is the learning rate and γ is the discount
factor.

3.4 Implementation Details

We train a deep Q-network on VOC 2007+2012 trainval set [7] for 25 epochs. The total number of
training images is around 16,000. Each epoch is ended after performing an episode in each training

5

Table 1: Recall rates (in %) of single optimal
search path RL with different numbers of search
steps and under different IoU thresholds on
VOC 07 testing set. We only report 50 steps
instead of 63 steps as the maximal number of
steps is 50.

Table 2: Recall rates (in %) of Tree-RL with
different numbers of search steps and under dif-
ferent IoU thresholds on VOC 07 testing set. 31
and 63 steps are obtained by setting the number
of levels in Tree-RL to 5 and 6, respectively.

steps large/small IoU=0.5 IoU=0.6 IoU=0.7
31 large 62.2 53.1 40.2
31 small 18.9 15.6 11.2
31 all 53.8 45.8 34.5
50 large 62.3 53.2 40.4
50 small 19.0 15.8 11.3
50 all 53.9 45.9 34.8

steps large/small IoU=0.5 IoU=0.6 IoU=0.7
31 large 78.9 69.8 53.3
31 small 23.2 12.5 4.5
31 all 68.1 58.7 43.8
63 large 83.3 76.3 61.9
63 small 39.5 28.9 15.1
63 all 74.8 67.0 52.8

image. During ε-greedy training, ε is annealed linearly from 1 to 0.1 over the first 10 epochs. Then ε
is fixed to 0.1 in the last 15 epochs. The discount factor γ is set to 0.9. We run each episode with
maximal 50 steps during training. During testing, using the tree search, one can set the number of
levels of the search tree to obtain the desired number of proposals. The replay memory size is set to
800,000, which contains about 1 epoch of transitions. The mini batch size in training is set to 64.
The implementations are based on the publicly available Torch7 [25] platform on a single NVIDIA
GeForce Titan X GPU with 12GB memory.

4 Experimental Results

We conduct comprehensive experiments on PASCAL VOC 2007 and 2012 testing sets of detection
benchmarks to evaluate the proposed method. The recall rate comparisons are conducted on VOC
2007 testing set because VOC 2012 does not release the ground-truth annotations publicly and can
only return a detection mAP (mean average precision) of the whole VOC 2012 testing set from the
online evaluation server.

Tree-RL vs Single Optimal Search Path RL: We first compare the performance in recall rate
between the proposed Tree-RL and a single optimal search path RL on PASCAL VOC 2007 testing
set. For the single optimal search path RL, it only selects the best action with the highest estimated
value by the deep Q-network to obtain one next window during testing, instead of taking two best
actions from the two action groups. As for the exploitation in the ε-greedy behavior during training,
the agent in the single optimal path RL always takes the action with the highest estimated value
in the whole action set with probability 1 − ε. Apart from the different search strategy in testing
and exploitation behavior during training, all the actions, state and reward settings are the same as
Tree-RL. Please note that for Tree-RL, we rank the proposals in the order of the tree depth levels. For
example, when setting the number of levels to 5, we have 1+2+4+8+16=31 proposals. The recall
rates of the single optimal search path RL and Tree-RL are shown in Table 1 and Table 2, respectively.
It is found that the single optimal search path RL achieves an acceptable recall with a small number
of search steps. This verifies the effectiveness of the proposed MDP model (including reward, state
and actions setting) in discovering multiple objects. It does not rely on running multiple episodes
starting from the whole image like [19] to find multiple objects. It is also observed that Tree-RL
outperforms the single optimal search path RL in almost all the evaluation scenarios, especially for
large objects1. The only case where Tree-RL is worse than the single optimal search path RL is the
recall of small objects within 31 steps at IoU threshold 0.6 and 0.7. This may be because the agent
performs a breadth-first-search from the whole image, and successively narrows down to a small
region. Therefore, the search tree is still too shallow (i.e. 5 levels) to accurately cover all the small
objects using 31 windows. Moreover, we also find that recalls of the single optimal search path RL
become stable with a few steps and hardly increase with the increasing of steps. In contrast, the
recalls of Tree-RL keep increasing as the levels of the search tree increase. Thanks to the multiple
diverse near-optimal search paths, a better coverage of the whole image in both locations and scales
is achieved by Tree-RL.

1Throughout the paper, large objects are defined as those containing more than 2,000 pixels. The rest are
small objects.

6

IoU overlap threshold
0.5 0.6 0.7 0.8 0.9 1

re
ca

ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 31 proposals per image
IoU overlap threshold

0.5 0.6 0.7 0.8 0.9 1

re
ca

ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 255 proposals per image
IoU overlap threshold

0.5 0.6 0.7 0.8 0.9 1

re
ca

ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) 1023 proposals per image

Tree-RL
Bing
EdgeBoxes
Geodesic
RPN
SelectiveSearch

proposals
101 102 103

re
ca

ll a
t I

oU
 th

re
sh

ol
d

0.
50

0

0.2

0.4

0.6

0.8

1

(e) Recall at 0.5 IoU
proposals

101 102 103

re
ca

ll a
t I

oU
 th

re
sh

ol
d

0.
80

0

0.2

0.4

0.6

0.8

1

(f) Recall at 0.8 IoU
proposals

101 102 103

av
er

ag
e

re
ca

ll

0

0.2

0.4

0.6

0.8

1

(g) Average recall (0.5<IoU<1)

Tree-RL
Bing
EdgeBoxes
Geodesic
RPN
SelectiveSearch

Figure 5: Recall comparisons between Tree-RL and other state-of-the-art methods on PASCAL VOC
2007 testing set.

Recall Comparison to Other Object Proposal Algorithms: We then compare the recall rates of
the proposed Tree-RL and the following object proposal algorithms: BING [3], Edge Boxes [4],
Geodesic Object Proposal [26], Selective Search [9] and Region Proposal Network (RPN) [5] (VGG-
16 network trained on VOC 07+12 trainval) on VOC 2007 testing set. All the proposals of other
methods are provided by [27]. Fig. 5 (a)-(c) show the recall when varying the IoU threshold within
the range [0.5,1] for different numbers of proposals. We set the number of levels in Tree-RL to 5, 8
and 10 respectively to obtain the desired numbers of proposals. Fig. 5 (e)-(g) demonstrate the recall
when changing the number of proposals for different IoU thresholds. It can be seen that Tree-RL
outperforms other methods including RPN significantly with a small number of proposals (e.g. 31).
When increasing the number of proposals, the advantage of Tree-RL over other methods becomes
smaller, especially at a low IoU threshold (e.g. 0.5). For high IoU thresholds (e.g. 0.8), Tree-RL stills
performs the best among all the methods. Tree-RL also behaves well on the average recall between
IoU 0.5 to 1 which is shown to correlate extremely well with detector performance [27].

Detection mAP Comparison to Faster R-CNN: We conduct experiments to evaluate the effects
on object detection of the proposals generated by the proposed Tree-RL. The two baseline methods
are RPN (VGG-16) + Fast R-CNN (ResNet-101) and Faster R-CNN (ResNet-101). The former
one trains a Fast R-CNN detector (ResNet-101 network) on the proposals generated by a VGG-16
based RPN to make fair comparisons with the proposed Tree-RL which is also based on VGG-16
network. The latter one, i.e. Faster-RCNN (ResNet-101), is a state-of-the-art detection framework
integrating both proposal generation and object detector in an end-to-end trainable system which is
based on ResNet-101 network. Our method, Tree-RL (VGG-16) + Fast R-CNN (ResNet-101) trains
a Fast R-CNN detector (ResNet-101 network) on the proposals generated by the VGG-16 based
Tree-RL. All the Fast R-CNN detectors are fine-tuned from the publicly released ResNet-101 model
pre-trained on ImageNet. The final average pooling layer and the 1000-d fc layer of ResNet-101 are
replaced by a new fc layer directly connecting the last convolution layer to the output (classification
and bounding box regression) during fine-tuning. For Faster-RCNN (ResNet-101), we directly use
the reported results in [28]. For the other two methods, we train and test the Fast R-CNN using the
top 255 proposals. Table 3 and Table 4 show the average precision of 20 categories and mAP on
PASCAL VOC 2007 and 2012 testing set, respectively. It can be seen that the proposed Tree-RL
combined with Fast R-CNN outperforms two baselines, especially the recent reported Faster R-CNN
(ResNet-101) on the detection mAP. Considering the fact that the proposed Tree-RL relies on only
VGG-16 network which is much shallower than ResNet-101 utilized by Faster R-CNN in proposal
generation, the proposed Tree-RL is able to generate high-quality object proposals which are effective
when used in object detection.

7

Table 3: Detection results comparison on PASCAL VOC 2007 testing set.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

RPN (VGG-16)+

Fast R-CNN (ResNet-101)
77.7 82.7 77.4 68.5 54.7 85.5 80.0 87.6 60.7 83.2 71.8 84.8 85.1 75.6 76.9 52.0 76.8 79.1 81.1 73.9 75.8

Faster R-CNN

(ResNet-101) [28]
79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0 76.4

Tree-RL (VGG-16)+

Fast R-CNN (ResNet-101)
78.2 82.4 78.0 69.3 55.4 86.0 79.3 88.4 60.8 85.3 74.0 85.7 86.3 78.2 77.2 51.4 76.4 80.5 82.2 74.5 76.6

Table 4: Detection results comparison on PASCAL VOC 2012 testing set.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

RPN (VGG-16)+

Fast R-CNN (ResNet-101)
86.9 83.3 75.6 55.4 50.8 79.2 76.9 92.8 48.8 79.0 57.2 90.2 85.4 82.1 79.4 46.0 77.0 66.4 83.3 66.0 73.1

Faster R-CNN

(ResNet-101) [28]
86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6 73.8

Tree-RL (VGG-16)+

Fast R-CNN (ResNet-101)
85.9 79.3 77.1 62.1 53.4 77.8 77.4 90.1 52.3 79.2 56.2 88.9 84.5 80.8 81.1 51.7 77.3 66.9 82.6 68.5 73.7

Visualizations: We show the visualization examples of the proposals generated by Tree-RL in
Fig. 6. As can be seen, within only 15 proposals (the sum of level 1 to level 4), Tree-RL is able to
localize the majority of objects with large or middle sizes. This validates the effectiveness of Tree-RL
again in its ability to find multiple objects with a small number of windows.

Figure 6: Examples of the proposals generated by Tree-RL. We only show the proposals of level 2 to
level 4. Green, yellow and red windows are generated by the 2nd, 3rd and 4th level respectively. The
1st level is the whole image.

5 Conclusions

In this paper, we proposed a novel Tree-structured Reinforcement Learning (Tree-RL) approach to
sequentially search for objects with the consideration of global interdependency between objects.
It follows a top-down tree search scheme to allow the agent to travel along multiple near-optimal
paths to discovery multiple objects. The experiments on PASCAL VOC 2007 and 2012 validate
the effectiveness of the proposed Tree-RL. Briefly, Tree-RL is able to achieve a comparable recall
to RPN with fewer proposals and has higher localization accuracy. Combined with Fast R-CNN
detector, Tree-RL achieves comparable detection mAP to the state-of-the-art detection system Faster
R-CNN (ResNet-101).

Acknowledgment

The work of Jiashi Feng was partially supported by National University of Singapore startup grant R-
263-000-C08-133 and Ministry of Education of Singapore AcRF Tier One grant R-263-000-C21-112.

8

References
[1] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate

object detection and semantic segmentation. In CVPR, 2014.
[2] Ross Girshick. Fast r-cnn. In ICCV, 2015.
[3] Ming-Ming Cheng, Ziming Zhang, Wen-Yan Lin, and Philip Torr. Bing: Binarized normed gradients for

objectness estimation at 300fps. In CVPR, 2014.
[4] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals from edges. In ECCV. 2014.
[5] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection

with region proposal networks. In NIPS, 2015.
[6] Jiri Najemnik and Wilson S Geisler. Optimal eye movement strategies in visual search. Nature,

434(7031):387–391, 2005.
[7] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The

pascal visual object classes (voc) challenge. IJCV, 88(2):303–338, 2010.
[8] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. What is an object? In CVPR, 2010.
[9] Jasper RR Uijlings, Koen EA van de Sande, Theo Gevers, and Arnold WM Smeulders. Selective search

for object recognition. IJCV, 104(2):154–171, 2013.
[10] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmenta-

tion. In CVPR, 2015.
[11] Bogdan Alexe, Nicolas Heess, Yee W Teh, and Vittorio Ferrari. Searching for objects driven by context. In

NIPS, 2012.
[12] Abel Gonzalez-Garcia, Alexander Vezhnevets, and Vittorio Ferrari. An active search strategy for efficient

object class detection. In CVPR, 2015.
[13] Stefan Mathe and Cristian Sminchisescu. Multiple instance reinforcement learning for efficient weakly-

supervised detection in images. arXiv preprint arXiv:1412.0100, 2014.
[14] Stefan Mathe, Aleksis Pirinen, and Cristian Sminchisescu. Reinforcement learning for visual object

detection. In CVPR, 2016.
[15] Christoph H Lampert, Matthew B Blaschko, and Thomas Hofmann. Efficient subwindow search: A branch

and bound framework for object localization. TPAMI, 31(12):2129–2142, 2009.
[16] Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, and Yoshua

Bengio. Show, attend and tell: Neural image caption generation with visual attention. arXiv preprint
arXiv:1502.03044, 2015.

[17] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In NIPS, 2014.
[18] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition with visual attention.

arXiv preprint arXiv:1412.7755, 2014.
[19] Juan C Caicedo and Svetlana Lazebnik. Active object localization with deep reinforcement learning. In

ICCV, 2015.
[20] Yongxi Lu, Tara Javidi, and Svetlana Lazebnik. Adaptive object detection using adjacency and zoom

prediction. arXiv preprint arXiv:1512.07711, 2015.
[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-

tion. arXiv preprint arXiv:1409.1556, 2014.
[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,

and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

[25] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like environment for
machine learning. In NIPS Workshop, 2011.

[26] Philipp Krähenbühl and Vladlen Koltun. Geodesic object proposals. In ECCV. 2014.
[27] J. Hosang, R. Benenson, P. Dollár, and B. Schiele. What makes for effective detection proposals? TPAMI,

38(4):814–830, 2016.
[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.

arXiv preprint arXiv:1512.03385, 2015.

9

