
Figure 1: Failure probability against scaled noise magnitude on synthetic tensors. From top to bottom rows:
random Gaussian noise, adversarial noise and noise that weakly correlate with the signals (details in main text).
From left to right: scaled noise magnitudes: σ, σ

√
d, σd and σ ln(d), labeled on each plot below the X axis.

A Simulation results

We verify our main theoretical results in Theorem 2.2 on synthetic tensors. T is taken to be a rank-3
tensor T = v⊗31 + 0.75v⊗32 + 0.5v⊗33 , where v1 = (1, 0, 0, 0, · · · , ), v2 = (0, 1, 0, 0, · · · ) and
v3 = (0, 0, 1, 0, · · · ). The noise tensor E is synthesized according to the following three regimes:

1. Random Gaussian noise: First generate Eijk
i.i.d.∼ N (0, 1) and then super-symmetrize E.

2. Adversarial Gaussian noise: E =
∑d
i=1 v2 ⊗ ei ⊗ ei + ei ⊗ v2 ⊗ ei + ei ⊗ ei ⊗ v2,

where ei = (0, · · · , 0, 1, 0, · · · , 0) has all zero entries except for the ith one.

3. Weakly correlated noise: Let {v4, · · · ,vd} be an orthonormal basis of the orthogonal
complement of span{v1,v2,v3}. Set E =

∑d
i=4 vi ⊗ vi ⊗ vi.

In Fig. 1 we plot the “failure probability” (measured via 20 independent trials per setting) of the robust
tensor power method with random initialization against controlled noise magnitude ‖E‖op = σ. A
trial is “successful” if for all i ∈ {1, 2, 3} the recovered eigenvector v̂i satisfies v̂>i vi ≥ 1/4. To
control ‖E‖op, we first compute the operator norm of the generated raw noise tensor by invoking
the eig_sshopm routine in Matlab tensor toolbox [5] (algorithm based on [20]) and then re-scale
the entries. By inspecting the noise levels at which phase transition of failure probabilities occurs
for different tensor dimensions d, ranging from 25 to 200. It is quite clear from Fig. 1 that the phase
transitions occur at σ = O(1/

√
d) for random Gaussian noise, σ = O(1/d) for adversarial noise

and σ = O(1/ log d) for weakly correlated noises, which matches our theoretical findings in Sec. 2
up to logarithmic terms. Our simulation results and explicit construction of an “adversarial” noise
matrix also suggests that our analysis for robust tensor power method with random initializations
under random Gaussian noise and existing analysis for worst-case noise in [1] are tight.

B Comparison with whitening and matrix SVD decompositions

Another popular thread of tensor decomposition techniques involve whitening and reducing the
problem to a matrix SVD decomposition, which is very effective at reducing the dimensionality of
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the problem in the k = o(d) undercomplete settings [1, 21, 28]. We show in this section that without
additional side information, a standard application and analysis of tensor decomposition of whitening
and matrix SVD techniques leads to worse error bounds than we established in Theorem 2.2.

When only the 3rd-order tensor T is available, one common whitening approach is to randomly
“marginalized out” one view of T̃:

M(θ) := T̃(I, I,θ), θ randomly drawn on the unit d-dimensional sphere;

and then evaluate top-k eigen-decomposition of M(θ). LetW = span(v1, · · · ,vk) be the span of
the true components of T and Ŵ be the top-k eigenspace of matrix M(θ) obtained by collapsing one
view of T̃. We then have the following proposition that bounds the perturbation betweenW and Ŵ:

Proposition B.1. Suppose T̃ = T + ∆T as in Theorems 2.1, 2.2 and let ΠW ,ΠŴ be the projection
operators ofW and Ŵ , respectively. Then with probability at least 0.9 over the random draw of θ,

∥∥ΠW −ΠŴ
∥∥
2
≤ Õ

(√
d‖∆T ‖op
λmin

)
, if ‖∆T ‖op = Õ

(
λmin√
d

)
,

Proof. First, we decompose M(θ) into two terms:

M(θ) =

k∑

i=1

λi(v
>
i θ) · viv>i + ∆T (I, I,θ).

Define λ̄i = λi(v
>
i θ) and Ē = ∆T (I, I,θ). We then have that

M(θ) = M0 + Ē,

where M0 is a d× d rank-k matrix with eigenvalues (λ̄1, · · · , λ̄k) and eigenvectors (v1, · · · ,vk),
and Ē satisfies ‖Ē‖2 ≤ ‖∆T ‖op. Since θ is uniformly sampled from the d-dimensional unit sphere,
by standard concentration arguments we have that |v>j θ| = Ω̃(1/

√
d) with overwhelming probability

for all j = 1, · · · , k and hence
σk(M0) = Ω̃(λmin/

√
d),

where σk(·) denotes the kth largest singular value of a matrix. Applying Weyl’s theorem (Lemma
F.7) we have that

σk(M(θ)) ≥ σk(M0)− ‖Ē‖2 = Ω̃(λmin/
√
d),

where the last inequality is due to the condition imposed on noise magnitude ‖∆T ‖op and the fact
that ‖Ē‖2 ≤ ‖∆T ‖op. Applying Wedin’s theorem (Lemma F.8) with α = 0 and δ = σk(M(θ)) =

Ω̃(λmin/
√
d) we arrive at

∥∥ΠW −ΠŴ
∥∥
2
≤ ‖Ē‖2
σk(M(θ))

≤ Õ
(√

d‖∆T ‖op
λmin

)
.

This simple result shows that the whitening trick does not trivially lead to matching noise conditions
in Theorem 2.2 under k = o(d) settings.

C Proof of Theorem 2.2

C.1 Proof sketch of Theorem 2.2

In this section we sketch the proof of Theorem 2.2. Our proof is mostly built upon the analysis in [1]
for robust tensor power method. However, we borrow new ideas from [12] to substantially revise
the per-iteration analysis (Lemma C.2), which subsequently results in desired relaxation of noise
conditions. Some results and arguments in [1], especially those involved with absolute constants, are
simplified for accessibility purposes.

We start with Lemma C.1 that analyzes random initializations against eigenvectors.

11



Lemma C.1. Fix j∗ ∈ {1, · · · , k} and η ∈ (0, 1/2). Suppose L satisfies L = Ω(k/η). Then with
probability at least 1− η there exists a initialization u0 such that

max
1≤j≤k,j 6=j∗

|v>j u0| ≤ 0.5|v>j∗u0| and |v>j∗u0| ≥ 1/
√
d. (8)

Roughly speaking, Lemma C.1 shows that with L = Ω(d log d) initializations the initial vector u0

will slightly bias towards one of the directions j∗ with overwhelming probability. The lemma is
a slight generalization of Lemma B.1 in [1] to the k ≤ d case and their proofs are similar. For
completeness purposes we include its proof in Appendix C.2. Applying a standard boosting argument
we have the following corollary, which guarantees exponentially decaying failure probabilities:
Corollary C.1. For any η̃ ∈ (0, 1/2), with L = Ω(k log(1/η̃)) initializations Eq. (8) holds for at
least one initialization with probability at least 1− η̃.

The following lemma is the key lemma that characterizes the recovery of single eigenvectors of the
robust tensor power method.
Lemma C.2. Suppose λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 and assume without loss of generality that the
conditions in Lemma C.1 hold with respect to j∗ = 1. Assume in addition that

‖∆T (I,ut,ut)‖2 ≤ min

{
ε̃t,

λ1

40
√
d

}
, |∆T (vj ,ut,ut)| ≤ min

{
ε̃t√
k
,
λ1
8d

}
, ε̃t ≤

λ1
200

for all t ∈ [T ] and j such that λj > 0. We then have that 3

max
j 6=1

λj |v>j ut| ≤ 0.5λ1|v>1 ut|, tan θ(v1,ut) ≤ 0.8 tan θ(v1,ut−1) + 8ε̃t/λ1. (9)

In addition, if θ(v1,ut) ≤ π/3 we have further that

|v>j ut+1|
|v>1 ut+1|

≤ 0.8
|v>j ut|
|v>1 ut|

+
8ε̃t

λ1
√
k
, ∀j > 1 and λj > 0. (10)

Compared to existing analysis in (Propositions B.1, B.2, Lemmas B.2, B.3, B.4 in [1]), our proof in
Appendix C.2 analyzes the two-phase behavior of robust tensor power method in a unified framework
and is thus much cleaner. Furthermore, we borrow ideas from [12] to prove shrinkage of the tangent
angle between v1 and ut, which subsequently leads to relaxed noise conditions. We also prove
additional bounds regarding |v>j ut| for j > 1 to facilitate later deflation analysis. This result is used
for relaxing noise conditions only and is hence not proved in previous work [1].

Finally, we present the following lemma that analyzes the deflation step in the robust noisy power
method, in which both “element-wise” and “full-vector” conditions on the deflated tensor are proved.

Lemma C.3. Let {λ̂i, v̂i}ki=1 be eigenvalue and (orthonormal) eigenvector pairs that approximates
{λi,vi}ki=1 with λ1 ≥ · · · ≥ λk > 0 such that for all i ∈ [k],

|λ̂i − λi| ≤ Cε, tan θ(vi,vi) ≤ min{
√

2, Cε/λi} |v̂>i vj | ≤ Cε/(λi
√
k), ∀j > i (11)

for some absolute constantC > 0 and error tolerance parameter ε > 0. Denote Ei = λ̂iv̂
⊗3
i −λiv⊗3i

as the ith reconstruction error tensor. Let δ ∈ (0, 1) be an arbitrary small constant. There exist
universal constants C > 0 such that if ε ≤ C ′λmin/

√
k then the following holds for all t ∈ [k] and

‖u‖2 = 1:
∥∥∥∥∥

t∑

i=1

Ei(I,u,u)

∥∥∥∥∥
2

≤ κt(u)ε and
∣∣∣∣

t∑

i=1

Ei(vj ,u,u)

∣∣∣∣ ≤ κt(u)2
ε√
k
, ∀j > t, (12)

where κt(u) =
√
δ + C ′′

∑t
i=1 |v>i u|2 and C ′′ > 0 is a universal constant.

We are now ready to prove the main theorem.
3For notational simplicity, let tan θ(v1,u−1) =∞.
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Proof of Theorem 2.2. We use induction to prove the theorem. For i = 1 all conditions in Lemma
C.2 are satisfied with ε̃t = 2ε when ε ≤ C1λmin/

√
k for some sufficiently small constant C1 > 0.

Lemma C.2 then asserts that, with L = Ω(d log d) initializations and R = Ω(log(λ1k/ε)) iterations,
‖v̂1 − v1‖2 ≤ tan θ(v̂1,v1) ≤ C2ε/λ1 for some universal constant C2 > 0. Furthermore,

|λ̂1 − λ1| =
∣∣T̃(v̂1, v̂1, v̂1)− λ1

∣∣ ≤
∣∣∆T (v̂1, v̂1, v̂1)

∣∣+
∣∣T(v̂1, v̂1, v̂1)− λ1

∣∣

≤ O
(

ε√
k

)
+

∣∣∣∣λ1|v>1 v̂1|3 − λ1 +
∑

j>1

λj |v>j v̂1|3
∣∣∣∣

≤ O
(

ε√
k

)
+

∣∣∣∣λ1
[
1 +O

(
ε

λ1

)]
− λ1 +

∑

j>1

λjO

(
ε3

λ3jk
1.5

)∣∣∣∣

≤ O(ε), if ε ≤ C1λmin/
√
k for some sufficiently small constant C1.

We next prove the theorem for the case of i+ 1 assuming by induction that the theorem holds for all
{λj ,vj}ij=1. In this case, the “new” noise tensor ∆̃T comes from both the original noise and also
noise introduced by deflations; that is, ∆̃T = T̃ +

∑i
j=1 Ei. Invoking Lemma C.3 we have that ∆̃T

satisfies conditions in Lemma C.2 with

ε̃t = ε
(
1 + max{κi(ut), κi(ut)2}

)
,

where κi(u) =
√
δ + C ′′

∑i
j=1 |u>vj |2 as defined in Lemma C.3, provided that ε ≤ C1λmin/

√
k

for some sufficiently small constant C1. Furthermore, note that for arbitrary δ ∈ (0, 1), we can again
pick C ′1 > 0 to be a sufficiently small constant (possibly depending on δ) such that ε ≤ C ′1λmin/

√
k

would imply ε̃t ≤ min{λ1/200, 0.01λmin

√
δ/(C ′′k)}. Subsequently, by Eq. (9) we know that after

Ω(log(λmaxk/ε)) iterations we have that tan θ(ut,vi+1) ≤ 0.1
√
δ/(C ′′k) and hence for any j ≤ i,

|u>t vj | = cos θ(ut,vj) = sin θ(ut,vi+1) ≤ tan θ(ut,vi+1) ≤ 0.1
√
δ/(C ′′k). Consequently,

C ′′
∑i
j=1 |u>t vj |2 ≤ 0.01δ and therefore κi(ut) ≤

√
1.01δ ≤ 1. We then have that ε̃t ≤ 2ε and

hence the resuling bounds on |λ̂i+1 − λi+1| and tan θ(ut,vi+1) hold with the same constant C as
all previous iterations before i. Finally, applying Lemma C.1 and taking a union bound over all k
iterations we complete the proof.

C.2 Proof of technical lemmas

Proof of Lemma C.1. Let ũ(τ)
0

i.i.d.∼ Nd(0, Id×d) for τ ∈ [L] and define Zj,τ = v>j ũ
(τ)
0 for j ∈ [d]

and τ ∈ [L]. Without loss of generality, assume j∗ = 1. Consider the following sets of events:

E1 :=

{
Z : max

τ∈[L]
|Z1,τ | ≥ 0.5

√
lnL−

√
2 ln(6/η)

}
, (13)

E2,τ :=

{
Z·,τ : max

1<j≤k
|Zj,τ | ≤

√
2 ln k +

√
2 ln(3/η)

}
, (14)

E3,τ :=



Z·,τ :

d∑

j=k+1

|Zj,τ |2 ≤ 3 ln(3/η) · d+ 2 ln(3/η)



 . (15)

Suppose E1 holds with τ∗ = argmaxτ |Z1,τ | and suppose in addition that E2,τ∗ and E3,τ∗ hold. To
derive Eq. (8) we need to show the following inequalities:

0.5
√

lnL−
√

2 ln(6/η) ≥ 0.5
(√

2 ln k +
√

2 ln(3/η)
)

;

(0.6
√

lnL−
√

2 ln(6/η))2

k · (0.6
√

lnL−
√

2 ln(6/η))2 + 3 ln(3/η)d+ 2 ln(3/η)
≥ 1

d
.

It can be easily verified that L = Ω(k/η) satisfies the above inequalities and hence imply Eq. (8)
under E1 ∩ E2,τ∗ ∩ E3,τ∗ .
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The rest of the proof is to lower bound the probabilities of events E1, E2,τ∗ and E3,τ∗ . We first consider

E1. Because Z1,1, · · · , Z1,L
i.i.d.∼ N (0, 1) and f(Z1,1, · · · , Z1,L) = maxτ |Z1,τ | is a 1-Lipschitz

function, applying Lemma F.1 we have that

Pr
[
max
τ
|Z1,τ | < µ− t

]
≤ 2e−t

2/2, (16)

where µ = E[maxτ |Z1,τ |]. By Lemma F.2, µ ≥ E[maxτ Z1,τ ] ≥
√

lnL/
√
π ln 2 ≥ 0.5

√
lnL.

Setting t =
√

2 ln(6/η) in Eq. (16) we have that Pr[E1] ≥ 1− η/3.

Next, suppose E1 holds with τ∗ = argmaxτ |Z1,τ |. Note that E2,τ∗ and E3,τ∗ are independent
regardless of the choice of τ∗, because Z1,τ∗ , · · · , Zd,τ∗ are independent Gaussian random variables.
We can then lower bound the probabilities of E2,τ∗ and E3,τ∗ separately. We consider E2,τ∗ first.
Because Z2,τ∗ , · · · , Zk,τ∗ are i.i.d. standard Normal random variables, applying Lemma F.3 we
obtain

Pr

[
max
2≤j≤k

|Zj,τ∗ | >
√

2 ln k +
√

2t

]
≤ e−t. (17)

Putting t = ln(3/η) in Eq. (17) we have that Pr[E2,τ∗ |E1] ≥ 1 − η/3. For E3,τ∗ , it is obvious by
definition that

∑d
j=k+1 |Zj,τ∗ |2 is a χ2

d−k-distributed random variable and is independent of E1 and
E2,τ∗ . Applying Lemma F.4 the following holds:

Pr




d∑

j=k+1

|Zj,τ∗ |2 > d+ 2
√
dt+ 2t


 ≤ e−t. (18)

Putting t = ln(3/η) in Eq. (18) and noting that
√
d ≤ d, t ≥ 1, we conclude that Pr[E3,τ∗ |E1] ≥

1− η/3. Finally, applying union bound we have that Pr[E1 ∩ E2,τ∗ ∩ E3,τ∗ ] ≥ 1− η.

Proof of Lemma C.2. First, as a consequence of Corollary C.1, we know that |v>1 u0| ≥ 1/
√
d. The

conditions in Lemma C.2 then imply |∆T (vj ,ut,ut)| ≤ λ1|v>1 u0|2/8. We now use induction to
prove Eq. (9). When t = 0 Eq. (9) trivially holds due to Lemma C.1 and the condition that j∗ = 1
corresponds to the largest eigenvalue λ1. The objective is then to prove Eq. (9) for the case of t+ 1,
assuming it holds for all iterations up to t.

We first consider the second part of Eq. (9) concerning tan θ(v1,ut). Let V ∈ Rd×(k−1) be
an orthonormal basis of the complement subspace V⊥ = span{v2, · · · ,vk}. Further let εt =
∆T (I,ut,ut). We then have that

tan θ(v1,ut+1) = tan θ(v1,T(I,ut,ut) + εt)

=
‖V>[T(I,ut,ut) + εt]‖2
|v>1 [T(I,ut,ut) + εt]|

≤ ‖V
>T(I,ut,ut)‖2 + ‖V>εt‖2
|v>1 T(I,ut,ut)| − |v>1 εt|

.

In addition, note that

‖V>T(I,ut,ut)‖2 =

√√√√
k∑

j=2

λ2j |v>j ut|4 ≤ max
j 6=1

λj |v>j ut| ·

√√√√
k∑

j=2

|v>j ut|2,

where the first equality is due to the orthogonality of {v2, · · · ,vk} and in the last inequality we apply

H’́older’s inequality. Because
√∑k

j=2 |v>j ut|2 = ‖V>ut‖2, we have that

tan θ(v1,ut+1) ≤
‖V>ut‖2 ·maxj 6=1 λj |v>j ut|+ ‖V>εt‖2

|v>1 ut| · λ1|v>1 ut| − |v>1 εt|

= tan θ(v1,ut)

[
maxj 6=1 λj |v>j ut|+ ‖V>εt‖2/‖V>ut‖2

λ1|v>1 ut| − |v>1 εt|/|v>1 ut|

]
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≤ tan θ(v1,ut)

[
0.5λ1|v>1 ut|+ ‖V>εt‖2/‖V>ut‖2

λ1|v>1 ut| − |v>1 εt|/|v>1 ut|

]
(19)

= tan θ(v1,ut)

[
1

2

1

1− |v>1 εt|/(λ1|v>1 ut|2)

]

︸ ︷︷ ︸
α

+
1

1− |v>1 εt|/(λ1|v>1 ut|2)︸ ︷︷ ︸
2α

· ‖V
>εt‖2

λ1|v>1 ut|2︸ ︷︷ ︸
β

.

Here in Line 19 we apply the induction hypothesis that maxj 6=1 λj |v>j ut| ≤ 0.5λ1|v>1 ut|. Before
proceeding the analysis we first show that |v>1 u0| ≤ |v>1 ut|. Applying the induction hypothesis, we
have that

tan θ(v1,ut) ≤ 0.8t tan θ(v1,u0) + 40ε̃t/λ1 ≤ 0.8 tan θ(v1,u0) + 40ε̃t/λ1 ≤ tan θ(v1,u0),

where the last inequality is due to ε̃t ≤ λ1/200. Subsequently, θ(v1,ut) ≤ θ(v1,u0) and hence
|v>1 ut| = cos θ(v1,ut) ≥ cos θ(v1,u0) = |v>1 u0|. Now applying |v>1 εt| ≤ |v>1 u0|2/4 we obtain

|v>1 εt| ≤
λ1|v>1 u0|2

4
≤ λ1|v>1 ut|2

4
=⇒ 1

1− |v>1 εt|/(λ1|v>1 ut|2)
≤ 3

2
=⇒ α ≤ 3

4
. (20)

Next we bound β by considering two cases. In the first case of |v>1 ut| ≤ 0.5, we have that

β = tan θ(v1,ut) ·
‖V>εt‖2

λ1|v>1 ut|
√

1− |v>1 ut|2
≤ 2‖εt‖2
λ1|v>1 ut|

· tan θ(v1,ut) ≤ 0.05 tan θ(v1,ut).

(21)
where the last inequality is due to the condition that ‖εt‖2 ≤ λ1|v>1 u0|

40 ≤ λ1|v>1 ut|
40 . On the other

hand, if |v>1 ut| > 0.5 the following holds:

β =
‖V>εt‖2
λ1|v>1 ut|2

≤ 4‖εt‖2
λ1

≤ 4ε̃t
λ1
. (22)

Combining Eq. (20,21,22) we obtain tan θ(v1,ut+1) ≤ 0.8 tan θ(v1,ut) + 8ε̃t/λ1.

We next prove the first part of Eq. (9), namely that maxj 6=1 λj |v>j ut+1| ≤ 0.5λ1|v>1 ut+1|. For those
j with λj = 0 the bound trivially holds. So we consider only j > 1 with λj > 0. We then have that

λ1|v>1 ut+1|
λj |v>j ut+1|

=
λ1|v>1 [T(I,ut,ut) + εt]|
λj |v>j [T(I,ut,ut) + εt]|

≥
(
λ1|v>1 ut|
λj |v>j ut|

)2

︸ ︷︷ ︸
α′

· 1− |v>1 εt|/(λ1|v>1 u2
t |)

1 + |v>j εt|/(λj |v>j εt|2)
︸ ︷︷ ︸

β′

.

By induction hypothesis α′ ≥ 4. Applying conditions on |v>1 εt| we get |v>1 εt| ≤ λ1|v>1 u0|2
4 ≤

λ1|v>1 ut|2
4 and hence |v>1 εt|/(λ1|v>1 ut|2) ≤ 1/4. On the other hand,

(
λ1|v>1 ut|
λj |v>j ut|

)2 [
1 +

|v>j ε|
λj |v>j ut|2

]−1
=



(
λj |v>j ut|
λ1|v>1 ut|

)2

+
λj |v>j εt|
λ21|v>1 ut|2



−1

≥
[

1

4
+
|v>j εt|

λ1|v>1 ut|2

]−1
.

Because |v>j εt| ≤ λ1|v>1 u0|2
8 ≤ λ1|v>1 ut|2

8 , the right-hand side of the above equation is lower
bounded by 8/3. Therefore, α′β′ ≥ 8

3 (1− 1
4 ) ≥ 2.

The last part of this proof is devoted to showing Eq. (10). Under the condition that θ(v1,ut) ≤ π/3
we have that cos θ(v1,ut) = |v>1 ut| ≥ 1/2. Subsequently, for arbitrary j > 1 with λj > 0 the
following holds:

|v>j ut+1|
|v>1 ut+1|

≤
λj |v>j ut|2 + |v>j εt|
λ1|v>1 ut|2 − |v>1 εt|

≤
|v>j ut|
|v>1 ut|

·1
2

1

1− |v>1 εt|/(λ1|v>1 ut|2)︸ ︷︷ ︸
α

+
|v>j εt|

λ1|v>1 ut|2 − |v>1 εt|︸ ︷︷ ︸
γ

.

Because |v>1 ut| ≥ 1/2 and |v>1 εt| ≤ 1
2λ1|v>1 u0|2 ≤ 1

2λ1|v>1 ut|2, we have γ ≤ 8|v>j εt|/λ1 and
hence

|v>j ut+1| ≤ 0.8|v>j ut|+
8|v>j εt|
λ1

≤ 0.8|v>j ut|+
8ε̃t

λ1
√
k
.
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Proof of Lemma C.3. The first part of Eq. (12) is a simplified result of Lemma B.5 4 in [1] because
‖v̂i − vi‖2 ≤ tan θ(v̂i,vi) when ‖v̂i‖2 = ‖vi‖2 = 1 and θ < π/2. The proofs are almost identical.
So we focus on proving the second part of Eq. (12) here. Recall that v>j vi = 0 for all j > i.
Subsequently,

∣∣∣∣
t∑

i=1

Ei(vj ,u,u)

∣∣∣∣ ≤
t∑

i=1

λ̂i|u>v̂i|2|v>j v̂i| ≤
Cε√
k

t∑

i=1

λ̂i
λi
|u>v̂i|2.

Define v̂⊥i = v̂i − (v̂>i vi)vi as the difference between v̂i and its projection on vi. It is then by
definition that ‖v̂⊥i ‖2 = ‖v̂i‖2 sin θ(v̂i,vi) ≤ tan θ(v̂i,vi). Subsequently,

t∑

i=1

λ̂i
λi
|u>v̂i|2 ≤

t∑

i=1

(
1 +
|λ̂i − λi|

λi

)
|u>v̂i|2 ≤

Cε

λmin
+

t∑

i=1

(
|u>vi|2 + |u>v̂⊥i |2

)

≤ Cε

λmin
+ k‖v̂⊥i ‖22 +

t∑

i=1

|u>vi|2 ≤
Cε

λmin
+
C2kε2

λ2min︸ ︷︷ ︸
a

+
t∑

i=1

|u>vi|2.

For arbitrary δ ∈ (0, 1), set C ′ ≤ min{ δ
2C2 ,

δ
2C3 } and ε ≤ C ′λmin/

√
k we have that a ≤ δ/C and

hence the second part of Eq. (12) holds with C ′′ = C.

D Proof of results for streaming robust tensor power method

Proof of Theorem 3.1. First, note that if x1, · · · ,xn i.i.d.∼ P , P ∈ SGD(σ) then the distribution of
the sample mean x̄ = 1

n

∑n
i=1 xi belongs to SGD(σ/

√
n). To see this, fix any a ∈ RD and one can

show that

E
[
exp(a>x̄)

]
=

n∏

i=1

E
[
exp(a>xi/n)

]
≤

n∏

i=1

exp(‖a‖22σ2/n2) = exp(‖a‖22σ2/n),

where the second inequality is due to the fact that xi ∈ SGD(σ) and ‖a/n‖22 = ‖a‖22/n2.

Under Assumptions 3.1, 3.2 and using the the above arguments, we know that

vec(∆T ) = vec

[
1

n

n∑

i=1

x⊗3i −T

]
∈ SGd3(σ/n)

Now fix vi,ut ∈ Rd with unit L2 norms. Applying Lemma F.6 with respect to Σ = vec(vi ⊗ ut ⊗
ut)vec(vi ⊗ ut ⊗ ut)> we obtain that

Pr

[∣∣∆T (vi,ut,ut)
∣∣2 > (1 + 2

√
t+ t)

σ2

n

]
≤ e−t, ∀t > 0. (23)

Subsequently, with overwhelming probability (e.g., ≥ 1− n−10) we have that

‖∆T (I,ut,ut)‖2 = Õ

(
σ

√
d

n

)
,

∣∣∆T (vi,ut,ut)
∣∣ = Õ

(
σ

√
1

n

)
.

Finally, with

n = Ω̃

(
min

{
σ2d

ε2
,
σ2d2

λ2min

})

the conditions in Eq. (4) are satisfied with overwhelming probability and hence the error bounds on
|λi − λ̂π(i)| and ‖vi − v̂π(i)‖2.

4Except that we operate under a k < d regime, which adds no difficulty to the proof.
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E Proofs of utility results for differentially private tensor decomposition

Before proving Theorem 4.2, we first present a lemma that upper bounds ‖ut‖∞ when the components
V ∈ Rd×k is incoherent (Assumption 4.1) and Gaussian noise across power updates is added.

Lemma E.1. Suppose T =
∑k
i=1 λiv

⊗
i 3 and V = (v1, · · · ,vk) satisfies Assumption 4.1 with

coherence level µ0. Fixu ∈ Rd with ‖u‖2 = 1 and let ū = T(I,u,u)+σ·z, where z ∼ N (0, Id×d)
are zero-mean independently distributed Gaussian random variables. We then have that

‖ū‖∞
‖ū‖2

= O

(√
µ0k log d

d

)
.

with overwhelming probability.

Proof. We prove this lemma by showing an upper bound for ‖ū‖∞ and a lower bound on ‖ū‖2,
both with overwhelming probabilities. For the infinity-norm upper bound, we consider the following
decomposition via triangle inequality:

‖ū‖∞ ≤ ‖ũ‖∞ + σ‖z‖∞,
where ũ = T(I,u,u) and z ∼ N (0, Id×d). By definition,

‖ũ‖∞ =

∥∥∥∥∥
k∑

i=1

λi|u>vi|2vi
∥∥∥∥∥
∞

= max
1≤j≤d

∣∣∣λ>(V>ej)
∣∣∣,

where λ is a k-dimensional vector defined as λ = (λ1|u>v1|2, · · · , λk|u>vk|2). By Cauchy-
Schwarts inequality, we have that

‖ũ‖∞ = max
1≤j≤d

∣∣∣λ>(V>ej)
∣∣∣ ≤ ‖λ‖2 · max

1≤j≤d
‖V>ej‖2 ≤

√√√√µ0k

d

(
k∑

i=1

λ2i |u>vi|4
)
,

where the last inequality is due to the condition that V is incoherent with coherence level µ0. In
addition, ‖z‖∞ = O(

√
log d) with overwhelming probability, by applying Lemma F.3. As a result,

‖ū‖∞ ≤

√√√√2kµ0

d

(
k∑

i=1

λ2i |u>vi|4
)

+O(σ
√

log d). (24)

We next lower bound the denominator term ‖ū‖2. By definition, ū follows a multi-variate Gaussian
distribution with mean ũ and co-variance σ2Id×d. Applying Lemma F.5 with µ = ‖ũ‖22/σ2 and
t = O(log d) we have that ‖ū‖22 = Ω(‖ũ‖22 + σ2d) with overwhelming probability. Note also that

‖ũ‖22 =

∥∥∥∥∥
k∑

i=1

λi|u>vi|2vi
∥∥∥∥∥

2

2

=

k∑

i=1

λ2i |u>vi|4

because {vi}ki=1 are orthonormal vectors. Consequently,

‖ū‖22 = Ω



√√√√σ2d+

k∑

i=1

λ2i |u>vi|4

 . (25)

Combining Eqs. (24,25) we obtain

‖ū‖∞
‖ū‖2

≤

√
2µ0k
d

∑k
i=1 λ

2
i |u>vi|4 +O(σ

√
log d)

Ω

(√
σ2d+

∑k
i=1 λ

2
i |u>vi|4

) ≤ O
(√

µ0k

d

)
+O

(√
log d

d

)
= O

(√
µ0k log d

d

)
.
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We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Applying Lemma E.1 we can with overwhelming probability upper bound the
per-coordinate standard deviation of Gaussian noise calibrated in Algorithm 3:

max
0≤t≤T
1≤τ≤L

{
ν‖u(τ)

t ‖2∞, ν‖u(τ)
t ‖3∞

}
≤ O

(√
K · log(1/δ)

ε
· µ0k log d

d

)
,

where K = kL(T + 1) = Õ(k2 log(λmaxd)). Let ε(τ)t = E(I,u
(τ)
t ,u

(τ)
t ) = σ

(τ)
t · z be the noise

vector calibrated, where σ(τ)
t = ν‖u(τ)

t ‖2∞. We then have that with overwhelming probability,

‖ε(τ)t ‖2 = O

(
µ0k

2 log(λmaxd/δ)

ε
√
d

)
and

∣∣v>1 ε(τ)t

∣∣ = O

(
µ0k

2 log(λmaxd/δ)

εd

)
.

Equating the upper bound for |v>1 ε(τ)t | with O(λmin/d) we obtain the desired privacy level condition:

ε = Ω

(
µ0k

2 log(λmaxd/δ)

λmin

)
.

It can also be easily verified that all noise conditions in Theorem 2.2 are satisfied with above lower
bound condition on ε.

F Technical lemmas

F.1 Tail inequalities

Lemma F.1 (Tail bound of Lipschitz function of Gaussian random variables, [8]). Suppose x ∼
Nd(0, σ2Id×d) are d-dimensional independent Gaussian random variables and let f : Rd → R be an
L-Lipschitz function; that is, |f(x)−f(y)| ≤ L‖x−y‖2 for all x,y ∈ Rd. Suppose µ = Ex[f(x)].
Then for all t > 0, we have that

Pr
[∣∣f(x)− µ

∣∣ ≥ t
]
≤ 2e−t

2/(2σ2L2).

Lemma F.2 (Bounds on maximum of Gaussian random variables, [19]). Suppose X1, · · · , Xn
i.i.d.∼

N (0, σ2) and let Y = max1≤i≤nXi. We then have that
σ√
π ln 2

√
lnn ≤ E[Y ] ≤ σ

√
2
√

lnn.

Lemma F.3 (Bounds on maximum absolute values of Gaussian random variables; Theorem 3.12,
[23]). Suppose X1, · · · , Xn

i.i.d.∼ N (0, σ2) and let Y = max1≤i≤n |Xi|. We then have that

Pr
[
Y ≥ σ

√
2 lnn+ σ

√
2t
]
≤ e−t, ∀t > 0.

Lemma F.4 (Bounds on Chi-square random variables, [22]). Suppose X ∼ χ2
k; that is, X =∑k

j=1 Y
2
j for i.i.d. standard Normal random variables Y1, · · · , Yk. We then have that ∀t > 0,

Pr
[
X ≥ k + 2

√
kt+ 2t

]
≤ e−t, Pr

[
X ≤ k − 2

√
kt
]
≤ e−t.

Lemma F.5 (Bounds on non-central Chi-square random variables, [7]). Suppose X ∼ χ2
k(µ); that is,

X =
∑k
j=1 Y

2
k for independent Normal random variables Y1, · · · , Yk distributed as Yj ∼ N (µj , 1),∑

j µj = µ. We then have that

Pr
[
X ≥ (k + µ) + 2

√
(k + 2µ)t+ 2t

]
≤ e−t,

Pr
[
X ≤ (k + µ)− 2

√
(k + 2µ)t

]
≤ e−t.
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Lemma F.6 (Bounds on quadratic forms of sub-Gaussian random variables, [15]). Suppose X ∼
SGD(σ) and let Σ ∈ RD×D be a positive semidefinite matrix. Then for all t > 0 we have that

Pr
[
X>ΣX > σ2

(
tr(Σ) + 2

√
tr(Σ2)t+ 2‖Σ‖t

)]
≤ e−t.

F.2 Matrix perturbation lemmas

Lemma F.7 (Weyl’s theorem; Theorem 4.11, p. 204 in [26]). Let A,E be given m×n matrices with
m ≥ n. Then

max
i∈[n]

∣∣∣σi(A + E)− σi(A)
∣∣∣ ≤ ‖E‖2.

Lemma F.8 (Wedin’s theorem; Theorem 4.4, pp. 262 in [26]). Let A,E ∈ Rm×n be given matrices
with m ≥ n. Let A have the following singular value decomposition




U>1
U>2
U>3


A [ V1 V2 ] =

[
Σ1 0
0 Σ2

0 0

]
,

where U1,U2,U3,V1,V2 have orthonormal columns and Σ1 and Σ2 are diagonal matrices. Let
Ã = A + E be a perturbed version of A and (Ũ1, Ũ2, Ũ3, Ṽ1, Ṽ2, Σ̃1, Σ̃2) be analogous singular
value decomposition of Ã. Let Φ be the matrix of canonical angles between Range(U1) and
Range(Ũ1) and Θ be the matrix of canonical angles between Range(V1) and Range(Ṽ1). If there
exists α, δ > 0 such that

min
i
σi(Σ̃1) ≥ α+ δ and max

i
σi(Σ2) ≤ α,

then

max{‖U1U
>
1 − Ũ1Ũ

>
1 ‖2, ‖U1U

>
1 − Ṽ1Ṽ

>
1 ‖2} = max{‖ sin Φ‖2, ‖ sin Θ‖2} ≤

‖E‖2
δ

.

F.3 Lemmas on random tensors

Lemma F.9 (Spectral norm bound of random tensors, [27]). Suppose X is a pth order tensor with
dimensions d1, · · · , dp and each element of X is sampled i.i.d. from Gaussian distribution N (0, σ2).
Then the following upper bound on ‖X‖op holds with probability at least (1− δ):

‖X‖op ≤

√√√√8σ2

((
p∑

k=1

dp

)
ln(2K/K0) + ln(2/δ)

)
,

where K0 = ln(3/2).
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