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Abstract

We present discriminative Gaifman models, a novel family of relational machine
learning models. Gaifman models learn feature representations bottom up from
representations of locally connected and bounded-size regions of knowledge bases
(KBs). Considering local and bounded-size neighborhoods of knowledge bases
renders logical inference and learning tractable, mitigates the problem of over-
fitting, and facilitates weight sharing. Gaifman models sample neighborhoods
of knowledge bases so as to make the learned relational models more robust to
missing objects and relations which is a common situation in open-world KBs. We
present the core ideas of Gaifman models and apply them to large-scale relational
learning problems. We also discuss the ways in which Gaifman models relate to
some existing relational machine learning approaches.

1 Introduction

Knowledge bases are attracting considerable interest both from industry and academia [2, 6, 15, 10].
Instances of knowledge bases are the web graph, social and citation networks, and multi-relational
knowledge graphs such as Freebase [2] and YAGO [11]. Large knowledge bases motivate the
development of scalable machine learning models that can reason about objects as well as their
properties and relationships. Research in statistical relational learning (SRL) has focused on particular
formalisms such as Markov logic [22] and PROBLOG [8] and is often concerned with improving the
efficiency of inference and learning [14, 28]. The scalability problems of these statistical relational
languages, however, remain an obstacle and have prevented a wider adoption. Another line of work
focuses on efficient relational machine learning models that perform well on a particular task such
as knowledge base completion and relation extraction. Examples are knowledge base factorization
and embedding approaches [5, 21, 23, 26] and random-walk based ML models [15, 10]. We aim to
advance the state of the art in relational machine learning by developing efficient models that learn
knowledge base embeddings that are effective for probabilistic query answering on the one hand, and
interpretable and widely applicable on the other.

Gaifman’s locality theorem [9] is a result in the area of finite model theory [16]. The Gaifman graph
of a knowledge base is the undirected graph whose nodes correspond to objects and in which two
nodes are connected if the corresponding objects co-occur as arguments of some relation. Gaifman’s
locality theorem states that every first-order sentence is equivalent to a Boolean combination of
sentences whose quantifiers range over local neighborhoods of the Gaifman graph. With this paper,
we aim to explore Gaifman locality from a machine learning perspective. If every first-order sentence
is equivalent to a Boolean combination of sentences whose quantifiers range over local neighborhoods
only, we ought to be able to develop models that learn effective representations from these local
neighborhoods. There is increasing evidence that learning representations that are built up from
local structures can be highly successful. Convolutional neural networks, for instance, learn features
over locally connected regions of images. The aim of this work is to investigate the effectiveness
and efficiency of machine learning models that perform learning and inference within and across
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locally connected regions of knowledge bases. This is achieved by combining relational features that
are often used in statistical relatinal learning with novel ideas from the area of deep learning. The
following problem motivates Gaifman models.

Problem 1. Given a knowledge base (relational structure, mega-example, knowledge graph) or a
collection of knowledge bases, learn a relational machine learning model that supports complex
relational queries. The model learns a probability for each tuple in the query answer.

Note that this is a more general problem than knowledge base completion since it includes the
learning of a probability distribution for a complex relational query. The query corresponding to
knowledge base completion is r(x, y) for logical variables x and y, and relation r. The problem also
touches on the problem of open-world probabilistic KBs [7] since tuples whose prior probability is
zero will often have a non-zero probability in the query answer.

2 Background

We first review some important concepts and notation in first-order logic.

2.1 Relational First-order Logic

An atom r(t1, ..., tn) consists of predicate r of arity n followed by n arguments, which are either
elements from a finite domain D = {a, b, ...} or logical variables {x, y, ...}. We us the terms domain
element and object synonymously. A ground atom is an atom without logical variables. Formulas are
built from atoms using the usual Boolean connectives and existential and universal quantification. A
free variable in a first-order formula is a variable x not in the scope of a quantifier. We write ϕ(x, y)
to denote that x, y are free in ϕ, and free(ϕ) to refer to the free variables of ϕ. A substitution
replaces all occurrences of logical variable x by t in some formula ϕ and is denoted by ϕ[x/t].

A vocabulary consists of a finite set of predicates R and a domain D. Every predicate r is associated
with a positive integer called the arity of r. A R-structure (or knowledge base) D consists of the
domain D, a set of predicates R, and an interpretation. The Herbrand base of D is the set of all
ground atoms that can be constructed from R and D. The interpretation assigns a truth value to
every atom in the Herbrand base by specifying rD ⊆ Dn for each n-ary predicate r ∈ R. For a
formula ϕ(x1, ..., xn) and a structure D, we write D |= ϕ(d1, ..., dn) to say that D satisfies ϕ if
the variables x1, ..., xn are substituted with the domain elements d1, ...., dn. We define ϕ(D) :=
{(d1, ..., dn) ∈ Dn | D |= ϕ(d1, ..., dn)}. For the R-structure D and C ⊆ D, 〈C〉D denotes the
substructure induced by C on D, that is, the R-structure C with domain C and rC := rD ∩Cn for
every n-ary r ∈ R.

2.2 Gaifman’s Locality Theorem

The Gaifman graph of a R-structure D is the graph GD with vertex set D and an edge between
two vertices d, d′ ∈ D if and only if there exists an r ∈ R and a tuple (d1, ..., dk) ∈ rD such that
d, d′ ∈ {d1, ..., dk}. Figure 1 depicts a fragment of a knowledge base and the corresponding Gaifman
graph. The distance dD(d1, d2) between two elements d1, d2 ∈ D of a structure D is the length of
the shortest path in GD connecting d1 and d2. For r ≥ 1 and d ∈ D, we define the r-neighborhood
of d to be Nr(d) := {x ∈ D | dD(d, x) ≤ r}. We refer to r also as the depth of the neighborhood.
Let d = (d1, ..., dn) ∈ Dn. The r-neighborhood of d is defined as

Nr(d) =

n⋃
i=1

Nr(di).

For the Gaifman graph in Figure 1, we have that N1(d4) = {d1, d2, d5} and N1((d1, d2)) =
{d1, ..., d6}. ϕNr (x) is the formula obtained from ϕ(x) by relativizing all quantifiers to Nr(x), that
is, by replacing every subformula of the form ∃yψ(x, y, z) by ∃y(dD(x, y) ≤ r ∧ ψ(x, y, z)) and
every subformula of the form ∀yψ(x, y, z) by ∀y(dD(x, y) ≤ r → ψ(x, y, z)). A formula ψ(x) of
the form ϕNr (x), for some ϕ(x), is called r-local. Whether an r-local formula ψ(x) holds depends
only on the r-neighborhood of x, that is, for every structure D and every d ∈ D we have D |= ψ(d)
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Figure 1: A knowledge base fragment for the pair
(d1, d2) and the corresponding Gaifman graph.
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Figure 2: The degree distribution of the Gaifman
graph for the Freebase fragment FB15K.

if and only if 〈Nr(d)〉 |= ψ(d). For r, k ≥ 1 and ψ(x) being r-local, a local sentence is of the form

∃x1 · · · ∃xk

 ∧
1≤i<j≤k

dD(xi, xj) > 2r ∧
∧

1≤i≤k

ψ(xi)

 .

We can now state Gaifman’s locality theorem.
Theorem 1. [9] Every first-order sentence is equivalent to a Boolean combination of local sentences.

Gaifman’s locality theorem states that any first-order sentence can be expressed as a Boolean
combination of r-local sentences defined for neighborhoods of objects that are mutually far apart
(have distance at least 2r + 1). Now, a novel approach to (statistical) relational learning would be to
consider a large set of objects (or tuples of objects) and learn models from their local neighborhoods
in the Gaifman graphs. It is this observation that motivates Gaifman models.

3 Learning Gaifman Models

Instead of taking the costly approach of applying relational learning and inference directly to entire
knowledge bases, the representations of Gaifman models are learned bottom up, by performing
inference and learning within bounded-size, locally connected regions of Gaifman graphs. Each
Gaifman model specifies the data generating process from a given knowledge base (or collection of
knowledge bases), a set of relational features, and a ML model class used for learning.
Definition 1. Given a R-structureD, a discriminative Gaifman model forD is a tuple (q, r, k,Φ,M)
as follows:

• q is a first-order formula called the target query with at least one free variable;

• r is the depth of the Gaifman neighborhoods;

• k is the size-bound of the Gaifman neighborhoods;

• Φ is a set of first-order formulas (the relational features);

• M is the base model class (loss, hyper-parameters, etc.).

Throughout the rest of the paper, we will provide detailed explanations of the different parameters of
Gaifman models and their interaction with data generation, learning, and inference.

During the training of Gaifman models, neighborhoods are generated for tuples of objects d ∈ Dn

based on the parameters r and k. We first describe the procedure for arbitrary tuples d of objects
and will later explain where these tuples come from. For a given tuple d the r-neighborhood of d
within the Gaifman graph is computed. This results in the set of objects Nr(d). Now, from this
neighborhood we sample w neighborhoods consisting of at most k objects. Sampling bounded-size
sub-neighborhoods from Nr(d) is motivated as follows:
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1. The degree distribution of Gaifman graphs is often skewed (see Figure 2), that is, the
number of other objects a domain element is related to varies heavily. Generating smaller,
bounded-size neighborhoods allows the transfer of learned representations between more
and less connected objects. Moreover, the sampling strategy makes Gaifman models more
robust to object uncertainty [19]. We show empirically that larger values for k reduce the
effectiveness of the learned models for some knowledge bases.

2. Relational learning and inference is performed within the generated neighborhoods. Nr(d)
can be very large, even for r = 1 (see Figure 2), and we want full control over the complexity
of the computational problems.

3. Even for a single object tuple d we can generate a large number of training examples if
|Nr(d)| > k. This mitigates the risk of overfitting. The number of training examples per
tuple strongly influences the models’ accuracy.

We can now define the set of (r, k)-neighborhoods generated from a r-neighborhood.

Nr,k(d) :=

{
{N | N ⊆ Nr(d) and |N| = k} if |Nr(d)| ≥ k
{Nr(d)} otherwise.

For a given tuple of objects d, Algorithm 1 returns a set of w neighborhoods drawn from Nr,k(d)
such that the number of objects for each di is the same in expectation.

The formulas in the set Φ are indexed and of the form ϕi(s1, ..., sn, u1, ..., um) with sj ∈ free(q)
and uj 6∈ free(q). For every tuple d = (d1, ..., dn), generated neighborhood N ∈ Nr,k(d),
and ϕi ∈ Φ, we perform the substitution [s1/d1, ..., sn/dn] and relativize ϕi’s quantifiers to N,
resulting in ϕN

i [s1/d1, ..., sn/dn] which we write as ϕN
i [s/d]. Let 〈N〉 be the substructure induced

by N on D. For every formula ϕi(s1, ..., sn, u1, ..., um) and every n ∈ Nm, we now have that
D |= ϕN

i [s/d,u/n] if and only if 〈N〉 |= ϕN
i [s/d,u/n]. In other words, satisfaction is now checked

locally within the neighborhoods N, by deciding whether 〈N〉 |= ϕN
i [s/d,u/n]. The relational

semantics of Gaifman models is based on the set of formulas Φ. The feature vector v = (v1, ..., v|Φ|)
for tuple d, and neighborhood N ∈ Nr,k(d), written as vN, is constructed as follows

vi :=

 ϕN
i [s/d](〈N〉) if free(ϕN

i [s/d]) > 0
1 if 〈N〉 |= ϕN

i [s/d]
0 otherwise.

That is, if ϕN
i [s/d] has free variables, vi is equal to the number of groundings of ϕi[s/d] that are

satisfied within the neighborhood substructure 〈N〉; if ϕi[s/d] has no free variables, vi = 1 if
and only if ϕi[s/d] is satisfied within the neighborhod substructure 〈N〉; and vi = 0 otherwise.
The neighborhood representations v capture r-local formulas and help the model learn formula
combinations that are associated with negative and positive examples. For the right choices of the
parameters r and k, the neighborhood representations of Gaifman models capture the relational
structure associated with positive and negative examples.

Deciding D |= ϕ for a structure D and a first-order formula ϕ is referred to as model checking and
computing ϕ(D) is called ϕ-counting. The combined complexity of model checking is PSPACE-
complete [29] and there exists a ||D||O(||ϕ||) algorithm for both problems where || · || is the size of an
encoding. Clearly, for most real-world KBs this is not feasible. For Gaifman models, however, where
the neighborhoods are bounded-size, typically 10 ≤ |N| = k ≤ 100, the above representation can
be computed very efficiently for a large class of relational features. We can now state the following
complexity result.

Theorem 2. Let D be a relational structure (knowledge base), let d be the size of the largest r-
neighborhood of D’s Gaifman graph, and let s be the greatest encoding size of any formula in Φ.
For a Gaifman model with parameters r and k, the worst-case complexity for computing the feature
representations of N neighborhoods is O(N(d+ |Φ|ks)).

Existing SRL approaches could be applied to the generated neighborhoods, treating each as a possible
world for structure and parameter learning. However, our goal is to learn relational models that utilize
embeddings computed by multi-layered neural networks.
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Algorithm 1 GENNEIGHS: Computes a list of w
neighborhoods of size k for an input tuple d.

1: input: tuple d ∈ Dn, parameters r, k, and w
2: S = [ ]
3: while |S| < w do
4: S = ∅
5: N = Nr(d)
6: for all i ∈ {1, ..., n} do
7: U = min(bk/nc, |Nr(di)|) elements

sampled uniformly from Nr(di)
8: N = N \ U
9: S = S ∪ U

10: U = min(|S| − k, |N |) elements sampled
uniformly from N

11: S = S ∪ U
12: S = S + S
13: return S

...
W1 ... Wn

Φ

M

!

Figure 3: Learning of a Gaifman model.
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?
!

Φ

M
Figure 4: Inference with a Gaifman model.

3.1 Learning Distributions for Relational Queries

Let q be a first-order formula (the relational query) and S(q) the result set of the query, that is, all
groundings that render the formula satisfied in the knowledge base. The feature representations
generated for tuples of objects d ∈ S(q) serve as positive training examples. The Gaifman models’
aim is to learn neighborhood embeddings that capture local structure of tuples for which we know
that the target query evaluates to true. Similar to previous work, we generate negative examples by
corrupting tuples that correspond to positive examples. The corruption mechanism takes a positive
input tuple d = (d1, ..., dn) and substitutes, for each i ∈ {1, ..., n}, the domain element di with
objects sampled from D while keeping the rest of the tuple fixed.

The discriminative Gaifman model performs the following steps.

1. Evaluate the target query q and compute the result set S(q)
2. For each tuple d in the result set S(q):

• Compute N , a multiset of w neighborhoods Ñ ∈ Nr,k(d) with Algorithm 1; each
such neighborhood serves as a positive training example

• Compute Ñ , a multiset of w̃ neighborhoods N ∈ Nr,k(d̃) for corrupted versions of d
with Algorithm 1; each such neighborhood serves as a negative training example
• Perform model checking and counting within the neighborhoods to compute the feature

representations vN and vÑ for each N ∈ N and Ñ ∈ Ñ , respectively
3. Learn a ML model with the generated positive and negative training examples.

Learning the final Gaifman model depends on the base ML model classM and its loss function.
We obtained state of the art results with neural networks, gradient-based learning, and categorical
cross-entropy as loss function

L = −

∑
N∈N

log pM(vN) +
∑

Ñ∈Ñ

log(1− pM(vÑ))

 ,
where pM(vN) is the probability the model returns on input vN. However, other loss functions are
possible. The probability of a particular substitution of the target query to be true is now

P (q[s/d] = True) = E
N∈N(r,k)(d)

[pM(vN)].

The expected probability of a representation of a neighborhood drawn uniformly at random from
N(r,k)(d). It is now possible to generate several neighborhoods N and their representations vN to
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estimate P (q[s/d] = True), simply by averaging the neighborhoods’ probabilities. We have found
experimentally that a single neighborhood already leads to highly accurate results but also that more
neighborhood samples further improve the accurracy.

Let us emphasize again the novel semantics of Gaifman models. Gaifman models generate a large
number of small, bounded-size structures from a large structure, learn a representation for these
bounded-size structures, and use the resulting representation to answer queries concerning the
original structure as a whole. The advantages are model weight sharing across a large number of
neighborhoods and efficiency of the computational problems. Figure 3 and Figure 4 illustrate learning
from bounded-size neighborhood structures and inference in Gaifman models.

3.2 Structure Learning

Structure learning is the problem of determining the set of relational features Φ. We provide some
directions and leave the problem to future work. Given a collection of bounded-size neighborhoods
of the Gaifman graph, the goal is to determine suitable relational features for the problem at hand.
There is a set of features which we found to be highly effective. For example, formulas of the form
∃x r(s1, x), ∃x r(s1, x) ∧ r(x, s2), and ∃x, y r1(s1, x) ∧ r2(x, y) ∧ r3(y, s2) for all relations. The
latter formulas capture fixed-length paths between s1 and s2 in the neighborhoods. Hence, Path
Ranking type features [15] can be used in Gaifman models as a particular relational feature class. For
path formulas with several different relations we cannot include all |R|3 combinations and, hence,
we have to determine a subset occurring in the training data. Fortunately, since the neighborhood
size is bounded, it is computationally feasible to compute frequent paths in the neighborhoods and
to use these as features. The complexity of this learning problem is in the number of elements
in the neighborhood and not in the number of all objects in the knowledge base. Relation paths
that do not occur in the data can be discarded. Gaifman models can also use features of the form
∀x, y r(x, y)⇒ r(y, x), ∃x, y r(x, y), and ∀x, y, z r(x, y) ∧ r(y, z)⇒ r(x, z), to name but a few.
Moreover, features with free variables, such as r(s1, x) are counting features (here: the r out-degree
of s1). It is even computationally feasible to include specific second-order features (for instance,
quantifiers ranging over R) and aggregations of feature values.

3.3 Prior Confidence Values, Types, and Numerical Attributes

Numerous existing knowledge bases assign confidence values (probabilities, weights, etc.) to their
statements. Gaifman models can incorporate confidence values during the sampling and learning
process. Instead of adding random noise to the representations, which we have found to be beneficial,
noise can be added inversely proportional to the confidence values. Statements for which the prior
confidence values are lower are more likely to be dropped out during training than statements with
higher confidence values. Furthermore, Gaifman models can directly incorporate object types such as
Actor and Action Movie as well as numerical features such as location and elevation. One simply
has to specify a fixed position in the neighborhood representation v for each object position within
the input tuples d.

4 Related Work

Recent work on relational machine learning for knowledge graphs is surveyed in [20]. We focus on
a select few methods we deem most related to Gaifman models and refer the interested reader to
the above article. A large body of work exists on learning inference rules from knowledge bases.
Examples include [31] and [1] where inference rules of length one are learned; and [25] where general
inference rules are learned by applying a support threshold. Their method does not scale to large KBs
and depends on predetermined thresholds. Lao et al. [15] train a logistic regression classifier with
path features to perform KB completion. The idea is to perform a random walk between objects and
to exploit the discovered paths as features. SFE [10] improves PRA by making the generation of
random walks more efficient. More recent embedding methods have combined paths in KBs with
KB embedding methods [17]. Gaifman models support a much broader class of relational features
subsuming path features. For instance, Gaifman models incorporate counting features that have
shown to be beneficial for relational models.
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Latent feature models learn features for objects and relations that are not directly observed in
the data. Examples of latent feature models are tensor factorization [21, 23, 26] and embedding
models [5, 3, 4, 18, 13, 27]. The majority of these models can be understood as more or less complex
neural networks operating on object and relation representations. Gaifman models can also be used
to learn knowledge base embeddings. Indeed, one can show that it generalizes or complements
existing approaches. For instance, the universal schema [23] considers pairs of objects where relation
membership variables comprise the model’s features. We have the following interesting relationship
between universal schemas [23] and Gaifman models. Given a knowledge base D. The Gaifman
model for D with r = 0, k = 2, Φ =

⋃
r∈R{r(s1, s2), r(s2, s1)}, w = 1 and w̃ = 0 is equivalent

to the Universal Schema [23] for D up to the base model classM. More recent methods combine
embedding methods and inference-based logical approaches for relation extraction [24]. Contrary
to most existing multi-relational ML models [20], Gaifman models natively support higher-arity
relations, functional and type constraints, numerical features, and complex target queries.

5 Experiments

Table 1: The statistics of the data sets.

Dataset |D| |R| # train # test
WN18 40,943 18 141,442 5,000
FB15k 14,951 1,345 483,142 59,071

The aim of the experiments is to understand the
efficiency and effectiveness of Gaifman models for
typical knowledge base inference problems. We
evaluate the proposed class of models with two data
sets derived from the knowledge bases WORDNET
and FREEBASE [2]. Both data sets consist of a list of statements r(d1, d2) that are known to be true.
For a detailed description of the data sets, whose statistics are listed in Table 1, we refer the reader to
previous work [4].

After training the models, we perform entity prediction as follows. For each statement r(d1, d2) in
the test set, d2 is replaced by each of the KB’s objects in turn. The probabilities of the resulting
statements are predicted and sorted in descending order. Finally, the rank of the correct statement
within this ordered list is determined. The same process is repeated now with replacements of d1. We
compare Gaifman models with q = r(x, y) to state of the art knowledge base completion approaches
which are listed in Table 2. We trained Gaifman models with r = 1 and different values for k, w,
and w̃. We use a neural network architecture with two hidden layers, each having 100 units and
sigmoid activations, dropout of 0.2 on the input layer, and a softmax layer. Dropout makes the model
more robust to missing relations between objects. We trained one model per relation and left the
hyper-parameters fixed across models. We did not perform structure learning and instead used the
following set of relational features

Φ :=
⋃

r∈R, i∈{1,2}

{
r(s1, s2), r(s2, s1),∃x r(x, si),∃x r(si, x),
∃x r(s1, x) ∧ r(x, s2),∃x r(s2, x) ∧ r(x, s1)

}
.

To compute the probabilities, we averaged the probabilities of N = 1, 2, or 3 generated (r, k)-
neighborhoods.
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Figure 5: Query answers per second rates for
different values of the parameter k.

We performed runtime experiments to evaluate the
models’ efficiency. Embedding models have the
advantage that one dot product for every candidate
object is sufficient to compute the score for the
corresponding statement and we need to assess the
performance of Gaifman models in this context.
All experiments were run on commodity hardware
with 64G RAM and a single 2.8 GHz CPU.

Table 2 lists the experimental results for different
parameter settings [N, k,w, w̃]. The Gaifman mod-
els achieve the highest hits@10 and hits@1 values
for both data sets. As expected, the more neighbor-
hood samples are used to compute the probability
estimate (N = 1, 2, 3) the better the result. When
the entire 1-neighborhood is considered (k =∞),
the performance for WN18 does not deteriorate as it does for FB15k. This is due to the fact that
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Table 2: Results of the entity prediction experiments.
Data Set WN18 FB15K
Metric Mean rank Hits@10 Hits@1 Mean rank Hits@10 Hits@1

RESCAL[21] 1,163 52.8 - 683 44.1 -
SE[5] 985 80.5 - 162 39.8 -

LFM[12] 456 81.6 - 164 33.1 -
TransE[4] 251 89.2 8.9 51 71.5 28.1

TransR[18] 219 91.7 - 78 65.5 -
DistMult[30] 902 93.7 76.1 97 82.8 44.3

Gaifman [1, ∞, 1, 5] 298 93.9 75.8 124 78.1 59.8
Gaifman [1, 20, 1, 2] 357 88.1 66.8 114 79.2 60.1
Gaifman [1, 20, 5, 25] 392 93.6 76.4 97 82.1 65.6
Gaifman [2, 20, 5, 25] 378 93.9 76.7 84 83.4 68.5
Gaifman [3, 20, 5, 25] 352 93.9 76.1 75 84.2 69.2

objects in WN18 have on average few neighbors. FB15k has more variance in the Gaifman graph’s
degree distribution (see Figure 2) which is reflected in the better performance for smaller k values.
The experiments also show that it is beneficial to generate a large number of representations (both
positive and negative ones). The performance improves with larger number of training examples.

The runtime experiments demonstrate that Gaifman models perform inference very efficiently for
k ≤ 20. Figure 5 depicts the number of query answers the Gaifman models are able to serve per
second, averaged over relation types. A query answer returns the probability for one object pair.
These numbers include neighborhood generation and network inference. The results are promising
with about 5000 query answers per second (averaged across relation types) as long as k remains
small. Since most object pairs of WN18 have a 1-neighborhood whose size is smaller than 20, the
answers per second rates for k > 20 is not reduced as drastically as for FB15k.

6 Conclusion and Future Work

Gaifman models are a novel family of relational machine learning models that perform learning
and inference within and across locally connected regions of relational structures. Future directions
of research include structure learning, more sophisticated base model classes, and application of
Gaifman models to additional relational ML problems.
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