
Supplement of “Improved Dropout for Shallow and
Deep Learning"

Zhe Li1, Boqing Gong2, Tianbao Yang1
1The University of Iowa, Iowa city, IA 52245

2University of Central Florida, Orlando, FL 32816
{zhe-li-1,tianbao-yang}@uiowa.edu

bgong@crcv.ucf.edu

1 Proof of Theorem 1

The update given by wt+1 = wt−η∇`(w>t (xt ◦εt), yt) can be considered as the stochastic gradient
descent (SGD) update of the following problem

min
w
{L̂(w) , EP̂ [`(w

>(x ◦ ε), y)]}

Define gt as gt = ∇`(w>t (xt ◦ εt), yt) = `′(w>t (xt ◦ εt), yt)xt ◦ εt, where `′(z, y) denotes the
derivative in terms of z. Since the loss function is G-Lipschitz continuous, therefore ‖gt‖2 ≤
G‖xt ◦ εt‖2. According to the analysis of SGD [3], we have the following lemma.
Lemma 1. Let wt+1 = wt − ηgt and w1 = 0. Then for any ‖w∗‖2 ≤ r we have

n∑
t=1

g>t (wt −w∗) ≤
r2

2η
+
η

2

n∑
t=1

‖gt‖22 (1)

By taking expectation on both sides over the randomness in (xt, yt, εt) and noting the bound on
‖gt‖2, we have

E[n]

[
n∑

t=1

g>t (wt −w∗)

]
≤ r2

2η
+
η

2

n∑
t=1

G2E[n][‖xt ◦ εt‖22]

where E[t] denote the expectation over (xi, yi, εi), i = 1, . . . , t. Let Et[·] denote the expectation over
(xt, yt, εt) with (xi, yi, εi), i = 1, . . . , t− 1 given. Then we have

n∑
t=1

E[t][g
>
t (wt −w∗)] ≤

r2

2η
+
η

2

n∑
t=1

G2Et[‖xt ◦ εt‖22]

Since

E[t][g
>
t (wt−w∗)] = E[t−1][Et[gt]

>(wt−w∗)] = E[t−1][∇L̂(wt)
>(wt−w∗)] ≥ E[t−1][L̂(wt)−L̂(w∗)]

As a result

E[n]

[
n∑

t=1

(L̂(wt)− L̂(w∗))

]
≤ r2

2η
+
η

2

n∑
t=1

G2ED̂[‖xt ◦ εt‖22] ≤
r2

2η
+
η

2
G2B2n (2)

where the last inequality follows the assumed upper bound of ED̂[‖xt◦εt‖22]. Following the definition
of ŵn and the convexity of L(w) we have

E[n][L̂(ŵn)− L̂(w∗)] ≤ E[n]

[
1

n

n∑
t=1

(L̂(wt)− L̂(w∗))

]
≤ r2

2ηn
+
η

2
G2B2

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



By minimizing the upper bound in terms of η, we have E[n][L̂(ŵn)− L̂(w∗)] ≤ GBr√
n

. According to

Proposition 1 in the paper L̂(w) = L(w) +RD,M(w), therefore

E[n][L(ŵn) +RD,M(ŵn)] ≤ L(w∗) +RD,M(w∗) +
GBr√
n

1.1 Proof of Lemma 1

We have the following:

1

2
‖wt+1 −w∗‖22 =

1

2
‖wt − ηgt −w∗‖22 =

1

2
‖wt −w∗‖22 +

η2

2
‖gt‖22 − η(wt −w∗)

>gt

Then
(wt −w∗)

>gt ≤
1

2η
‖wt −w∗‖22 −

1

2η
‖wt+1 −w∗‖22 +

η

2
‖gt‖22

By summing the above inequality over t = 1, . . . , n, we obtain
n∑

t=1

g>t (wt −w∗) ≤
‖w∗ −w1‖22

2η
+
η

2

n∑
t=1

‖gt‖22

By noting that w1 = 0 and ‖w∗‖2 ≤ r, we obtain the inequality in Lemma 1.

2 Proof of Proposition 2

We have

ED̂‖x ◦ ε‖
2
2 = ED

[
d∑

i=1

x2i
k2p2i

E[m2
i ]

]
Since {m1, . . . ,md} follows a multinomial distribution Mult(p1, . . . , pd; k), we have

E[m2
i ] = var(mi) + (E[mi])

2 = kpi(1− pi) + k2p2i

The result in the Proposition follows by combining the above two equations.

3 Proof of Proposition 3

Note that only the first term in the R.H.S of Eqn. (7) depends on pi. Thus,

p∗ = arg min
p≥0,p>1=1

d∑
i=1

ED[x
2
i ]

pi

The result then follows the KKT conditions.

4 Proof of Proposition 4

We prove the first upper bound first. From Eqn. (4) in the paper, we have

R̂D,M(w∗) ≤
1

8
ED[w

>
∗ CM(x ◦ ε)w∗]

where we use the fact
√
ab ≤ a+b

2 for a, b ≥ 0. Using Eqn. (5) in the paper, we have

ED[w
>
∗ CM(x ◦ ε)w∗] = ED

[
w>∗

(
1

k
diag(x2i /pi)−

1

k
xx>

)
w∗

]
=

1

k
ED

[
d∑

i=1

w2
∗ix

2
i

pi
− (w>∗ x)

2

]
This gives a tight bound of R̂D,M(w∗), i.e.,

R̂D,M(w∗) ≤
1

8k

{
d∑

i=1

w2
∗iED[x

2
i ]

pi
− ED(w

>
∗ x)

2

}

2



By minimizing the above upper bound over pi, we obtain following probabilities

p∗i =

√
w2
∗iED[x

2
i ]∑d

j=1

√
w2
∗iED[x

2
j ]

(3)

which depend on unknown w∗. We address this issue, we derive a relaxed upper bound. We note that
CM(x ◦ ε) = EM[(x ◦ ε− x)(x ◦ ε− x)>]

≤ (EM‖x ◦ ε− x‖22) · Id =
(
EM[‖x ◦ ε‖22]− ‖x‖22

)
Id

where Id denotes the identity matrix of dimension d. Thus
ED[w

>
∗ CM(x ◦ ε)w∗] ≤ ‖w∗‖22

(
ED̂[‖x ◦ ε‖

2
2]− ED[‖x‖22]

)
By noting the result in Proposition 2 in the paper, we have

ED[w
>
∗ CM(x ◦ ε)w∗] ≤

1

k
‖w∗‖22

(
d∑

i=1

ED[x
2
i ]

pi
− ED[‖x‖22]

)
which proves the upper bound in Proposition 4.

5 Neural Network Structures

In this section we present the neural network structures and the number of filters, filter size, padding
and stride parameters for MNIST, SVHN, CIFAR-10 and CIFAR-100, respectively. Note that in
Table 2, Table 3 and Table 4, the rnorm layer is the local response normalization layer and the local
layer is the locally-connected layer with unshared weights.

5.1 MNIST

We used the similar neural network structure to [2]: two convolution layers, two fully connected
layers, a softmax layer and a cost layer at the end. The dropout is added to the first fully connected
layer. Tables 1 presents the neural network structures and the number of filters, filter size, padding
and stride parameters for MNIST.

Table 1: The Neural Network Structure for MNIST

Layer Type Input Size #Filters Filter size Padding/Stride Output Size
conv1 28× 28× 1 32 4× 4 0/1 21× 21× 32
pool1(max) 21× 21× 32 2× 2 0/2 11× 11× 32
conv2 11× 11× 32 64 5× 5 0/1 7× 7× 64
pool2(max) 7× 7× 64 3× 3 0/3 3× 3× 64
fc1 3× 3× 64 150
dropout 150 150
fc2 150 10
softmax 10 10
cost 10 1

5.2 SVHN

The neural network structure used for this data set is from [2], including 2 convolutional layers, 2
max pooling layers, 2 local response layers, 2 fully connected layers, a softmax layer and a cost layer
with one dropout layer. Tables 2 presents the neural network structures and the number of filters,
filter size, padding and stride parameters used for SVHN data set.

5.3 CIFAR-10

The neural network structure is adopted from [2], which consists two convolutional layer, two pooling
layers, two local normalization response layers, 2 locally connected layers, two fully connected layers
and a softmax and a cost layer. Table 3 presents the detail neural network structure and the number of
filters, filter size, padding and stride parameters used.

3



Table 2: The Neural Network Structure for SVHN

Layer Type Input Size #Filters Filter Size Padding/Stride Output Size
conv1 28× 28× 3 64 5× 5 0/1 24× 24× 64
pool1(max) 24× 24× 64 3× 3 0/2 12× 12× 64
rnorm1 12× 12× 64 12× 12× 64
conv2 12× 12× 64 64 5× 5 2/1 12× 12× 64
rnorm2 12× 12× 64 12× 12× 64
pool2(max) 12× 12× 64 3× 3 0/2 6× 6× 64
local3 6× 6× 64 64 3× 3 1/1 6× 6× 64
local4 6× 6× 64 32 3× 3 1/1 6× 6× 32
dropout 1152 1152
fc1 1152 512
fc10 512 10
softmax 10 10
cost 10 1

Table 3: The Neural Network Structure for CIFAR-10

Layer Type Input Size #Filters Filter Size Padding/Stride Output Size
conv1 24× 24× 3 64 5× 5 2/1 24× 24× 64
pool1(max) 24× 24× 64 3× 3 0/2 12× 12× 64
rnorm1 12× 12× 64 12× 12× 64
conv2 12× 12× 64 64 5× 5 2/1 12× 12× 64
rnorm2 12× 12× 64 12× 12× 64
pool2(max) 12× 12× 64 3× 3 0/2 6× 6× 64
local3 6× 6× 64 64 3× 3 1/1 6× 6× 64
local4 6× 6× 64 32 3× 3 1/1 6× 6× 32
dropout 1152 1152
fc1 1152 128
fc10 128 10
softmax 10 10
cost 10 1

5.4 CIFAR-100

The network structure for this data set is similar to the neural network structure in [1], which consists
of 2 convolution layers, 2 max pooling layers, 2 local response normalization layers, 2 locally
connected layers, 3 fully connected layers, and a softmax and a cost layer. Table 4 presents the
neural network structures and the number of filters, filter size, padding and stride parameters used for
CIFAR-100 data set.

5.5 The Neural Network Structure used for BN

Tables 5 and 6 present the network structures of different methods in subsection 5.3 in the paper. The
layer pool(ave) in Table 5 and Table 6 represents the average pooling layer.

References

[1] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images,
2009.

[2] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In Proceedings of the 30th International Conference on Machine
Learning (ICML-13), pages 1058–1066, 2013.

4



Table 4: The Neural Network Structure for CIFAR-100

Layer Type Input Size #Filters Filter Size Padding/Stride Output Size
conv1 32× 32× 3 64 5× 5 2/1 32× 32× 64
pool1(max) 32× 32× 64 3× 3 0/2 16× 16× 64
rnorm1 16× 16× 64 16× 16× 64
conv2 16× 16× 64 64 5× 5 2/1 16× 16× 64
rnorm2 16× 16× 64 16× 16× 64
pool2(max) 16× 16× 64 3× 3 0/2 8× 8× 64
local3 8× 8× 64 64 3× 3 1/1 8× 8× 64
local4 8× 8× 64 32 3× 3 1/1 8× 8× 32
fc1 2048 128
dropout 128 128
fc2 128 128
fc100 128 100
softmax 100 100
cost 100 1

Table 5: Layers of networks for the experiment comparing with BN on CIFAR-10

Layer Type noBN-noDropout BN e-dropout
Layer 1 conv1 conv1 conv1
Layer 2 pool1(max) pool(max) pool1(max)
Layer 3 N/A bn1 N/A
Layer 4 conv2 conv2 conv2
Layer 5 N/A bn2 N/A
Layer 6 pool2(ave) pool2(ave) pool2(ave)
Layer 7 conv3 conv3 conv3
Layer 8 N/A bn3 e-dropout
Layer 9 pool3(ave) pool3(ave) pool3(ave)
Layer 10 fc1 fc1 fc1
Layer 11 softmax softmax softmax

Table 6: Sizes in networks for the experiment comparing with BN on CIFAR-10

Layer Type Input size #Filters Filter size Padding/Stride Output size
conv1 32× 32× 3 32 5× 5 2/1 32× 32× 32
pool1(max) 32× 32× 32 3× 3 0/2 16× 16× 32
conv2 16× 16× 32 32 5× 5 2/1 16× 16× 32
pool2(ave) 16× 16× 32 3× 3 0/2 8× 8× 32
conv3 8× 8× 32 64 5× 5 2/1 8× 8× 64
pool3(ave) 8× 8× 64 3× 3 0/2 4× 4× 64
fc1 4× 4× 64 10
softmax 10 10
cost 10 1

5



[3] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the International Conference on Machine Learning (ICML), pages 928–936,
2003.

6


	Proof of Theorem 1
	Proof of Lemma 1

	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Neural Network Structures
	MNIST
	SVHN
	CIFAR-10
	CIFAR-100
	The Neural Network Structure used for BN


