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Abstract

You are a robot and you live in a Markov decision process (MDP) with a finite or an
infinite number of transitions from state-action to next states. You got brains and so
you plan before you act. Luckily, your roboparents equipped you with a generative
model to do some Monte-Carlo planning. The world is waiting for you and you
have no time to waste. You want your planning to be efficient. Sample-efficient.
Indeed, you want to exploit the possible structure of the MDP by exploring only a
subset of states reachable by following near-optimal policies. You want guarantees
on sample complexity that depend on a measure of the quantity of near-optimal
states. You want something, that is an extension of Monte-Carlo sampling (for
estimating an expectation) to problems that alternate maximization (over actions)
and expectation (over next states). But you do not want to StOP with exponential
running time, you want something simple to implement and computationally
efficient. You want it all and you want it now. You want TrailBlazer.

1 Introduction

We consider the problem of sampling-based planning in a Markov decision process (MDP) when a
generative model (oracle) is available. This approach, also called Monte-Carlo planning or Monte-
Carlo tree search (see e.g., [12]), has been popularized in the game of computer Go [7, 8, 15] and
shown impressive performance in many other high dimensional control and game problems [4]. In
the present paper, we provide a sample complexity analysis of a new algorithm called TrailBlazer.

Our assumption about the MDP is that we possess a generative model which can be called from any
state-action pair to generate rewards and transition samples. Since making a call to this generative
model has a cost, be it a numerical cost expressed in CPU time (in simulated environments) or a
financial cost (in real domains), our goal is to use this model as parsimoniously as possible.

Following dynamic programming [2], planning can be reduced to an approximation of the (optimal)
value function, defined as the maximum of the expected sum of discounted rewards: E

[∑
t≥0 γ

trt

]
,

where γ ∈ [0, 1) is a known discount factor. Indeed, if an ε-optimal approximation of the value
function at any state-action pair is available, then the policy corresponding to selecting in each state
the action with the highest approximated value will be O (ε/ (1− γ))-optimal [3].

Consequently, in this paper, we focus on a near-optimal approximation of the value function for
a single given state (or state-action pair). In order to assess the performance of our algorithm we
measure its sample complexity defined as the number of oracle calls, given that we guarantee its
consistency, i.e., that with probability at least 1− δ, TrailBlazer returns an ε-approximation of the
value function as required by the probably approximately correct (PAC) framework.
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We use a tree representation to represent the set of states that are reachable from any initial state.
This tree alternates maximum (MAX) nodes (corresponding to actions) and average (AVG) nodes
(corresponding to the random transition to next states). We assume the number K of actions is finite.
However, the number N of possible next states is either finite or infinite (which may be the case
when the state space is infinite), and we will report results in both the finite N and the infinite case.
The root node of this planning tree represents the current state (or a state-action) of the MDP and its
value is the maximum (over all policies defined at MAX nodes) of the corresponding expected sum of
discounted rewards. Notice that by using a tree representation, we do not use the property that some
state of the MDP can be reached by different paths (sequences of states-actions). Therefore, this state
will be represented by different nodes in the tree. We could potentially merge such duplicates to form
a graph instead. However, for simplicity, we choose not to merge these duplicates and keep a tree,
which could make the planning problem harder. To sum up, our goal is to return, with probability
1− δ, an ε-accurate value of the root node of this planning tree while using as low number of calls
to the oracle as possible. Our contribution is an algorithm called TrailBlazer whose sampling
strategy depends on the specific structure of the MDP and for which we provide sample complexity
bounds in terms of a new problem-dependent measure of the quantity of near-optimal nodes. Before
describing our contribution in more detail we first relate our setting to what has been around.

1.1 Related work

In this section we focus on the dependency between ε and the sample complexity and all bound of
the style 1/εc are up to a poly-logarithmic multiplicative factor not indicated for clarity. Kocsis and
Szepesvári [12] introduced the UCT algorithm (upper-confidence bounds for trees). UCT is efficient
in computer Go [7, 8, 15] and a number of other control and game problems [4]. UCT is based on
generating trajectories by selecting in each MAX node the action that has the highest upper-confidence
bound (computed according to the UCB algorithm of Auer et al. [1]). UCT converges asymptotically to
the optimal solution, but its sample complexity can be worst than doubly-exponential in (1/ε) for
some MDPs [13]. One reason for this is that the algorithm can expand very deeply the apparently
best branches but may lack sufficient exploration, especially when a narrow optimal path is hidden in
a suboptimal branch. As a result, this approach works well in some problems with a specific structure
but may be much worse than a uniform sampling in other problems.

On the other hand, a uniform planning approach is safe for all problems. Kearns et al. [11] generate a
sparse look-ahead tree based on expanding all MAX nodes and sampling a finite number of children
from AVG nodes up to a fixed depth that depends on the desired accuracy ε. Their sample complexity
is2 of the order of (1/ε)log(1/ε), which is non-polynomial in 1/ε. This bound is better than that for
UCT in a worst-case sense. However, as their look-ahead tree is built in a uniform and non-adaptive
way, this algorithm fails to benefit from a potentially favorable structure of the MDP.

An improved version of this sparse-sampling algorithm by Walsh et al. [17] cuts suboptimal branches
in an adaptive way but unfortunately does not come with an improved bound and stays non-polynomial
even in the simple Monte Carlo setting for which K = 1.

Although the sample complexity is certainly non-polynomial in the worst case, it can be polyno-
mial in some specific problems. First, for the case of finite N , the sample complexity is poly-
nomial and Szörényi et al. [16] show that a uniform sampling algorithm has complexity at most
(1/ε)2+log(KN)/(log(1/γ)). Notice that the product KN represents the branching factor of the look-
ahead planning tree. This bound could be improved for problems with specific reward structure or
transition smoothness. In order to do this, we need to design non-uniform, adaptive algorithm that
captures the possible structure of the MDP when available, while making sure that in the worst case,
we do not perform worse than a uniform sampling algorithm.

The case of deterministic dynamics (N = 1) and rewards considered by Hren and Munos [10] has a
complexity of order (1/ε)(log κ)/(log(1/γ)), where κ ∈ [1,K] is the branching factor of the subset of
near-optimal nodes.3 The case of stochastic rewards has been considered by Bubeck and Munos [5]
but with the difference that the goal was not to approximate the optimal value function but the value
of the best open-loop policy which consists in a sequence of actions independent of states. Their
sample complexity is (1/ε)max(2,(log κ)/(log 1/γ)).

2neglecting exponential dependence in γ
3nodes that need to be considered in order to return a near-optimal approximation of the value at the root
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In the case of general MDPs, Buşoniu and Munos [6] consider the case of a fully known model of
the MDP. For any state-action, the model returns the expected reward and the set of all next states
(assuming N is finite) with their corresponding transition probabilities. In that case, the complexity is
(1/ε)log κ/(log(1/γ)), where κ ∈ [0,KN ] can again be interpreted as a branching factor of the subset
of near-optimal nodes. These approaches use the optimism in the face of uncertainty principle whose
applications to planning have been have been studied by Munos [13]. TrailBlazer is different. It
is not optimistic by design: To avoid voracious demand for samples it does not balance the upper-
confidence bounds of all possible actions. This is crucial for polynomial sample complexity in the
infinite case. The whole Section 3 shines many rays of intuitive light on this single and powerful idea.

The work that is most related to ours is StOP by Szörényi et al. [16] which considers the plan-
ning problem in MDPs with a generative model. Their complexity bound is of the order of
(1/ε)2+log κ/(log(1/γ))+o(1), where κ ∈ [0,KN ] is a problem-dependent quantity. However, their κ
defined as limε→0 max(κ1, κ2) (in their Theorem 2) is somehow difficult to interpret as a measure of
the quantity of near-optimal nodes. Moreover, StOP is not computationally efficient as it requires to
identify the optimistic policy which requires computing an upper bound on the value of any possible
policy, whose number is exponential in the number of MAX nodes, which itself is exponential in the
planning horizon. Although they suggest (in their Appendix F) a computational improvement, this
version is not analyzed. Finally, unlike in the present paper, StOP does not consider the case N =∞
of an unbounded number of states.

1.2 Our contributions

Our main result is TrailBlazer, an algorithm with a bound on the number of samples required to
return a high-probability ε-approximation of the root node whether the number of next states N is
finite or infinite. The bounds use a problem-dependent quantity (κ or d) that measures the quantity of
near-optimal nodes. We now summarize the results.

Finite number of next states (N < ∞): The sample complexity of TrailBlazer is of the order
of4 (1/ε)max(2,log(Nκ)/ log(1/γ)+o(1)), where κ ∈ [1,K] is related to the branching factor of the set
of near-optimal nodes (precisely defined later).

Infinite number of next states (N =∞): The complexity of TrailBlazer is (1/ε)2+d, where d
is a measure of the difficulty to identify the near-optimal nodes. Notice that d can be finite even if
the planning problem is very challenging.5 We also state our contributions in specific settings in
comparison to previous work.

• For the case N < ∞, we improve over the best-known previous worst-case bound with
an exponent (to 1/ε) of max(2, log(NK)/ log(1/γ)) instead of 2 + log(NK)/ log(1/γ)
reported by Szörényi et al. [16].
• For the case N = ∞, we identify properties of the MDP (when d = 0) under which the

sample complexity is of order (in 1/ε2). This is the case when there are non-vanishing action-
gaps6 from any state along near-optimal policies or when the probability of transitionning to
nodes with gap ∆ is upper bounded by ∆2. This complexity bound is as good as Monte-
Carlo sampling and for this reason TrailBlazer is a natural extension of Monte-Carlo
sampling (where all nodes are AVG) to stochastic control problems (where MAX and AVG
nodes alternate). Also, no previous algorithm reported a polynomial bound when N =∞.

• In MDPs with deterministic transitions (N = 1) but stochastic rewards our bound is
(1/ε)max(2,log κ/(log 1/γ)) which is similar to the bound achieved by Bubeck and Munos [5]
in a similar setting (open-loop policies).

• In the evaluation case without control (K = 1) TrailBlazer behaves exactly as Monte-
Carlo sampling (thus achieves a complexity of 1/ε2), even in the case N =∞.

• Finally TrailBlazer is easy to implement and is numerically efficient.

4neglecting logarithmic terms in ε and δ
5since when N =∞ the actual branching factor of the set of reachable nodes is infinite
6defined as the difference in values of best and second-best actions
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2 Monte-Carlo planning with a generative model

1: Input: δ, ε
2: Set: η ← γ1/max(2,log(1/ε))

3: Set: λ← 2 log(ε(1− γ))2
log

(
log(K)
(1−η)

)
log(γ/η)

4: Set: m← (log(1/δ) + λ)/((1− γ)2ε2)
5: Use: δ and η as global parameters
6: Output:
µ← call the root with parameters (m, ε/2)

Figure 1: TrailBlazer

Setup We operate on a planning tree T . Each node
of T from the root down is alternatively either an
average (AVG) or a maximum (MAX) node. For any
node s, C [s] is the set of its children. We consider
trees T for which the cardinality of C [s] for any MAX
node s is bounded by K. The cardinality N of C [s]
for any AVG node s can be either finite, N < ∞,
or infinite. We consider both cases. TrailBlazer
applies to both situations. We provide performance
guarantees for a general case and possibly tighter,
N -dependent guarantees in the case of N <∞. We assume that we have a generative model of the
transitions and rewards: Each AVG node s is associated with a transition, a random variable τs ∈ C [s]
and a reward, a random variable rs ∈ [0, 1].

1: Input: m, ε
2: Initialization: {Only executed on first call}
3: SampledNodes← ∅,
4: r ← 0
5: Run:
6: if ε ≥ 1/(1− γ) then
7: Output: 0
8: end if
9: if |SampledNodes| > m then

10: ActiveNodes← SampledNodes(1 : m)
11: else
12: while |SampledNodes| < m do
13: τ ← {new sample of next state}
14: SampledNodes.append(τ)
15: r ← r+[new sample of reward]
16: end while
17: ActiveNodes← SampledNodes
18: end if {At this point, |ActiveNodes| = m}
19: for all unique nodes s ∈ ActiveNodes do
20: k ← #occurrences of s in ActiveNodes
21: ν ← call s with parameters (k, ε/γ)
22: µ← µ+ νk/m
23: end for
24: Output: γµ+ r/|SampledNodes|

Figure 2: AVG node

Objective For any node s, we define the value func-
tion V [s] as the optimum over policies π (giving a
successor to all MAX nodes) of the sum of discounted
expected rewards playing policy π,

V [s] = sup
π

E

[∑
t≥0

γtrst

∣∣∣s0 = s, π

]
,

where γ ∈ (0, 1) is the discount factor. If s is an AVG
node, V satisfies the following Bellman equation,

V [s] = E [rs] + γ
∑
s′∈C[s]

p(s′|s)V [s′] .

If s is a MAX node, then V [s] = maxs′∈C[s] V [s′] .

The planner has access to the oracle which can be
called for any AVG node s to either get a reward r or a
transition τ which are two independent random vari-
ables identically distributed as rs and τs respectively.

With the notation above, our goal is to estimate the
value V [s0] of the root node s0 using the smallest
possible number of oracle calls. More precisely,
given any δ and ε, we want to output a value µε,δ such
that P [|µε,δ − V [s0]| > ε] ≤ δ using the smallest
possible number of oracle calls nε,δ . The number of calls is the sample complexity of the algorithm.

2.1 Blazing the trails with TrailBlazer

To fulfill the above objective, our TrailBlazer constructs a planning tree T which is, at any
time, a finite subset of the potentially infinite tree. Only the already visited nodes are in T and
explicitly represented in memory. Taking the object-oriented paradigm, each node of T is a persistent
object with its own memory which can receive and perform calls respectively from and to other
nodes. A node can potentially be called several times (with different parameters) during the run of
TrailBlazer and may reuse (some of) its stored (transition and reward) samples. In particular, after
node s receives a call from its parent, node s may perform internal computation by calling its own
children in order to return a real value to its parent.

Pseudocode of TrailBlazer is in Figure 1 along with the subroutines for MAX nodes in Figure 3 and
AVG nodes in Figure 2. A node (MAX or AVG) is called with two parameters m and ε, which represent
some requested properties of the returned value: m controls the desired variance and ε the desired
maximum bias. We now describe the MAX and AVG node subroutines.
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1: Input: m, ε
2: L ← all children of the node
3: `← 1
4: while |L| > 1 and U ≥ (1− η)ε do

5: U← 2
1−γ

√
log(K`/(δε))+γ/(η−γ)+λ+1

`

6: for b ∈ L do
7: µb ← call b with (`, Uη/(1− η))
8: end for
9: L ←

{
b :µb+

2U
1−η ≥ supj

[
µj− 2U

1−η

]}
10: `← `+ 1
11: end while
12: if |L| > 1 then
13: Output: µ← maxb∈L µb
14: else { L = {b?} }
15: b? ← argmaxb∈L µb
16: µ← call b? with (m, ηε)
17: Output: µ
18: end if

Figure 3: MAX node

MAX nodes A MAX node s keeps a lower and an
upper bound of its children values which with high
probability simultaneously hold at all times. It se-
quentially calls its children with different parame-
ters in order to get more and more precise estimates
of their values. Whenever the upper bound of one
child becomes lower than the maximum lower bound,
this child is discarded. This process can stop in two
ways: 1) The set L of the remaining children shrunk
enough such that there is a single child b? left. In
this case, s calls b? with the same parameters that s
received and uses the output of b? as its own output.
2) The precision we have on the value of the remain-
ing children is high enough. In this case, s returns
the highest estimate of the children in L. Note that
the MAX node is eliminating actions to identify the
best. Any other best-arm identification algorithm for
bandits can be adapted instead.

AVG nodes Every AVG node s keeps a list of all the
children that it already sampled and a reward estimate r ∈ R. Note that the list may contain the same
child multiple times (this is particularly true for N < ∞). After receiving a call with parameters
(m, ε), s checks if ε ≥ 1/(1− γ). If this condition is verified, then it returns zero. If not, s considers
the first m sampled children and potentially samples more children from the generative model if
needed. For every child s′ in this list, s calls it with parameters (k, ε/γ), where k is the number of
times a transition toward this child was sampled. It returns r + γµ, where µ is the average of all the
children estimates.

Anytime algorithm TrailBlazer is naturally anytime. It can be called with slowly decreasing ε,
such that m is always increased only by 1, without having to throw away any previously collected
samples. Executing TrailBlazer with ε′ and then with ε < ε′ leads to the same amount of
computation as immediately running TrailBlazer with ε.

Practical considerations The parameter λ exists so the behavior depends only on the randomness
of oracle calls and the parameters (m, ε) that the node has been called with. This is a desirable
property because it opens the possibility to extend the algorithm to more general settings, for instance
if we have also MIN nodes. However, for practical purposes, we may set λ = 0 and modify the
definition of U in Figure 3 by replacing K with the number of oracle calls made so far globally.

3 Cogs whirring behind

Before diving into the analysis we explain the ideas behind TrailBlazer and the choices made.

Tree-based algorithm The number of policies the planner can consider is exponential in the
number of states. This leads to two major challenges. First, reducing the problem to multi-arm
bandits on the set of the policies would hurt. When a reward is collected from a state, all the policies
which could reach that state are affected. Therefore, it is useful to share the information between the
policies. The second challenge is computational as it is infeasible to keep all policies in memory.

These two problems immediately vanish with just how TrailBlazer is formulated. Contrary to
Szörényi et al. [16], we do not represent the policies explicitly or update them simultaneously to
share the information, but we store all the information directly in the planning tree we construct.
Indeed, by having all the nodes being separate entities that store their own information, we can share
information between policies without explicitly having to enforce it.

We steel ourselves for the detailed understanding with the following two arguments. They shed light
from two different angles on the very same key point: Do not refine more paths than you need to!
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Delicate treatment of uncertainty First, we give intuition about the two parameters which mea-
sure the requested precision of a call. The output estimate µ of any call with parameters (m, ε)
verifies the following property (conditioned on a high-probability event),

∀λ E
[
eλ(µ−V[s])

]
≤ exp

(
α+ ε|λ|+ σ2λ2

2

)
, with σ2 = O (1/m) and constant α. (1)

This awfully looks like the definition of µ being uncentered sub-Gaussian, except that instead of λ in
the exponential function, there is |λ| and there is a λ-independent constant α. Inequality 1 implies
that the absolute value of the bias of the output estimate µ is bounded by ε,∣∣E [µ]− V [s]

∣∣ ≤ ε.
As in the sub-Gaussian case, the second term 1

2σ
2λ2 is a variance term. Therefore, ε controls the

maximum bias of µ and 1/m control its sub-variance. In some cases, getting high-variance or
low-variance estimate matters less as it is going to be averaged later with other independent estimates
by an ancestor AVG node. In this case we prefer to query for high variance rather than a low one, in
order to decrease sample complexity.

From σ and ε it is possible to deduce a confidence bounds on |µ − V [s]| by typically summing
the bias ε and a term proportional to the standard deviation σ = O (1/

√
m). Previous approaches

[16, 5] consider a single parameter, representing the width of this high-probability confidence interval.
TrailBlazer is different. In TrailBlazer, the nodes can perform high-variance and low-bias
queries but can also query for both low-variance and low-bias. TrailBlazer treats these two types
of queries differently. This is the whetstone of TrailBlazer and the reason why it is not optimistic.

Refining few paths In this part we explain the condition |SampledNodes| > m in Figure 2, which
is crucial for our approach and results. First notice, that as long as TrailBlazer encounters only AVG
nodes, it behaves just like Monte-Carlo sampling — without the MAX nodes we would be just doing
a simple averaging of trajectories. However, when TrailBlazer encounters a MAX node it locally
uses more samples around this MAX node, temporally moving away from a Monte-Carlo behavior.
This enables TrailBlazer to compute the best action at this MAX node. Nevertheless, once this
best action is identified with high probability, the algorithm should behave again like Monte-Carlo
sampling. Therefore, TrailBlazer forgets the additional nodes, sampled just because of the MAX
node, and only keeps in memory the first m ones. This is done with the following line in Figure 2,

ActiveNodes← SampledNodes(1 : m).

Again, while additional transitions were useful for some MAX node parents to decide which action
to pick, they are discarded once this choice is made. Note that they can become useful again if an
ancestor becomes unsure about which action to pick and needs more precision to make a choice. This
is an important difference between TrailBlazer and some previous approaches like UCT where all
the already sampled transitions are equally refined. This treatment enables us to provide polynomial
bounds on the sample complexity for some special cases even in the infinite case (N =∞).

4 TrailBlazer is good and cheap — consistency and sample complexity

In this section, we start by our consistency result, stating that TrailBlazer outputs a correct value
in a PAC (probably approximately correct) sense. Later, we define a measure of the problem difficulty
which we use to state our sample-complexity results. We remark that the following consistency result
holds whether the state space is finite or infinite.
Theorem 1. For all ε and δ, the output µε,δ of TrailBlazer called on the root s0 with (ε, δ) verifies

P [|µε,δ − V [s0]| > ε] < δ.

4.1 Definition of the problem difficulty

We now define a measure of problem difficulty that we use to provide our sample complexity
guarantees. We define a set of near-optimal nodes such that exploring only this set is enough to
compute an optimal policy. Let s′ be a MAX node of tree T . For any of its descendants s, let
c→s(s

′) ∈ C [s′] be the child of s′ in the path between s′ and s. For any MAX node s, we define

∆→s(s
′) = max

x∈C[s′]
V [x]− V [c→s(s

′)] .
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∆→s(s
′) is the difference of the sum of discounted rewards stating from s′ between an agent playing

optimally and one playing first the action toward s and then optimally.

Definition 1 (near-optimality). We say that a node s of depth h is near-optimal, if for any even
depth h′,

∆→s(sh′) ≤ 16
γ(h−h′)/2

γ(1− γ)

with sh′ the ancestor of s of even depth h′. Let Nh be the set of all near-optimal nodes of depth h.

Remark 1. Notice that the subset of near-optimal nodes contains all required information to get
the value of the root. In the case N =∞, when p(s|s′) = 0 for all s and s′, then our definition of
near-optimality nodes leads to the smallest subset in a sense we precise in Appendix C. We prove that
with probability 1− δ, TrailBlazer only explores near-optimal nodes. Therefore, the size of the
subset of near-optimal nodes directly reflects the sample complexity of TrailBlazer.

In Appendix C, we discuss the negatives of other potential definitions of near-optimality.

4.2 Sample complexity in the finite case

We first state our result where the set of the AVG children nodes is finite and bounded by N .

Definition 2. We define κ ∈ [1,K] as the smallest number such that

∃C ∀h, |N2h| ≤ CNhκh.

Notice that since the total number of nodes of depth 2h is bounded by (KN)h, κ is upper-bounded
by K, the maximum number of MAX’s children. However κ can be as low as 1 in cases when the set
of near-optimal nodes is small.

Theorem 2. There exists C > 0 and K such that for all ε > 0 and δ > 0, with probability 1 − δ,
the sample-complexity of TrailBlazer (the number of calls to the generative model before the
algorithm terminates) is

n(ε, δ) ≤ C(1/ε)max(2,
log(Nκ)
log(1/γ)

+o(1)) (log(1/δ) + log(1/ε))
α
,

where α = 5 when log(Nκ)/ log(1/γ) ≥ 2 and α = 3 otherwise.

This provides a problem-dependent sample-complexity bound, which already in the worst case
(κ = K) improves over the best-known worst-case bound Õ

(
(1/ε)2+log(KN)/ log(1/γ)

)
[16]. This

bound gets better as κ gets smaller and is minimal when κ = 1. This is, for example, the case when
the gap (see definition given in Equation 2) at MAX nodes is uniformly lower-bounded by some ∆ > 0.
In this case, this theorem provides a bound of order (1/ε)max(2,log(N)/ log(1/γ)). However, we will
show in Remark 2 that we can further improve this bound to (1/ε)2.

4.3 Sample complexity in the infinite case

Since the previous bound depends on N , it does not apply to the infinite case with N =∞. We now
provide a sample complexity result in the case N =∞. However, notice that when N is bounded,
then both results apply.

We first define gap ∆(s) for any MAX node s as the difference between the best and second best arm,

∆(s) = V [i?]− max
i∈C[s],i6=i?

V [i] with i? = arg max
i∈C[s]

V [i] . (2)

For any even integer h, we define a random variable Sh taking values among MAX nodes of depth h,
in the following way. First, from every AVG nodes from the root to nodes of depth h, we draw a single
transition to one of its children according to the corresponding transition probabilities. This defines
a subtree with Kh/2 nodes of depth h and we choose Sh to be one of them uniformly at random.
Furthermore, for any even integer h′ < h we note Shh′ the MAX node ancestor of Sh of depth h′.
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Definition 3. We define d ≥ 0 as the smallest d such that for all ξ there exists a > 0 for which for
all even h > 0,

E

Kh/2
1
(
Sh ∈ Nh

) ∏
0≤h′<h

h′≡0(mod 2)

(
ξ

γh−h′

)1(∆(Sh
h′ )<16 γ

(h−h′)/2
γ(1−γ)

) ≤ aγ−dh
If no such d exists, we set d =∞.

This definition of d takes into account the size of the near-optimality set (just like κ) but unlike κ it
also takes into account the difficulty to identify the near-optimal paths.

Intuitively, the expected number of oracle calls performed by a given AVG node s is proportional to:
(1/ε2) × (the product of the inverted squared gaps of the set of MAX nodes in the path from the root to
s) × (the probability of reaching s by following a policy which always tries to reach s).

Therefore, a near-optimal path with a larger number of small MAX node gaps can be considered
difficult. By assigning a larger weight to difficult nodes, we are able to give a better characterization
of the actual complexity of the problem and provide polynomial guarantees on the sample complexity
for N =∞ when d is finite.
Theorem 3. If d is finite then there exists C > 0 such that for all ε > 0 and δ > 0, the expected
sample complexity of TrailBlazer satisfies

E [n(ε, δ)] ≤ C (log(1/δ) + log(1/ε))
3

ε2+d
·

Note that this result holds in expectation only, contrary to Theorem 2 which holds in high probability.

We now give an example for which d = 0, followed by a special case of it.
Lemma 1. If there exists c > 0 and b > 2 such that for any near-optimal AVG node s,

P [∆ (τs) ≤ x] ≤ cxb,

where the random variable τs is a successor state from s drawn from the MDP’s transition probabili-
ties, then d = 0 and consequently the sample complexity is of order 1/ε2.

Remark 2. If there exists ∆min such that for any near-optimal MAX node s, ∆(s) ≥ ∆min then
d = 0 and the sample complexity is of order 1/ε2. Indeed, in this case as P [∆s ≤ x] ≤ (x/∆min)

b

for any b > 2 for which d = 0 by Lemma 1.

5 Conclusion

We provide a new Monte-Carlo planning algorithm TrailBlazer that works for MDPs where the
number of next states N can be either finite or infinite. TrailBlazer is easy to implement and
is numerically efficient. It comes packaged with a PAC consistency and two problem-dependent
sample-complexity guarantees expressed in terms of a measure (defined by κ) of the quantity of
near-optimal nodes or a measure (defined by d) of the difficulty to identify the near-optimal paths.
The sample complexity of TrailBlazer improves over previous worst-case guarantees. What’s
more, TrailBlazer exploits MDPs with specific structure by exploring only a fraction of the whole
search space when either κ or d is small. In particular, we showed that if the set of near-optimal nodes
have non-vanishing action-gaps, then the sample complexity is Õ(1/ε2), which is the same rate as
Monte-Carlo sampling. This is a pretty decent evidence that TrailBlazer is a natural extension of
Monte-Carlo sampling to stochastic control problems.
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