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A Temporally correlated approximate posterior

Below we detail the recognition model q�(z|x) we used in our auto-encoder variational inference
algorithm in fitting fLDS. For further details, see [17].

We construct q�(z|x) as a product of factors across time,
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are m⇥m matrices that control the smoothness of the posterior, and
are analogous to the LDS parameters appearing in eq. 1 and eq. 2. Functions m

˜ (·) : Rn ! Rm

and c
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 . To
ensure non-negative definiteness of c

˜ (xrt), we first map the observations xt to the square root of the
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This product of Gaussian factors also has a Gaussian functional form, with block-tridiagonal inverse
covariance. Normalizing recovers the multivariate Gaussian representation of eq. 11, where
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B Neural network structure for generative model and approximate posterior

In all our experiments with PfLDS and GCfLDS, we parameterize f (·) : Rm ! Rn using a
feed-forward neural network with 2 hidden layers, each containing 60 nodes using tanh nonlinearity.
For PfLDS we transform the final output layer by an exponential function to ensure the positivity of
the rate.

For the approximate posterior described in section A, we parameterize m

˜ (·) : Rn ! Rm and
r

˜ (·) : Rn ! Rm⇥m by a neural network with two hidden layers, each containing 60 nodes using
tanh nonlinearity. Here the hidden layers are shared for m

˜ (·) and r

˜ (·).

C Description of the video

We include a video (https://www.dropbox.com/s/cluev4fzfsob4q9/video_fLDS.mp4?dl=
0) illustrating the latent-space projection of the macaque V1 data we analyzed in the paper. We fit the
data with a PfLDS with 4 latent dimensions, and plot the first 3 principal components of the inferred
latent trajectory. We use data from 300ms to 1200ms after stimulus onset, and for each grating
orientation we plot the mean trajectory of the 10 training trials used to fit the model. To illustrate the
relationship between the latent space projection and the observed data, we show the latent trajectories
for 3 single directions (0�, 60� and 120

�) alongside the spike rasters of one associated trial. We then
show the latent trajectories for all 36 orientations, from 0

� to 175

� (results for directions from 180

�

to 355

� are similar). We observe that the projection of neuron activity corresponding to each grating
orientation forms a circle, agreeing well with the periodicity of the sinusoidal stimulus (temporal
frequency 6.25Hz) and also the periodicity of the neural activity (as can be seen from the spike raster).
The projection of the whole dataset forms a torus, which also agrees well with the stimulus structure.
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