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1 Proofs for additional inducing inputs

In this section we give proofs to the claims on how the objective functions for FITC and VFE change
upon adding an inducing input. For this, we first restate the objective function:

F =
N

2
log(2π) +

1

2
log |Qff +G|︸ ︷︷ ︸

complexity penalty

+
1

2
yT(Qff +G)−1y︸ ︷︷ ︸

data fit

+
1

2σ2
n

tr(T )︸ ︷︷ ︸
trace term

, (1)

where

GFITC = diag[Kff −Qff ] + σ2
nI GVFE = σ2

nI (2)
TFITC = 0 TVFE = Kff −Qff . (3)

Kff denotes the covariance matrix and Qff = KfuK
−1
uuKuf the approximate covariance matrix.

Note that the approximate covariance matrix Qff is the only quantity depending on the inducing
inputs.

The main results we show in this supplement are:

1. Adding an inducing input corresponds to a rank 1 update of the approximate covariance
matrix Qff = KfuK

−1
uuKuf (see Section 1.1)

2. For VFE the objective function can never get worse by adding an inducing input anywhere
in the input domain (see Section 1.2)

3. For FITC the heteroscedastic noise always decreases when adding an inducing input any-
where in the input domain (see Section 1.3)

4. Adding an inducing input on top of an existing inducing input does not change the objective
function, neither for FITC nor for VFE (see Section 1.4)

1.1 Adding an inducing input anywhere

In this section we show that adding an inducing input corresponds to a rank 1 update of the Qff

matrix for the case without jitter.
Let Kuu denote the covariance matrix of the M inducing inputs. We then add a new M + 1st
inducing input and denote all quantities depending on the new set of M + 1 inducing inputs by a
superscript +.
The updated approximate covariance matrix Q+

ff is then given by:

Q+
ff = K+

fu(K
+
uu)
−1K+

uf (4)
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We proceed by first computing an explicit expression for theM+1×M+1 matrix (K+
uu)
−1 before

computing Q+
ff . For this we employ the block matrix inversion formula1, see Eq. (8)

(K+
uu)
−1 =

(
Kuu ku

kT
u k

)−1
=

(
K−1uu + 1

caa
T − 1

ca
− 1

ca
T 1

c

)
a = K−1uuku

where c = k − kT
uK
−1
uuku is the Schur complement of Kuu, kT

u =
(k(Z1, ZM+1), . . . , k(ZM , ZM+1)) is the vector of covariances between the old inducing in-
puts and the added inducing input and k = k(ZM+1, ZM+1) is the covariance function evaluated at
the new inducing input. Note that c needs to be non-zero for this expression to make sense.

K+
uf =

(
Kuf

kT
f

)

where kT
f = (k(ZM+1, x1), . . . , k(ZM+1, xN )) is the vector of covariances between the data points

and the new inducing input.
We can now compute Q+

ff by the product in Eq. (4) to see that is is indeed given by a rank 1 update
of Qff

Q+
ff = K+

fu(K
+
uu)
−1K+

uf

= KfuK
−1
uuKuf +

1

c

(
Kfuaa

TKuf +Kfuaa
TKuf

−Kfuak
T
f − kfa

TKuf + kfk
T
f

)
= KfuK

−1
uuKuf +

1

c
(Kfua− kf ) (Kfua− kf )

T

= KfuK
−1
uuKuf + bbT

= Qff + bbT

Q+
ff = Qff + bbT (5)

where we have introduced the rank 1 update vector b = 1√
c
(KfuK

−1
uuku − kf ).

Thus, in the case of no jitter, the update is indeed given by a rank 1 update. These results also extend
to the case with finite jitter, which is then absorbed into the definition of Kuu and k, respectively.

1.2 The VFE objective function always improves when adding an additional inducing input

We now compute the change in objective function when adding the M + 1 st inducing input:

2(F+ −F) = log
∣∣Q+

ff + σ2
nI
∣∣− log

∣∣Qff + σ2
nI
∣∣+ yT(Q+

ff + σ2
nI)
−1y − yT(Qff + σ2

nI)
−1y

+
1

σ2
n

tr(Kff −Q+
ff )−

1

σ2
n

tr(Kff −Qff )

= log
∣∣Qff + bbT + σ2

nI
∣∣− log

∣∣Qff + σ2
nI
∣∣

+ yT(Qff + bbT + σ2
nI)
−1y − yT(Qff + σ2

nI)
−1y − 1

σ2
n

tr(bbT)

1https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion
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To deal with the log-determinant-terms and the inverses, we employ the Matrix determinant lemma2

and the Sherman–Morrison formula3, respectively
2(F+ −F) = log(1 + bT(Qff + σ2

nI)
−1b) + log

∣∣Qff + σ2
nI
∣∣− log

∣∣Qff + σ2
nI
∣∣

+ yT(Qff + σ2
nI)
−1

y − yT (Qff + σ2
nI)
−1

bbT (Qff + σ2
nI)
−1

1 + bT (Qff + σ2
nI)
−1

b
y

− yT(Qff + σ2
nI)
−1

y +
1

σ2
n

tr(bbT)

= log(1 + bT(Qff + σ2
nI)
−1b)− 1

σ2
n

tr(bbT)

− yT (Qff + σ2
nI)
−1

bbT (Qff + σ2
nI)
−1

1 + bT (Qff + σ2
nI)
−1

b
y

We can bound the first two terms by noting
tr(bbT) = bTb

log(1 + x) ≤ x

bT(Qff + σ2
nI)
−1b ≤ 1

σ2
n

bTb

Thus,

log(1 + bT(Qff + σ2
nI)
−1b)− 1

σ2
n

tr(bbT) ≤ 0

and equality holds for b = 0, as is the case when both inducing inputs lie on top of each other.
It remains to show that the term including the ys (including its sign) is non-positive. This can be
shown quite easily:

−yT (Qff + σ2
nI)
−1

bbT (Qff + σ2
nI)
−1

1 + bT (Qff + σ2
nI)
−1

b
y = − (yT(Qff + σ2

nI)
−1b)2

1 + bT (Qff + σ2
nI)
−1

b

≤ −(yT(Qff + σ2
nI)
−1b)2

≤ 0

where the second to last inequality holds as (Qff + σ2
nI)
−1 is positive definite. Equalities hold,

again, if b = 0 which corresponds to duplication of an existing inducing input.

This concludes the proof that the VFE objective function always improves or stays the same.

The change of the objective function for FITC is less clear than for VFE. We can give no proofs
about the changes in general. In experiments, we observe that the change in the data fit term can
be positive or negative, whereas the complexity penalty term seems to always improve by adding an
inducing input. We hypothesise that this is indeed the case but cannot give a proof for this claim.

In this section we have assumed that all matrix inverses exist and that for duplication of an inducing
input we find b = 0. However, for a duplicate inducing input, the matrix Kuu becomes singular,
such that care has to be taken when reasoning. In Section 1.4 we show that these arguments can,
indeed, be made rigorous and that b = 0 for duplicate inducing inputs. Thus, when duplicating an
inducing input, the VFE and FITC objective functions do not change. For VFE, this configuration
corresponds to a maximum of the objective function.

1.3 The heteroscedastic noise is decresed when new inducing inputs are added

While the objective function can change either way, the heteroscedastic noise, which is given by
diag(Kff −Qff ) always decreases or remains the same when a new inducing input is added:

diag(Kff −Q+
ff ) = diag(Kff − (Qff + bbT)) (6)

= diag(Kff −Qff )− diag(bbT) (7)
The diagonal elements of bbT are given by b2m, which are always larger or equal to zero, such that
the heteroscedastic noise always decreases (or stays the same).

2https://en.wikipedia.org/wiki/Matrix_determinant_lemma
3https://en.wikipedia.org/wiki/Sherman-Morrison_formula
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1.4 Adding an inducing input on top of another inducing input

In this section we show that duplication of an inducing input, that is, placing an additional inducing
input on top of an existing one, does not change the approximate covariance matrix: Q+

ff = Qff .
One might be tempted to use Eq. (5) to evaluate the update when placing an additional inducing input
on top of an existing one. In that case K−1uuku = êM , where êM denotes the indicator vector with a
one at the M th position and zeros otherwise, and KfuK

−1
uuku = kf suggesting b = 0. However, in

this case, the Schur complement vanishes as well, c = 0.
In the following we show that this reasoning can be made exact by considering a finite jitter term
εI added onto K+

uu before inversion. The result can be expanded to second order in ε and the limit
ε → 0 then leads to the desired result. The intuition behind the fact that Eq. (4) is well behaved,
even if K+

uu is singular, is, that the eigenvector of K+
uu that corresponds to the zero eigenvalue is

never excited by the matrix K+
uf which has a duplicate row. The eigenvector only has two non-zero

elements, which have the same absolute value but different signs, thus cancelling with the duplicate
rows in K+

uf .
Moreover, we obtain a correction term that scales with the jitter. For reasons of numerical stability,
one has to employ some form of regularisation of the (possibly) singular matrix Kuu in practise.
One common way that is implemented in many toolboxes is the constant jitter εI introduced above.
We assume that the original Kuu is non-singular for now.

Similarly to before, we again employ the block matrix inversion formula4 of the following form:

(
A B
C D

)−1
=

(
A−1 +A−1BF−1CA−1 −A−1BF−1

−F−1CA−1 F−1

)
(8)

where F = D − CA−1B is the Schur complement of A.

(K+
uu + εIM+1×M+1)

−1 =

(
Kuu + εIM×M ku

kT
u k + ε

)−1
(9)

where kT
u = (k(Z1, ZM ), k(Z2, ZM ), . . . , k(ZM , ZM )) and k = k(ZM , ZM ) similarly to before.

In order to perform the inversion, we expand the inverses in Eq. (8) to second order in ε:

(Kuu + εI)−1 ≈ K−1uu (1− εK−1uu + ε2K−2uu − ε3K−3uu ) A−1

(Kuu + εI)−1ku ≈ êM − εk−1u + ε2K−1uuk
−1
u − ε3K−2uuk

−1
u A−1B

kTu (Kuu + εI)−1 ≈ êTM − ε(k−1u )T + ε2(k−1u )TK−1uu − ε3(k−1u )TK−2uu CA−1

kTu (Kuu + ε)−1ku ≈ k − ε+ ε2k−1 − ε3(k−1u )T k−1u CA−1B

k + ε− kTu (Kuu + ε)−1ku ≈ 2ε(1− ε

2
k−1 +

ε2

2
(k−1u )T k−1u ) Schur

(k + ε− kTu (Kuu + ε)−1ku)
−1 ≈ 1

2ε
+

1

4
k−1 − ε

4
(k−1u )T k−1u +

ε

8
(k−1)2 Schur−1

where êM = (0, . . . , 0, 1)T is the indicator vector with a one at position M and k−1u =
(k−1(Z1, ZM ), . . . , k−1(ZM , ZM ))T is the M th column of K−1uu . Note that the elements of k−1u
are not element wise inverses but elements of an inverse matrix! Analogously, k−1 denotes the
(M,M) element of the matrix K−1uu .

4https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion
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(K+
uu + ε)−1 =


K−1

uu

0
...
0

0 · · · 0 0

− ε


K−2
uu

0
...
0

0 · · · 0 0

+
ε

2


k−1
u (k−1

u )T
0
...
0

0 · · · 0 0



+
1

2


0M−1×M−1

0 0
...

...
0 0

0 · · · 0 ε−1 −ε−1

0 · · · 0 −ε−1 ε−1



+
1

4


0M−1×M−1

0 0
...

...
0 0

0 · · · 0 k−1 −k−1

0 · · · 0 −k−1 k−1

+
1

2

 0M−1×M−1 −k−1
u\m k−1

u−(k−1
u\m)T −2k−1

(k−1
u )T 0



+
ε

4

 0M−1×M−1 2K−1
uuk

−1
u − k−1k−1

u −(2K−1
uuk

−1
u − k−1k−1

u )
(2K−1

uuk
−1
u − k−1k−1

u )T

−(2K−1
uuk

−1
u − k−1k−1

u )T 0



+
ε

8


0M−1×M−1

0 0
...

...
0 0

0 · · · 0 (k−1)2 − 2(k−1
u )T k−1

u −((k−1)2 − 2(k−1
u )T k−1

u )

0 · · · 0 −((k−1)2 − 2(k−1
u )T k−1

u ) (k−1)2 − 2(k−1
u )T k−1

u

+O(ε2)

For the matrix (Kuu + εI)−1 we find:

(Kuu + ε)−1 = K−1uu − εK−2uu +O(ε2)

When we now multiply out the product K+
fu(K

+
uu + εI)−1K+

uf , we note that K+
uf will have a du-

plicate row and K+
fu will have a duplicate column. Due to this, all terms that have the submatrix

0M−1×M−1 in their upper left hand corner cancel. This includes the term that contains the exploding
(in the limit ε→ 0) inverse jitter ε−1, and we are left with:

Q+
ff = K+

fu(K
+
uu + εI)−1K+

uf = KfuK
−1
uuKuf − εKfuK

−2
uuKuf +

ε

2
Kfuk

−1
u (k−1u )TKuf +O(ε2)

= Qff − εKfuK
−2
uuKuf +

ε

2
Kfuk

−1
u (k−1u )TKuf +O(ε2)

Such that the correction to the original approximate covariance matrix is given by:

Q+
ff −Qff =

ε

2
Kfuk

−1
u (k−1u )TKuf +O(ε2) (10)

We can now take the limit ε → 0 as all the ”infinities” have cancelled above. For finite jitter, the
correction term is again given by a rank-1 update to first order in ε.
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