
A Detailed Proof of Theorem 1

Proof. For any evaluation set of unobserved entries E, the expectation of ε-risk is

E[Riskε] =
1

|E|
∑

(u,i)∈E

P(|f(x1(u),x2(i))− ŷ(u, i)| > ε) = P(|f(x1(u),x2(i))− ŷ(u, i)| > ε),

because the indexing of the entries are exchangeable and identically distributed. Therefore, in order
to bound the expected risk, it is sufficient to provide a tail bound for the probability of the estimation
error. For readability, we define the following events: with β = np2/2,

• Let A denote the event that |Sβu (i)| ∈ [(m− 1)p/2, 3(m− 1)p/2].

• Let B denote the event that minv∈Sβu (i) σ
2
x1(u)x1(v)

< ρ.

• Let C denote the event that
∣∣µx1(u)x1(v) −muv

∣∣ < α for all v ∈ Sβu (i).

• Let D denote the event that
∣∣∣s2uv − (σ2

x1(u)x1(v)
+ 2γ2)

∣∣∣ < ρ for all v ∈ Sβu (i).

Consider the following:

P( |f(x1(u),x2(i))− ŷ(u, i)| > ε )

≤ P ( |f(x1(u), x2(i))− ŷ(u, i)| > ε |A,B,C,D) + P(Ac) + P(Bc|A) + P(Cc|A,B) + P(Dc|A,B,C).
(11)

Now,

P
(
Ac
)

= P
((
|Sβu (i)| /∈

[
(m− 1)p

2
,

3(m− 1)p

2

])
≤ 2 exp

(
− (m− 1)p

12

)
+ (m− 1) exp

(
−np

2

8

)
,

(12)

using Lemma 1. Similarly, using Lemma 2

P(Bc|A) ≤
(

1− h
(√

ρ

L2

)) (m−1)p
2

≤ exp
(
−

(m− 1)p h
(√

ρ
L2

)
2

)
. (13)

Given choice of parameters, i.e. choice of m and p large enough for a given ρ, as we shall argue, the
right hand side of (13) will be going to 0, and hence definitely less than 1/2. That is, P(B|A) ≥ 1/2.
Using this fact and Bayes formula, we have

P(Cc|A,B) ≤ 2P(Cc|A) = 2P
(
∪v∈Sβu (i)

{ ∣∣µx1(u)x1(v) −muv

∣∣ > α
}
|A
)

≤ 3(m− 1)p exp

(
− 3np2α2

12B2 + 4Bα

)
, (14)

where last inequality follows from union bound, Lemmas 3 and choice of β = np2/2. Again, choice
of parameters, i.e. m,n, p and α will be such that we will have the right hand side of (14) going to 0
and definitely less than 1/8. Using this and arguments as used above based on Bayes’ formula, we
bound

P(Dc|A,B,C) ≤ P(Dc|A)

P(B|A)P(C|A,B)
≤ 4P(Dc|A).

= 4P
(
∪v∈Sβu (i)

{∣∣∣s2uv − (σ2
x1(u)x1(v)

+ 2γ2)
∣∣∣ > ρ

} ∣∣∣ A)
≤ 12(m− 1)p exp

(
− βρ2

4B2(2LB2
X + 4γ2 + ρ)

)
(15)

where last inequality follows from union bound and Lemma 4.
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Finally, with the choice of α = β−1/3, which is
(
np2

2

)−1/3
since β = np2

2 , using Lemma 5, we
obtain that

P ( |f(x1(u), x2(i))− ŷ(u, i)| > ε |A,B,C,D) ≤ 3ρ+ γ2

ε2

(
1− α

ε

)−2
≤ 3ρ+ γ2

ε2

(
1 +

3α

ε

)
. (16)

where we have used the fact that for given choice of α (since ε is fixed), as m increases, the
term α/ε becomes less than 1/5; for x ≤ 1/5, (1 − x)−2 ≤ (1 + 3x). If p = ω(m−1) and
p = ω(n−1/2), all error terms from (12) to (15) diminish to 0 as m,n → ∞. Specifically, if we
choose p = max(m−1+δ, n−1/2+δ), then putting everything together, we obtain (we assume that
m/2 ≤ m− 1 ≤ m)

P(|f(x1(u), x2(i))− ŷ(u, i)| > ε)

≤ 3ρ+ γ2

ε2

(
1 +

3 3
√

2

ε
n−

2
3 δ

)
+ 2 exp

(
− 1

24
mδ

)
+m exp

(
−1

8
n2δ
)

+ exp

(
−1

4
h

(√
ρ

L2

)
mδ

)
+ 3mδ exp

(
− 1

5B2
n

2
3 δ

)
+ 12mδ exp

(
− ρ2

8B2(2LB2
X + 4γ2 + ρ)

n2δ
)
.

The above bound holds for any ρ > 0, though as ρ→ 0, m,n also need to increase accordingly such
that h

(√
ρ
L2

)
is not too small, and ρ must be ω(n−δ) in order for the last term to vanish. We will

impose that ρ = ω(n−2δ/3) so that the last term is dominated by the second to last term. When the
support of PX is finite, then

h

(√
ρ

L2

)
≥ min
x∈X

PX (x),

such that the above bound holds even when ρ = 0.

B Useful Lemmas and their Proofs

This section presents key Lemmas that are utilized as part of the proof of Theorem 1. Lemma
1 establishes that as long as p is large enough, then there are sufficiently large number of rows
and columns that have overlap with row and column of a given candidate entry (u, i). Lemma 2
establishes that there exists a row v so that it’s variance with respect to row u is small. Lemmas 3
and 4 prove that the sample mean and sample variance of difference between a pair of rows are good
proxy of the actual mean and variances. Collectively, these help establish in Lemma 5 that the true
variance between u and u∗, the row utilized by nearest neighbor user-user algorithm, is indeed small.
These collection of results are established using known inequalities, namely Chernoff, Bernstein and
Maurer-Pontil, stated in Section C for completeness.

B.1 Sufficient overlap

Recall that N1(u) represents set of all column indices j where y(u, j) is observed. Similarly,
N2(i) is the set of all row indices v for which y(v, i) is observed. For a pair of row indices u, v,
N1(u, v) = N1(u) ∩ N1(v). For a given β ≥ 2, the set of all rows v that can lead to a feasible
estimation of (u, i) as per the user-user nearest neighbor algorithm, denoted as Sβu (i), is defined as

Sβu (i) =
{
v : v ∈ N2(i), |N1(u, v)| ≥ β

}
.

Thus, establishing that |Sβu (i)| 6= 0 (better yet,� 0) leads to a guarantee that algorithm will be able
to estimate missing entry at index (u, i). The next Lemma provides sufficient condition for this event.
Lemma 1. Given p > 0, 2 ≤ β ≤ np2/2 and α > 0, for any (u, i) ∈ [m]× [n],

P
(
|Sβu (i)| /∈ (1± α)(m− 1)p

)
≤ 2 exp

(
−α

2(m− 1)p

3

)
+ (m− 1) exp

(
−np

2

8

)
.
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Proof. The set Sβu (i) consists of all rows v such that (a) entry (v, i) is observed, and (b) |N1(u, v)| ≥
β. For each v, define binary random variables Qv and Rv, where Qv = 1 if (v, i) is observed and
0 otherwise; Rv = 1 if |N1(u, v)| ≥ β and 0 otherwise. Then, |Sβu (i)| =

∑
v 6=uQvRv. Since

Qv, Rv are binary variables and number of different v 6= u are m − 1, we obtain that for any
0 ≤ a < b ≤ m− 1,

P
(
|Sβu (i)| /∈ [a, b]

)
≤ P

(∑
v 6=u

Qv /∈ [a, b]
)

+ P
(∑
v 6=u

Rv < m− 1
)
. (17)

Given that entries for each row v are sampled independently, we have that
∑
v 6=uQv is Binomial

with parameters (m− 1) and p. For choice of a = (1− α)(m− 1)p and b = (1 + α)(m− 1)p, a
direct application of Chernoff’s bound (see Section C for detail) implies that

P
(∑
v 6=u

Qv /∈ [(1− α)(m− 1)p, (1 + α)(m− 1)p]
)
≤ 2 exp

(
− α2(m− 1)p

3

)
. (18)

For Rv = 1, we require that |N1(u, v)| ≥ β. Given the sampling distribution, N1(u, v)| is Binomial
with parameters n and p2. Therefore, for β ≤ np2/2, by another application of Chernoff’s bound for
lower tail, we obtain

P
(
Rv = 0

)
≤ exp

(
− np2

8

)
. (19)

That is,

P
(∑
v 6=u

Rv < m− 1
)
≤
∑
v 6=u

P
(
Rv = 0

)
≤ (m− 1) exp

(
− np2

8

)
. (20)

From (17)-(20), we obtain the desired result.

B.2 Existence of a good neighbor

In order to show that a good-quality neighbor can be detected through sample variance, we need
to show there exists a neighbor row whose true sample variance is small. Recall that latent space
X1 is compact and bounded, f is Lipschitz. We shall assume that the distribution PX1

allows every
nontrivial ball around any sample point in X1 obtained by sampling as per PX1

have a positive
measure. Under these conditions, next Lemma states that there exists a close neighbor for every point
with high probability.
Lemma 2. Let (X1, PX1) admit a nondecreasing function h : R++ → (0, 1] satisfying

PX1
(x ∈ B(x0, r)) ≥ h(r), ∀x0 ∈ X1, r > 0,

where B(x0, r) , {x ∈ X1 : dX1
(x, x0) ≤ r}. Consider u ∈ [n] and set S ⊂ [n] \ {u}. Then for

any ρ > 0,

P
(

min
v∈S

σ2
x1(u)x1(v)

> ρ

)
≤
(

1− h
(√

ρ

L2

))|S|
.

Proof. Recall that σ2
ab , Varx∼PX2

[f(a,x)− f(b,x)], for any a, b ∈ X1. By Lipschitz property of
f , we have that for any x ∈ X2,

|f(a, x)− f(b, x)| ≤ LdX1
(a, b). (21)

Therefore, it follows that

σ2
ab = Var[f(a,x)− f(b,x)] ≤ E[(f(a,x)− f(b,x))2]

≤ L2dX1(a, b)2. (22)

Now,

P
(

min
v∈S

σ2
x1(u)x1(v)

> ρ
)

= P(∩v∈Sσ2
x1(u)x1(v)

> ρ
)

= P
(
σ2
x1(u)x1(v)

> ρ
)|S|

,

12



where the last equality uses independence across sampling of x1(v) for different v and identical
distribution, PX1 . From (22), it follows that if σ2

x1(u)x1(v)
> ρ then dX1(x1(u),x1(v)) >

√
ρ/L2.

Therefore, using definition of h, we obtain that

P
(
σ2
x1(u)x1(v)

> ρ
)
≤ P

(
dX1(x1(u),x1(v)) >

√
ρ

L2

)
=
(

1− P
(
dX1

(x1(u),x1(v)) ≤
√

ρ

L2

))
≤
(

1− h
(√ ρ

L2

))
.

Putting all of the above together, we obtain the desired result.

How does h look like? In order to provide some understanding toward the assumption on distribution
PX1

, observe that the function h(·) is a form of the cumulative distribution function (CDF) for PX1
.

The only distribution which does not satisfy this property is a distribution which has non-atomic
isolated points. However, these isolated points have measure zero, such that they will never appear in
our datasets with probability 1. We provide a few examples of distributions and their corresponding
functions h(·).

Example 1 (extremely uniform). Suppose that X = ×dk=1[ai, bi] ∈ Rd equipped with L∞ norm and

PX is a uniform distribution over X . We can see that the function h(r) :=
∏d
k=1 min

{
1, r

bi−ai

}
satisfies the condition PX (x ∈ B(x0, r)) ≥ h(r), ∀x0 ∈ X ,∀r > 0.

Example 2 (extremely clustered). Suppose that X = {x1, . . . , xd} equipped with the discrete
topology and PX is expressed in terms of its pmf PX (xk) = pk with

∑d
k=1 pk = 1. We can see that

the function h(r) := mink pk works for (X , PX ).

B.3 Concentration of Sample Mean and Sample Variance

Lemma 3. Given u, v ∈ [m], i ∈ [n] and β ≥ 2, for any α > 0,

P
(∣∣µx1(u)x1(v) −muv

∣∣ > α | v ∈ Sβu (i)
)
≤ exp

(
− 3βα2

6B2 + 2Bα

)
,

where recall that B = 2(LBX +Bη).

Proof. Given x1(u) = x1(u),x1(v) = x1(v), the mean µx1(u)x1(v) is a constant. Recall that
empirical mean muv is defined as

muv =
1

|N1(u, v)|

( ∑
j∈N1(u,v)

y(u, j)− y(v, j)
)
. (23)

The variable x2(j) is sampled as per PX2
, independently from x1(u), x1(v). And the noise term

in each of the observation is independent zero-mean variable. Therefore, conditioned on x1(u) =
x1(u),x1(v) = x1(v), we have independent random variable, Z(j) = y(u, j) − y(v, j) for j ∈
N1(u, v), that have mean µx1(u)x1(v). That is, Z̃(j) = Z(j) − µx1(u)x1(v), j ∈ N1(u, v) are
zero-mean independent random variables. And by definition, each of them is bounded as

|Z̃(j)| ≤ 2Bη + LBX ≤ 2(LBX +Bη) = B. (24)

In summary, conditioned on x1(u) = x1(u),x1(v) = x1(v) and N1(u, v), µx1(u)x1(v) −muv is the
average of N1(u, v) independent, zero mean random variables ˜Z(j), each of which have absolute
value bounded above by B. Therefore, an application of Bernstein’s inequality imply that

P
(∣∣µx1(u)x1(v) −muv

∣∣ > α |x1(u) = x1(u),x1(v) = x1(v), N1(u, v)
)
≤ exp

(
−3|N1(u, v)|α2

6B2 + 2Bα

)
.

(25)
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When v ∈ Sβu (i), |N1(u, v)| ≥ β. Further, since above holds for all possibilities of x1(u), x2(v), we
conclude that

P
(∣∣µx1(u)x1(v) −muv

∣∣ > α | v ∈ Sβu (i)
)
≤ exp

(
− 3βα2

6B2 + 2Bα

)
,

Next we establish the concentration of the sample variance.

Lemma 4. Given u ∈ [m], i ∈ [n], and β ≥ 2, for any ρ > 0,

P
(∣∣∣s2uv − (σ2

x1(u)x1(v)
+ 2γ2)

∣∣∣ > ρ
∣∣ v ∈ Sβu (i)

)
≤ 2 exp

(
− βρ2

4B2(2LB2
X + 4γ2 + ρ)

)
,

where recall that B = 2(LBX +Bη).

Proof. Recall σ2
ab , Var[f(a,x)− f(b,x)] for a, b ∈ X1, x ∼ PX2

, and sample variance between
rows u v is defined as

s2uv =
1

2|N1(u, v)|(|N1(u, v)| − 1)

∑
j,j′∈N1(u,v)

((y(u, j)− y(v, j))− (y(u, j′)− y(v, j′)))
2

=
1

|N1(u, v)| − 1

∑
j∈N1(u,v)

(y(u, j)− y(v, j)−muv)
2
.

Conditioned on x1(u) = x1(u),x1(v) = x1(v), we obtain that E[s2uv] = σ2
x1(u)x1(v)

+ 2γ2, with
respect to randomness induced by PX2 for sampling latent parameters for columns. Further, X(j) =
y(u, j)− y(v, j) are independent random variables conditioned on x1(u) = x1(u),x1(v) = x1(v).
Using the fact that f is Lipschitz, space is bounded and noise is bounded, as before, we obtain that

|X(j)| = |y(u, j)− y(v, j)| ≤ 2(LBX +Bη) = B.

Given this, by an application of Maurer-Pontil inequality (see Section C), we obtain that

P
(∣∣∣s2uv − (σ2

x1(u)x1(v)
+ 2γ2)

∣∣∣ > ρ | v ∈ Sβu (i),x1(u) = x1(u),x1(v) = x1(v)
)

≤ 2 exp

(
− βρ2

4B2(2(σ2
x1(u)x1(v)

+ 2γ2) + ρ)

)
, (26)

where we used the property that v ∈ Sβu (i) implies |N1(u, v)| ≥ β. Using the Lipschitz property of
f and boundedness of X1, we can bound σ2

x1(u)x1(v)
≤ L2B2

X as before. Therefore, the right hand
side of (26) can be bounded as

≤ 2 exp

(
− βρ2

4B2(2L2B2
X + 4γ2 + ρ)

)
. (27)

Given that this bound is indepedent of x1(u), x1(v), we can conclude the desired result.

B.4 Concentration of Estimate

Now we establish the final step in the proof of Theorem 1. As in the proof of Theorem 1, for a given
(u, i) with u ∈ [m], i ∈ [n] and β ≥ 2, define events

• Let A denote the event that |Sβu (i)| ∈ [(m− 1)p/2, 3(m− 1)p/2],

• Let B denote the event that minv∈Sβu (i) σ
2
x1(u)x1(v)

< ρ,

• Let C denote the event that
∣∣µx1(u)x1(v) −muv

∣∣ < α for all v ∈ Sβu (i),

• Let D denote the event that
∣∣∣s2uv − (σ2

x1(u)x1(v)
+ 2γ2)

∣∣∣ < ρ for all v ∈ Sβu (i).
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Lemma 5. Under the setting described above and given α > 0, ρ > 0 and ε > α, under the
algorithm user-user nearest neighbor, we have

P ( |f(x1(u),x2(i))− ŷ(u, i)| > ε |A,B,C,D) ≤ 3ρ+ γ2

(ε− α)
2 .

Proof. Under the algorithm user-user nearest neighbor, the error of the estimate is given by

f(x1(u),x2(i))− ŷ(u, i) = f(x1(u),x2(i))− y(u∗, i)−muu∗

= f(x1(u),x2(i))− f(x1(u∗),x2(i))− ηu∗,i −muu∗ .

Given x1(u) = x1(u),x1(u∗) = x1(u∗) such that events A,B,C and D are satisfied, we have that

E[f(x1(u),x2(i))− f(x1(u∗),x2(i))− ηu∗,i] = µx1(u)x1(u∗), (28)

with respect to x2(i) ∼ PX2 .

Conditioned on event C, that is,
∣∣µx1(u)x1(v) −muv

∣∣ < α for all v ∈ Sβu (i), included u∗, it is
sufficient to bound the probability of event

E =
{
|f(x1(u),x2(i))− f(x1(u∗),x2(i))− ηu∗,i − µuu∗ | > ε− α

}
. (29)

Conditioned on x1(u) = x1(u),x1(u∗) = x1(u∗),

Var[f(x1(u),x2(i))− f(x1(u∗),x2(i))− ηu∗,i] = σ2
x1(u)x1(u∗)

+ γ2, (30)

Therefore, by standard Chebychev’s inequality, we obtain

P
(
|f(x1(u),x2(i))− f(x1(u∗),x2(i))− ηu∗,i − µx1(u)x1(u∗)| > ε− α

)
≤
σ2
x1(u)x1(u∗)

+ γ2

(ε− α)
2 .

(31)

The selection of u∗ was done using empirical estimates s2uv across v ∈ Sβu (i). By condition on event
D happening, we have that for any v ∈ Sβu (i), s2uv is within ρ of (σ2

x1(u)x1(v)
+ 2γ2). And condition

on event B, we have that there is at least one v ∈ Sβu (i) so that σ2
x1(u)x1(v)

< ρ; let one such v be
denoted as v∗. Therefore, we obtain that

σ2
x1(u)x1(u∗) + 2γ2 − ρ ≤ s2uu∗

≤ s2uv
≤ σ2

x1(u)x1(v)
+ 2γ2 + ρ

≤ 2γ2 + 2ρ. (32)

From above, we can conclude that σ2
x1(u)x1(u∗)

≤ 3ρ. Replacing this in (31), we obtain the bound on
right hand side as

≤ 3ρ+ γ2

(ε− α)2
. (33)

Since this bound holds for all choices of x1(u),x1(u∗) conditioned on events A,B,C and D, we
conclude the desired result.

C Useful Inequalities

Lemma 6 (Bernstein’s Inequality). IfX1, . . . Xn are independent zero-mean r.v. such that |Xi| ≤M
almost surely, then for all t,

P

(
1

n

n∑
i=1

Xi > t

)
≤ exp

(
− 3n2t2

2(3
∑
j E[X2

j ] +Mnt)

)

≤ exp

(
− 3nt2

6M2 + 2Mt

)
.

15



Lemma 7 (Chernoff’s Inequality). If X1, . . . Xn are independent r.v. such that Xi ∈ (0, 1), and let
X denote their sum. Then for any δ ∈ (0, 1),

P (X ≤ (1− δ)E[X])) ≤ exp(−δ2µ/2),

and for any δ > 0,

P (X ≥ (1 + δ)E[X])) ≤ exp(−δ2µ/3)

Lemma 8 (Maurer-Pontil Inequality [19]). For n ≥ 2, let X1, . . . Xn be independent ran-
dom variables such that Xi ∈ (0, 1). Let V (X) denote their sample variance, i.e., V (X) =

1
2n(n−1)

∑
i,j(Xi −Xj)

2. Let σ2 = E[V (X)] denote the true variance. For any δ ∈ (0, 1),

P
(
V (X)− σ2 < −s)

)
≤ exp

(
− (n− 1)s2

2σ2

)
,

and

P
(
V (X)− σ2 > s)

)
≤ exp

(
− (n− 1)s2

2σ2 + s

)
.

The Maurer-Pontil Inequality implies the following corollary for all bounded random variables.
Corollary 1. For n ≥ 2, let X1, . . . Xn be independent random variables such that Xi ∈ (a, b). Let
V (X) denote their sample variance, i.e., V (X) = 1

2n(n−1)
∑
i,j(Xi −Xj)

2. Let σ2 = E[V (X)]

denote the true variance. For any δ ∈ (0, 1),

P
(∣∣V (X)− σ2

∣∣ < s)
)
≤ 2 exp

(
− (n− 1)s2

(b− a)2(2σ2 + s)

)
.
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