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Abstract

Low-rank matrix factorizations arise in a wide variety of applications – including
recommendation systems, topic models, and source separation, to name just a few.
In these and many other applications, it has been widely noted that by incorporat-
ing temporal information and allowing for the possibility of time-varying models,
significant improvements are possible in practice. However, despite the reported
superior empirical performance of these dynamic models over their static counter-
parts, there is limited theoretical justification for introducing these more complex
models. In this paper we aim to address this gap by studying the problem of recov-
ering a dynamically evolving low-rank matrix from incomplete observations. First,
we propose the locally weighted matrix smoothing (LOWEMS) framework as one
possible approach to dynamic matrix recovery. We then establish error bounds for
LOWEMS in both the matrix sensing and matrix completion observation models.
Our results quantify the potential benefits of exploiting dynamic constraints both
in terms of recovery accuracy and sample complexity. To illustrate these benefits
we provide both synthetic and real-world experimental results.

1 Introduction

Suppose that X ∈ Rn1×n2 is a rank-r matrix with r much smaller than n1 and n2. We observe X
through a linear operator A : Rn1×n2 → Rm,

y = A(X), y ∈ Rm.

In recent years there has been a significant amount of progress in our understanding of how to recover
X from observations of this form even when the number of observations m is much less than the
number of entries inX . (See [8] for an overview of this literature.) WhenA is a set of weighted linear
combinations of the entries of X , this problem is often referred to as the matrix sensing problem.
In the special case where A samples a subset of entries of X , it is known as the matrix completion
problem. There are a number of ways to establish recovery guarantee in these settings. Perhaps the
most popular approach for theoretical analysis in recent years has focused on the use of nuclear norm
minimization as a convex surrogate for the (nonconvex) rank constraint [1, 3, 4, 5, 6, 7, 15, 19, 21, 22].
An alternative, however is to aim to directly solve the problem under an exact low-rank constraint.
This leads a non-convex optimization problem, but has several computational advantages over most
approaches to minimizing the nuclear norm and is widely used in large-scale applications (such
as recommendation systems) [16]. In general, popular algorithms for solving the rank-constrained
models – e.g., alternating minimization and alternating gradient descent – do not have as strong of
convergence or recovery error guarantees due to the non-convexity of the rank constraint. However,
there has been significant progress on this front in recent years [11, 10, 12, 13, 14, 23, 25], with many
of these algorithms now having guarantees comparable to those for nuclear norm minimization.
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Nearly all of this existing work assumes that the underlying low-rank matrix X remains fixed
throughout the measurement process. In many practical applications, this is a tremendous limitation.
For example, users’ preferences for various items may change (sometimes quite dramatically) over
time. Modelling such drift of user’s preference has been proposed in the context of both music and
movies as a way to achieve higher accuracy in recommendation systems [9, 17]. Another example
in signal processing is dynamic non-negative matrix factorization for the blind signal separation
problem [18]. In these and many other applications, explicitly modelling the dynamic structure in the
data has led to superior empirical performance. However, our theoretical understanding of dynamic
low-rank matrix recovery is still very limited.

In this paper we provide the first theoretical results on the dynamic low-rank matrix recovery problem.
We determine the sense in which dynamic constraints can help to recover the underlying time-varying
low-rank matrix in a particular dynamic model and quantify this impact through recovery error
bounds. To describe our approach, we consider a simple example where we have two rank-r matrices
X1 and X2. Suppose that we have a set of observations for each of X1 and X2, given by

yi = Ai
(
Xi
)
, i = 1, 2.

The naïve approach is to use y1 to recover X1 and y2 to recover X2 separately. In this case the
number of observations required to guarantee successful recovery is roughly mi ≥ Cirmax(n1, n2)
for i = 1, 2 respectively, where C1, C2 are fixed positive constants (see [4]). However, if we know
that X2 is close to X1 in some sense (for example, if X2 is a small perturbation of X1), then the
above approach is suboptimal both in terms of recovery accuracy and sample complexity, since in
this setting y1 actually contains information about X2 (and similarly, y2 contains information about
X1). There are a variety of possible approaches to incorporating this additional information. The
approach we will take is inspired by the LOWESS (locally weighted scatterplot smoothing) approach
from non-parametric regression. In the case of this simple example, if we look just at the problem of
estimating X2, our approach reduces to solving a problem of the form

min
X2
‖A2(X2)− y2‖22 + λ‖A1(X2)− y1‖22 s.t. rank

(
X2
)
≤ r,

where λ is a parameter that determines how strictly we are enforcing the dynamic constraint (if
X1 is very close to X2 we can set λ to be larger, but if X1 is far from X2 we will set it to be
comparatively small). This approach generalizes naturally to the locally weighted matrix smoothing
(LOWEMS) program described in Section 2. Note that it has a (simple) convex objective function, but
a non-convex rank constraint. Our analysis in Section 3 shows that the proposed program outperforms
the above naïve recovery strategy both in terms of recovery accuracy and sample complexity.

We should emphasize that the proposed LOWEMS program is non-convex due to the exact low-
rank constraint. Inspired by previous work on matrix factorization, we propose using an efficient
alternating minimization algorithm (described in more detail in Section 4). We explicitly enforce the
low-rank constraint by optimizing over a rank-r factorization and alternately minimize with respect
to one of the factors while holding the other one fixed. This approach is popular in practice since
it is typically less computationally complex than nuclear norm minimization based algorithms. In
addition, thanks to recent work on global convergence guarantees for alternating minimization for
low-rank matrix recovery [10, 13, 25], one can reasonably expect similar convergence guarantees to
hold for alternating minimization in the context of LOWEMS, although we leave the pursuit of such
guarantees for future work.

To empirically verify our analysis, we perform both synthetic and real world experiments, described
in Section 5. The synthetic experimental results demonstrate that LOWEMS outperforms the naïve
approach in practice both in terms of recovery accuracy and sample complexity. We also demonstrate
the effectiveness of LOWEMS in the context of recommendation systems.

Before proceeding, we briefly state some of the notation that we will use throughout. For a vector
x ∈ Rn, we let ‖x‖p denote the standard `p norm. Given a matrixX ∈ Rn1×n2 , we useXi: to denote
the ith row of X and X:j to denote the jth column of X . We let ‖X‖F denote the the Frobenius
norm, ‖X‖2 the operator norm, ‖X‖∗ the nuclear norm, and ‖X‖∞ = maxi,j |Xij | the element-
wise infinity norm. Given a pair of matrices X,Y ∈ Rn1×n2 , we let 〈X,Y 〉 =

∑
i,j XijYij =

Tr
(
Y TX

)
denote the standard inner product. Finally, we let nmax and nmin denote max{n1, n2}

and min{n1, n2} respectively.
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2 Problem formulation

The underlying assumption throughout this paper is that our low-rank matrix is changing over time
during the measurement process. For simplicity we will model this through the following discrete
dynamic process: at time t, we have a low-rank matrix Xt ∈ Rn1×n2 with rank r, which we assume
is related to the matrix at previous time-steps via

Xt = f(X1, . . . , Xt−1) + εt,

where εt represents noise. Then we observe each Xt through a linear operatorAt : Rn1×n2 → Rmt

,

yt = At(Xt) + zt, yt, zt ∈ Rm
t

, (1)
where zt is measurement noise. In our problem we will suppose that we observe up to d time steps,
and our goal is to recover {Xt}dt=1 jointly from {yt}dt=1.

The above model is sufficiently flexible to incorporate a wide variety of dynamics, but we will
make several simplifications. First, we note that we can impose the low-rank constraint explicitly
by factorizing Xt as Xt = U t (V t)

T
, U t ∈ Rn1×r, V t ∈ Rn2×r. In general both U t and V t may

be changing over time. However, in some applications, it is reasonable to assume that only one set
of factors is changing. For example, in a recommendation system where our matrix represent user
preferences, if the rows correspond to items and the columns correspond to users, then U t contains
the latent properties of the items and V t models the latent preferences of the users. In this context
it is reasonable to assume that only V t changes over time [9, 17], and that there is a fixed matrix
U (which we may assume to be orthonormal) such that we can write Xt = UV t for all t. Similar
arguments can be made in a variety of other applications, including personalized learning systems,
blind signal separation, and more.

Second, we assume a Markov property on f , so that Xt (or equivalently, V t) only depends on the
previous Xt−1 (or V t−1). Furthermore, although other dynamic models could be accommodated, for
the sake of simplicity in our analysis we consider the simple model on V t where

V t = V t−1 + εt, t = 2, . . . , d. (2)
We will also assume that both εt and the measurement noise zt are i.i.d. zero-mean Gaussian noise.

To simplify our discussion, we will assume that our goal is to recover the matrix at the most recent
time-step, i.e., we wish to estimate Xd from {yt}dt=1. Our general approach can be stated as follows.
The LOWEMS estimator is given by the following optimization program:

X̂d = arg min
X∈C(r)

L (X) = arg min
X∈C(r)

1

2

d∑
t=1

wt
∥∥At (X)− yt

∥∥2

2
, (3)

where C(r) = {X ∈ Rn1×n2 : rank(X) ≤ r}, and {wt}dt=1 are non-negative weights. We further
assume

∑d
t=1 wt = 1 to avoid ambiguity. In the following section we provide bounds on the

performance of the LOWEMS estimator for two common choices of operators At.

3 Recovery error bounds

Given the estimator X̂d from (3), we define the recovery error to be ∆d := X̂d −Xd. Our goal in
this section will be to provide bounds on ‖X̂d −Xd‖F under two common observation models. Our
analysis builds on the following (deterministic) inequality.

Proposition 3.1. Both the estimator X̂d by (3) and (9) satisfies
d∑
t=1

wt
∥∥At (∆d

)∥∥2

2
≤ 2
√

2r

∥∥∥∥∥
d∑
t=1

wtAt∗
(
ht − zt

)∥∥∥∥∥
2

∥∥∆d
∥∥
F
, (4)

where ht = At
(
Xd −Xt

)
and At∗ is the adjoint operator of At.

This is a deterministic result that holds for any set of {At}. The remaining work is to lower bound the
LHS of (4), and upper bound the RHS of (4) for concrete choices of {At}. In the following sections
we derive such bounds in the settings of both Gaussian matrix sensing and matrix completion. For
simplicity and without loss of generality, we will assume m1 = . . . = md =: m0, so that the total
number of observations is simply m = dm0.
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3.1 Matrix sensing setting

For the matrix sensing problem, we will consider the case where all operators At correspond to
Gaussian measurement ensembles, defined as follows.
Definition 3.2. [4] A linear operator A : Rn1×n2 → Rm is a Gaussian measurement ensemble if
we can express each entry of A (X) as [A (X)]i = 〈Ai, X〉 for a matrix Ai whose entries are i.i.d.
according to N (0, 1/m), and where the matrices A1, . . . , Am are independent from each other.

Also, we define the matrix restricted isometry property (RIP) for a linear map A.
Definition 3.3. [4] For each integer r = 1, . . . , nmin, the isometry constant δr of A is the smallest
quantity such that

(1− δr) ‖X‖2F ≤ ‖A (X)‖22 ≤ (1 + δr) ‖X‖2F
holds for all matrices X of rank at most r.

An important result (that we use in the proof of Theorem 3.4) is that Gaussian measurement ensembles
satisfy the matrix RIP with high probability provided m ≥ Crnmax. See, for example, [4] for details.

To obtain an error bound in the matrix sensing case we lower bound the LHS of (4) using the matrix
RIP and upper bound the stochastic error (the RHS of (4)) using a covering argument. The following
is our main result in the context of matrix setting.
Theorem 3.4. Suppose that we are given measurements as in (1) where all At’s are Gaussian
measurement ensembles. Assume that Xt evolves according to (2) and has rank r. Further assume
that the measurement noise zt is i.i.d. N

(
0, σ2

1

)
for 1 ≤ t ≤ d and that the perturbation noise εt is

i.i.d. N
(
0, σ2

2

)
for 2 ≤ t ≤ d. If

m0 ≥ D1 max

{
nmaxr

d∑
t=1

w2
t , nmax

}
, (5)

where D1 is a fixed positive constant, then the estimator X̂d from (3) satisfies∥∥∆d
∥∥2

F
≤ C0

(
d∑
t=1

w2
t σ

2
1 +

d−1∑
t=1

(d− t)w2
t σ

2
2

)
nmaxr (6)

with probability at least P1 = 1− dC1 exp (−c1n2), where C0, C1, c1 are positive constants.

If we choose the weights as wd = 1 and wt = 0 for 1 ≤ t ≤ d − 1, the bound in Theorem 3.4
reduces to a bound matching classical (static) matrix recovery results (see, for example, [4] Theorem
2.4). Also note that in this case Theorem 3.4 implies exact recovery when the sample complexity
is O(rn/d). In order to help interpret this result for other choices of the weights, we note that for a
given set of parameters, we can determine the optimal weights that will minimize this bound. Towards
this end, we define κ := σ2

2/σ
2
1 and set pt = (d− t), 1 ≤ t ≤ d. Then one can calculate the optimal

weights by solving the following quadratic program:

{w∗t }
d
t=1 = arg min∑

t wt=1; wt≥0

d∑
t=1

w2
t +

d−1∑
t=1

ptκw
2
t . (7)

Using the method of Lagrange multipliers one can show that (7) has the analytical solution:

w∗j =
1∑d

i=1
1

1+piκ

1

1 + pjκ
, 1 ≤ j ≤ d. (8)

A simple special case occurs when σ2 = 0. In this case all V t’s are the same, and the optimal weights
go to wt = 1

d for all t. In contrast, when σ2 grows large the weights eventually converge to wd = 1

and wt = 0 for all t 6= d. This results in essentially using only yd to recover Xd and ignoring the rest
of the measurements. Combining these, we note that when the σ2 is small, we can gain by a factor of
approximately d over the naïve strategy that ignores dynamics and tries to recover Xd using only yd.
Notice also that the minimum sample complexity is proportional to

∑d
t=1 w

2
t when r/d is relatively

large. Thus, when σ2 is small, the required number of measurements can be reduced by a factor of d
compared to what would be required to recover Xd using only yd.
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3.2 Matrix completion setting

For the matrix completion problem, we consider the following simple uniform sampling ensemble:
Definition 3.5. A linear operator A : Rn1×n2 → Rm is a uniform sampling ensemble (with
replacement) if all sensing matrices Ai are i.i.d. uniformly distributed on the set

X =
{
ej (n1) eTk (n2) , 1 ≤ j ≤ n1, 1 ≤ k ≤ n2

)
,

where ej (n) are the canonical basis vectors in Rn. We let p = m0/(n1n2) denote the fraction of
sampled entries.

For this observation architecture, our analysis is complicated by the fact that it does not satisfy the
matrix RIP. (A quick problematic example is a rank-1 matrix with only one non-zero entry.) To handle
this we follow the typical approach and restrict our focus to matrices that satisfy certain incoherence
properties.
Definition 3.6. (Subspace incoherence [10]) Let U ∈ Rn×r be the orthonormal basis for an r-
dimensional subspace U , then the incoherence of U is defined as µ(U) := maxi∈[n]

√
n√
r

∥∥eTi U∥∥2
,

where ei denotes the ith standard basis vector. We also simply denote µ(span(U)) as µ(U).
Definition 3.7. (Matrix incoherence [13]) A rank-r matrix X ∈ Rn1×n2 with SVD X = UΣV T is
incoherent with parameter µ if

‖U:i‖2 ≤
µ
√
r

√
n1

for any i ∈ [n1] and ‖V:j‖2 ≤
µ
√
r

√
n2

for any j ∈ [n2],

i.e., the subspaces spanned by the columns of U and V are both µ-incoherent.

The incoherence assumption guarantees that X is far from sparse, which make it possible to recover
X from incomplete measurements since a measurement contains roughly the same amount of
information for all dimensions.

To proceed we also assume that the matrix Xd has “bounded spikiness” in that the maximum entry
of Xd is bounded by a, i.e.,

∥∥Xd
∥∥
∞ ≤ a. To exploit the spikiness constraint below we replace the

optimization constraints C (r) in (3) with C (r, a) :== {X ∈ Rn1×n2 : rank (X) ≤ r, ‖X‖∞ ≤ a}:

X̂d = arg min
X∈C(r,a)

L (X) = arg min
X∈C(r,a)

1

2

d∑
t=1

wt
∥∥At (X)− yt

∥∥2

2
. (9)

Note that Proposition 3.1 still holds for (9).

To obtain an error bound in the matrix completion case, we lower bound the LHS of 4 using a
restricted convexity argument (see, for example, [20]) and upper bound the RHS using matrix
Bernstein inequality. The result of this approach is the following theorem.
Theorem 3.8. Suppose that we are given measurements as in (1) where allAt’s are uniform sampling
ensembles. Assume that Xt evolves according to (2), has rank r, and is incoherent with parameter
µ0 and

∥∥Xd
∥∥
∞ ≤ a. Further assume that the perturbation noise and the measurement noise satisfy

the same assumptions in Theorem 3.4. If

m0 ≥ D2nmin log2(n1 + n2)φ′(w), (10)

where φ′(w) =
maxt w

2
t ((d−t)µ2

0rσ
2
2/n1+σ2

1)∑d
t=1 w

2
t ((d−t)σ2

2+σ2
1)

, then the estimator X̂d from (9) satisfies

∥∥∆d
∥∥2

F
≤ max

B1 := C2a
2n1n2

√∑d
t=1 w

2
t log(n1 + n2)

m0
, B2

 , (11)

with probability at least P1 = 1− 5/(n1 + n2)− 5dnmax exp(−nmin), where

B2 =
C3rn

2
1n

2
2 log(n1 + n2)

nminm0

((
d∑
t=1

w2
t σ

2
1 +

d−1∑
t=1

(d− t)w2
t σ

2
2

)
+

d∑
t=1

w2
t a

2

)
, (12)

and C2, C3, D2 are absolute positive constants.
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If we choose the weights as wd = 1 and wt = 0 for 1 ≤ t ≤ d − 1, the bound in Theorem 3.8
reduces to a result comparable to classical (static) matrix completion results (see, for example, [15]
Theorem 7). Moreover, from the B2 term in (11), we obtain the same dependence on m as that of (6),
i.e., 1/m. However, there are also a few key differences between Theorem 3.4 and our results for
matrix completion. In general the bound is loose in several aspects compared to the matrix sensing
bound. For example, when m0 is small, B1 actually dominates, in which case the dependence on
m is actually 1/

√
m instead of 1/m. When m0 is sufficiently large, then B2 dominates, in which

case we can consider two cases. The first case corresponds to when a is relatively large compared to
σ1, σ2 – i.e., the low-rank matrix is spiky. In this case the term containing a2 in B2 dominates, and
the optimal weights are equal weights of 1/d. This occurs because the term involving a dominates
and there is little improvement to be obtained by exploiting temporal dynamics. In the second case,
when a is relatively small compared to σ1, σ2 (which is usually the case in practice), the bound can
be simplified to

‖∆‖2F ≤
c3rn

2
1n

2
2 log(n1 + n2)

nminm0

((
d∑
t=1

w2
t σ

2
1 +

d−1∑
t=1

(d− t)w2
t σ

2
2

))
.

The above bound is much more similar to the bound in (6) from Theorem 3.4. In fact, we can also
obtain the optimal weights by solving the same quadratic program as (7).

When n1 ≈ n2, the sample complexity is Θ(nmin log2(n1 + n2)φ′(w)). In this case Theorem 3.8
also implies a similar sample complexity reduction as we observed in the matrix sensing setting.
However, the precise relations between sample complexity and weights wt’s are different in these
two cases (deriving from the fact that the proof uses matrix Bernstein inequalities in the matrix
completion setting rather than concentration inequalities of Chi-squared variables as in the matrix
sensing setting).

4 An algorithm based on alternating minimization

As noted in Section 2, any rank-r matrix can be factorized as X = UV T where U is n1 × r and V is
n2 × r, therefore the LOWEMS estimator in (3) can be reformulated as

X̂d = arg min
X∈C(r)

L (X) = arg min
X=UV T

d∑
t=1

1

2
wt
∥∥At (UV T )− yt∥∥2

2
. (13)

The above program can be solved by alternating minimization (see [17]), which alternatively mini-
mizes the objective function over U (or V ) while holding V (or U ) fixed until a stopping criterion is
reached. Since the objective function is quadratic, each step in this procedure reduces to conventional
weighted least squares, which can be solved via efficient numerical procedures. Theoretical guar-
antees for global convergence of alternating minimization for the static matrix sensing/completion
problem have recently been established in [10, 13, 25] by treating the alternating minimization as
a noisy version of the power method. Extending these results to establish convergence guarantees
for (13) would involve analyzing a weighted power method. We leave this analysis for future work,
but expect that similar convergence guarantees should be possible in this setting.

5 Simulations and experiments

5.1 Synthetic simulations

Our synthetic simulations consider both matrix sensing and matrix completion, but with an emphasis
on matrix completion. We set n1 = 100, n2 = 50, d = 4 and r = 5. We consider two baselines:
baseline one is only using yd to recover Xd and simply ignoring y1, . . . yd−1; baseline two is using
{yt}dt=1 with equal weights. Note that both of these can be viewed as special cases of LOWEMS with
weights (0, . . . , 0, 1) and ( 1

d ,
1
d , . . . ,

1
d ) respectively. Recalling the formula for the optimal choice of

weights in (8), it is easy to show that baseline one is equivalent to the case where κ = (σ2
2)/(σ2

1)→∞
and the baseline two equivalent to the case where κ → 0. This also makes intuitive sense since
κ→∞ means the perturbation is arbitrarily large between time steps, while κ→ 0 reduces to the
static setting.
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Figure 1: Recovery error under different levels of perturbation noise. (a) matrix sensing. (b) matrix
completion.
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Figure 2: Sample complexity under different levels of perturbation noise (matrix completion).

1). Recovery error. In this simulation, we set m0 = 4000 and set the measurement noise level σ1

to 0.05. We vary the perturbation noise level σ2. For every pair of (σ1, σ2) we perform 10 trials,
and show the average relative recovery error

∥∥∆d
∥∥2

F
/
∥∥Xd

∥∥2

F
. Figure 1 illustrates how LOWEMS

reduces the recovery error compared to our baselines. As one can see, when σ2 is small, the optimal
κ, i.e., σ2

2/σ
2
1 , generates nearly equal weights (baseline two), reducing recovery error approximately

by a factor of 4 over baseline one, which is roughly equal to d as expected. As σ2 grows, the recovery
error of baseline two will increase dramatically due to the perturbation noise. However in this case
the optimal κ of LOWEMS grows with it, leading to a more uneven weighting and to somewhat
diminished performance gains. We also note that, as expected, LOWEMS converges to baseline one
when σ2 is large.

2). Sample complexity. In the interest of conciseness we only provide results here for the matrix
completion setting (matrix sensing yields broadly similar results). In this simulation we vary
the fraction of observed entries p to empirically find the minimum sample complexity required to
guarantee successful recovery (defined as a relative error≤ 0.08). We compare the sample complexity
of the proposed LOWEMS to baseline one and baseline two under different perturbation noise level
σ2 (σ1 is set as 0.02). For a certain σ2, the relative recovery error is the averaged over 10 trials.
Figure 2 illustrates how LOWEMS reduces the sample complexity required to guarantee successful
recovery. When the perturbation noise is weaker than the measurement noise, the sample complexity
can be reduced approximately by a factor of d compared to baseline one. When the perturbation noise
is much stronger than measurement noise, the recovery error of baseline two will increase due to the
perturbation noise and hence the sample complexity increase rapidly. However in this case proposed
LOWEMS still achieves relatively small sample complexity and its sample complexity converges to
baseline one when σ2 is relatively large.
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Figure 3: Experimental results on truncated Netflix dataset. (a) Testing RMSE vs. number of time
steps. (b) Validation RMSE vs. κ.

5.2 Real world experiments

We next test the LOWEMS approach in the context of a recommendation system using the (truncated)
Netflix dataset. We eliminate those movies with few ratings, and those users rating few movies, and
generate a truncated dataset with 3199 users, 1042 movies, 2462840 ratings, and hence the fraction of
visible entries in the rating matrix is≈ 0.74. All the ratings are distributed over a period of 2191 days.
For the sake of robustness, we additionally impose a Frobenius norm penalty on the factor matrices
U and V in (13). We keep the latest (in time) 10% of the ratings as a testing set. The remaining
ratings are split into a validation set and a training set for the purpose of cross validation. We divide
the remaining ratings into d ∈ {1, 3, 6, 8} bins respectively with same time period according to
their timestamps. We use 5-fold cross validation, and we keep 1/5 of the ratings from the dth bin
as a validation set. The number of latent factors r is set to 10. The Frobenius norm regularization
parameter γ is set to 1. We also note that in practice one likely has no prior information on σ1,
σ2 and hence κ. However, we use model selection techniques like cross validation to select the
best κ incorporating the unknown prior information on measurement/perturbation noise. We use
root mean squared error (RMSE) to measure prediction accuracy. Since alternating minimization
uses a random initialization, we generate 10 test RMSE’s (using a boxplot) for the same testing set.
Figure 3(a) shows that the proposed LOWEMS estimator improves the testing RMSE significantly
with appropriate κ. Additionally, the performance improvement increases as d gets larger.

To further investigate how the parameter κ affects accuracy, we also show the validation RMSE
compared to κ in Figure 3(b). When κ ≈ 1, LOWEMS achieves the best RMSE on the validation
data. This further demonstrates that imposing an appropriate dynamic constraint should improve
recovery accuracy in practice.

6 Conclusion

In this paper we consider the low-rank matrix recovery problem in a novel setting, where one
of the factor matrices changes over time. We propose the locally weighted matrix smoothing
(LOWEMS) framework, and have established error bounds for LOWEMS in both the matrix sensing
and matrix completion cases. Our analysis quantifies how the proposed estimator improves recovery
accuracy and reduces sample complexity compared to static recovery methods. Finally, we provide
both synthetic and real world experimental results to verify our analysis and demonstrate superior
empirical performance when exploiting dynamic constraints in a recommendation system.
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