
Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks

Anh Nguyen
anguyen8@uwyo.edu

Alexey Dosovitskiy
dosovits@cs.uni-freiburg.de

Jason Yosinski
jason@geometric.ai

Thomas Brox
brox@cs.uni-freiburg.de

Jeff Clune
jeffclune@uwyo.edu

Abstract

Deep neural networks (DNNs) have demonstrated state-of-the-art results on many
pattern recognition tasks, especially vision classification problems. Understanding
the inner workings of such computational brains is both fascinating basic science
that is interesting in its own right—similar to why we study the human brain—and
will enable researchers to further improve DNNs. One path to understanding
how a neural network functions internally is to study what each of its neurons
has learned to detect. One such method is called activation maximization (AM),
which synthesizes an input (e.g. an image) that highly activates a neuron. Here
we dramatically improve the qualitative state of the art of activation maximization
by harnessing a powerful, learned prior: a deep generator network (DGN). The
algorithm (1) generates qualitatively state-of-the-art synthetic images that look
almost real, (2) reveals the features learned by each neuron in an interpretable
way, (3) generalizes well to new datasets and somewhat well to different network
architectures without requiring the prior to be relearned, and (4) can be considered
as a high-quality generative method (in this case, by generating novel, creative,
interesting, recognizable images).

1 Introduction and Related Work

Understanding how the human brain works has been a long-standing quest in human history. Neuro-
scientists have discovered neurons in human brains that selectively fire in response to specific, abstract
concepts such as Halle Berry or Bill Clinton, shedding light on the question of whether learned neural
codes are local vs. distributed [1]. These neurons were identified by finding the preferred stimuli
(here, images) that highly excite a specific neuron, which was accomplished by showing subjects
many different images while recording a target neuron’s activation. Such neurons are multifaceted:
for example, the “Halle Berry neuron” responds to very different stimuli related to the actress—from
pictures of her face, to pictures of her in costume, to the word “Halle Berry” printed as text [1].

Inspired by such neuroscience research, we are interested in shedding light into the inner workings
of DNNs by finding the preferred inputs for each of their neurons. As the neuroscientists did, one
could simply show the network a large set of images and record a set of images that highly activate a
neuron [2]. However, that method has disadvantages vs. synthesizing preferred stimuli: 1) it requires
a distribution of images that are similar to those used to train the network, which may not be known
(e.g. when probing a trained network when one does not know which data were used to train it); 2)
even in such a dataset, many informative images that would activate the neuron may not exist because
the image space is vast [3]; 3) with real images, it is unclear which of their features a neuron has
learned: for example, if a neuron is activated by a picture of a lawn mower on grass, it is unclear if it

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Figure 1: Images synthesized from scratch to highly activate output neurons in the CaffeNet deep
neural network, which has learned to classify different types of ImageNet images.

‘cares about’ the grass, but if an image synthesized to highly activate the lawn mower neuron contains
grass (as in Fig. 1), we can be more confident the neuron has learned to pay attention to that context.

Synthesizing preferred stimuli is called activation maximization [4–8, 3, 9]. It starts from a random
image and iteratively calculates via backpropagation how the color of each pixel in the image should
be changed to increase the activation of a neuron. Previous studies have shown that doing so without
biasing the images produced creates unrealistic, uninterpretable images [5, 3], because the set of all
possible images is so vast that it is possible to produce ‘fooling’ images that excite a neuron, but
do not resemble the natural images that neuron has learned to detect. Instead, we must constrain
optimization to generate only synthetic images that resemble natural images [6]. Attempting that
is accomplished by incorporating natural image priors into the objective function, which has been
shown to substantially improve the recognizability of the images generated [7, 6, 9]. Many hand-
designed natural image priors have been experimentally shown to improve image quality such as:
Gaussian blur [7], α-norm [5, 7, 8], total variation [6, 9], jitter [10, 6, 9], data-driven patch priors [8],
center-bias regularization [9], and initializing from mean images [9]. Instead of hand-designing
such priors, in this paper, we propose to use a superior, learned natural image prior [11] akin to a
generative model of images. This prior allows us to synthesize highly human-interpretable preferred
stimuli, giving additional insight into the inner functioning of networks. While there is no way
to rigorously measure human-interpretability, a problem that also makes quantitatively assessing
generative models near-impossible [12], we should not cease scientific work on improving qualitative
results simply because humans must subjectively evaluate them.

Learning generative models of natural images has been a long-standing goal in machine learning [13].
Many types of neural network models exist, including probabilistic [13], auto-encoder [13], stochastic
[14] and recurrent networks [13]. However, they are typically limited to relatively low-dimensional
images and narrowly focused datasets. Recently, advances in network architectures and training
methods enabled the generation of high-dimensional realistic images [15, 16, 11]. Most of these works
are based on Generative Adversarial Networks (GAN) [17], which trains two models simultaneously:
a generative model G to capture the data distribution, and a discriminative model D to estimates
the probability that a sample came from the training data rather than G. The training objective
for G is to maximize the probability of D making a mistake. Recently Dosovitskiy and Brox [11]
trained networks capable of generating images from highly compressed feature representations, by
combining an auto-encoder-style approach with GAN’s adversarial training. We harness these image
generator networks as priors to produce synthetic preferred images. These generator networks are
close to, but not true, generative models because they are trained without imposing any prior on the
hidden distribution as in variational auto-encoders [14] or GANs [17], and without the addition of
noise as in denoising auto-encoders [18]. Thus, there is no natural sampling procedure nor an implicit
density function over the data space.

The image generator DNN that we use as a prior is trained to take in a code (e.g. vector of scalars)
and output a synthetic image that looks as close to real images from the ImageNet dataset [19] as
possible. To produce a preferred input for a neuron in a given DNN that we want to visualize, we
optimize in the input code space of the image generator DNN so that it outputs an image that activates

2



...

I m age

banana

convertible

..
...
Deep   generator  network

(prior) DNN   being  visualized

candle

Code
Forward  and  backward  passes

u9 u2
u1 c1

c2

fc6 fc7
fc8fc6

c3 c4 c5
. . .

up c o n v o l u t i o n a l c o n v o l u t i o n a l

Figure 2: To synthesize a preferred input for a target neuron h (e.g. the “candle” class output neuron),
we optimize the hidden code input (red bar) of a deep image generator network (DGN) to produce
an image that highly activates h. In the example shown, the DGN is a network trained to invert the
feature representations of layer fc6 of CaffeNet. The target DNN being visualized can be a different
network (with a different architecture and or trained on different data). The gradient information
(blue-dashed line) flows from the layer containing h in the target DNN (here, layer fc8) all the way
through the image back to the input code layer of the DGN. Note that both the DGN and target DNN
being visualized have fixed parameters, and optimization only changes the DGN input code (red).

the neuron of interest (Fig. 2). Our method restricts the search to only the set of images that can
be drawn by the prior, which provides a strong biases toward realistic visualizations. Because our
algorithm uses a deep generator network to perform activation maximization, we call it DGN-AM.

2 Methods

Networks that we visualize. We demonstrate our visualization method on a variety of different
networks. For reproducibility, we use pretrained models freely available in Caffe or the Caffe
Model Zoo [20]: CaffeNet [20], GoogleNet [21], and ResNet [22]. They represent different convnet
architectures trained on the ∼1.3-million-image 2012 ImageNet dataset [23, 19]. Our default DNN is
CaffeNet [20], a minor variant of the common AlexNet architecture [24] with similar performance
[20]. The last three fully connected layers of the 8-layer CaffeNet are called fc6, fc7 and fc8 (Fig. 2).
fc8 is the last layer (pre softmax) and has 1000 outputs, one for each ImageNet class.

Image generator network. We denote the DNN we want to visualize by Φ. Instead of previous
works, which directly optimized an image so that it highly activates a neuron h in Φ and optionally
satisfies hand-designed priors embedded in the cost function [5, 7, 9, 6], here we optimize in the
input code of an image generator network G such that G outputs an image that highly activates h.

For G we use networks made publicly available by [11] that have been trained with the principles of
GANs [17] to reconstruct images from hidden-layer feature representations within CaffeNet [20].
How G is trained includes important differences from the original GAN configuration [17]. Here
we can only briefly summarize the training procedure; please see [11] for more details. The training
process involves four convolutional networks: 1) a fixed encoder network E to be inverted, 2) a
generator network G, 3) a fixed “comparator” network C and 4) a discriminator D. G is trained to
invert a feature representation extracted by the network E, and has to satisfy three objectives: 1) for
a feature vector yi = E(xi), the synthesized image G(yi) has to be close to the original image xi;
2) the features of the output image C(G(yi)) have to be close to those of the real image C(xi); 3)
D should be unable to distinguish G(yi) from real images. The objective for D is to discriminate
between synthetic images G(yi) and real images xi as in the original GAN [17].

In this paper, the encoder E is CaffeNet truncated at different layers. We denote CaffeNet truncated
at layer l by El, and the network trained to invert El by Gl. The “comparator” C is CaffeNet up to
layer pool5. D is a convolutional network with 5 convolutional and 2 fully connected layers. G is an
upconvolutional (aka deconvolutional) architecture [15] with 9 upconvolutional and 3 fully connected
layers. Detailed architectures are provided in [11].

3



Synthesizing the preferred images for a neuron. Intuitively, we search in the input code space
of the image generator model G to find a code y such that G(y) is an image that produces high
activation of the target neuron h in the DNN Φ that we want to visualize (i.e. optimization maximizes
Φh(G(y))). Recall that Gl is a generator network trained to reconstruct images from the l-th layer
features of CaffeNet. Formally, and including a regularization term, we may pose the activation
maximization problem as finding a code ŷl such that:

ŷl = arg max
yl

(Φh(Gl(y
l))− λ‖yl‖) (1)

Empirically, we found a small amount of L2 regularization (λ = 0.005) works best. We also compute
the activation range for each neuron in the set of codes {yl

i} computed by running validation set
images through El. We then clip each neuron in ŷl to be within the activation range of [0, 3σ], where
σ is one standard deviation around the mean activation (the activation is lower bounded at 0 due to
the ReLU nonlinearities that exist at the layers whose codes we optimize). This clipping acts as a
primitive prior on the code space and substantially improves the image quality. In future work, we
plan to learn this prior via a GAN or other generative model. Because the true goal of activation
maximization is to generate interpretable preferred stimuli for each neuron, we performed random
search in the hyperparameter space consisting of L2 weight λ, number of iterations, and learning rate.
We chose the hyperparameter settings that produced the highest quality images. We note that we
found no correlation between the activation of a neuron and the recognizability of its visualization.
Our code and parameters are available at http://EvolvingAI.org/synthesizing.

3 Results

3.1 Comparison between priors trained to invert features from different layers

Since a generator model Gl could be trained to invert feature representations of an arbitrary layer l of
E, we sampled l = {3, 5, 6, 7} to explore the impact on this choice and identify qualitatively which
produces the best images. Here, the DNN to visualize Φ is the same as the encoder E (CaffeNet), but
they can be different (as shown below). The Gl networks are from [11]. For each Gl network we
chose the hyperparameter settings from a random sample that gave the best qualitative results.

Optimizing codes from the convolutional layers (l = 3, 5) typically yields highly repeated fragments,
whereas optimizing fully-connected layer codes produces much more coherent global structure
(Fig. S13). Interestingly, previous studies have shown that G trained to invert lower-layer codes
(smaller l) results in far better reconstructions than higher-layer codes [25, 6]. That can be explained
because those low-level codes come from natural images, and contain more information about
image details than more abstract, high-level codes. For activation maximization, however, we are
synthesizing an entire layer code from scratch. We hypothesize that this process works worse for
Gl priors with smaller l because each feature in low-level codes has a small, local receptive field.
Optimization thus has to independently tune features throughout the image without knowing the
global structure. For example, is it an image of one or four robins? Because fully-connected layers
have information from all areas of the image, they represent information such as the number, location,
size, etc. of an object, and thus all the pixels can be optimized toward this agreed upon structure. An
orthogonal, non-mutually-exclusive hypothesis is that the code space at a convolutional layer is much
more high-dimensional, making it harder to optimize.

We found that optimizing in the fc6 code space produces the best visualizations (Figs. 1 & S13). We
thus use this G6 DGN as the default prior for the experiments in the rest of the paper. In addition,
our images qualitatively appear to be the most realistic-looking compared to visualizations from all
previous methods (Fig. S17). Our result reveals that a great amount of fine detail and global structure
are captured by the DNN even at the last output layer. This finding is in contrast to a previous
hypothesis that DNNs trained with supervised learning often ignore an object’s global structure, and
only learn discriminative features per class (e.g. color or texture) [3]. Section 3.5 provides evidence
that this global structure does not come from the prior.

To test whether our method memorizes the training set images, we retrieved the closest images from
the training set for each of sample synthetic images. Specifically, for each synthetic image for an
output neuron Y (e.g. lipstick), we find an image among the same class Y with the lowest Euclidean
distance in pixel space, as done in previous works [17], but also in each of the 8 code spaces of the

4



encoder DNN. While this is a much harder test than comparing to a nearest neighbor found among the
entire dataset, we found no evidence that our method memorizes the training set images (Fig. S22).
We believe evaluating similarity in the spaces of deep representations, which better capture semantic
aspects of images, is a more informative approach compared to evaluating only in the pixel space.

3.2 Does the learned prior trained on ImageNet generalize to other datasets?

We test whether the same DNN prior (G6) that was trained on inverting the feature representations of
ImageNet images generalizes to enable visualizing DNNs trained on different datasets. Specifically,
we target the output neurons of two DNNs downloaded from Caffe Model Zoo [20]): (1) An AlexNet
DNN that was trained on the 2.5-million-image MIT Places dataset to classify 205 types of places
with 50.1% accuracy [26]. (2) A hybrid architecture of CaffeNet and the network in [2] created
by [27] to classify actions in videos by processing each frame of the video separately. The dataset
consists of 13,320 videos categorized into 101 human action classes.

For DNN 1, the prior trained on ImageNet images generalizes well to the completely different MIT
Places dataset (Fig. 3). This result suggests the prior trained on ImageNet will generalize to other
natural image datasets, at least if the architecture of the DNN to be visualized Φ is the same as
the architecture of the encoder network E from which the generator model G was trained to invert
feature representations. For DNN 2: the prior generalizes to produce decent results; however, the
images are not qualitatively as sharp and clear as for DNN 1 (Fig. 4). We have two orthogonal
hypotheses for why this happens: 1) Φ (the DNN from [27]) is a heavily modified version of E
(CaffeNet); 2) the two types of images are too different: the primarily object-centric ImageNet dataset
vs. the UCF-101 dataset, which focuses on humans performing actions. Sec. 3.3 returns to the first
hypothesis regarding how the similarity between Φ and E affects the image quality

Overall, the prior trained with a CaffeNet encoder generalizes well to visualizing other DNNs of the
same CaffeNet architecture trained on different datasets.

Figure 3: Preferred stimuli for output units of an AlexNet DNN trained on the MIT Places dataset [26],
showing that the ImageNet-trained prior generalizes well to a dataset comprised of images of scenes.

3.3 Does the learned prior generalize to visualizing different architectures?

We have shown that when the DNN to be visualized Φ is the same as the encoder E, the resultant
visualizations are quite realistic and recognizable (Sec. 3.1). To visualize a different network
architecture Φ̂, one could train a new Ĝ to invert Φ̂ feature representations. However, training a new
G DGN for every DNN we want to visualize is computationally costly. Here, we test whether the
same DGN prior trained on CaffeNet (G6) can be used to visualize two state-of-the-art DNNs that are
architecturally different from CaffeNet, but were trained on the same ImageNet dataset. Both were
downloaded from Caffe Model Zoo and have similar accuracy scores: (a) GoogLeNet is a 22-layer
network and has a top-5 accuracy of 88.9% [21]; (b) ResNet is a new type of very deep architecture
with skip connections [22]. We visualize a 50-layer ResNet that has a top-5 accuracy of 93.3%. [22].

DGN-AM produces the best image quality when Φ = E, and the visualization quality tends to
degrade as the Φ architecture becomes more distant from E (Fig. 5, top row; GoogleLeNet is closer

5



Figure 4: Preferred images for output units of a heavily modified version of the AlexNet architecture
trained to classify videos into 101 classes of human activities [27]. Here, we optimize a single
preferred image per neuron because the DNN only classifies single frames (whole video classification
is done by averaging scores across all video frames).

in architecture to CaffeNet than ResNet) . An alternative hypothesis is that the network depth
impairs gradient propagation during activation maximization. In any case, training a general prior for
activation maximization that generalizes well to different network architectures, which would enable
comparative analysis between networks, remains an important, open challenge.

Figure 5: DGN-AM produces the best image quality when the DNN being visualized Φ is the same
as the encoder E (here, CaffeNet), as in the top row, and degrades when Φ is different from E.

3.4 Does the learned prior generalize to visualizing hidden neurons?

Visualizing the hidden neurons in an ImageNet DNN. Previous visualization techniques have
shown that low-level neurons detect small, simple patterns such as corners and textures [2, 9, 7],
mid-level neurons detect single objects like faces and chairs [9, 2, 28, 7], but that visualizations of
hidden neurons in fully-connected layers are alien and difficult to interpret [9]. Since DGN was
trained to invert the feature representations of real, full-sized ImageNet images, one possibility is that
this prior may not generalize to producing preferred images for such hidden neurons because they are
often smaller, different in theme, and or do not resemble real objects. To find out, we synthesized
preferred images for the hidden neurons at all layers and compare them to images produced by the
multifaceted feature visualization method from [9], which harnesses hand-designed priors of total
variation and mean image initialization. The DNN being visualized is the same as in [9] (the CaffeNet
architecture with weights from [7]).

The side-by-side comparison (Fig. S14) shows that both methods often agree on the features that a
neuron has learned to detect. However, overall DGN-AM produces more realistic-looking color and
texture, despite not requiring optimization to be seeded with averages of real images, thus improving
our ability to learn what feature each hidden neuron has learned. An exception is for the faces of

6



human and other animals, which DGN-AM does not visualize well (Fig. S14, 3rd unit on layer 6; 1st
unit on layer 5; and 6th unit on layer 4).

Visualizing the hidden neurons in a Deep Scene DNN. Recently, Zhou et al. [28] found that object
detectors automatically emerge in the intermediate layers of a DNN as we train it to classify scene
categories. To identify what a hidden neuron cares about in a given image, they densely slide an
occluding patch across the image and record when activation drops. The activation changes are
then aggregated to segment out the exact region that leads to the high neural activation (Fig. 6, the
highlighted region in each image). To identify the semantics of these segmentations, humans are
then shown a collection of segmented images for a specific neuron and asked to label what types of
image features activate that neuron [28]. Here, we compare our method to theirs on an AlexNet DNN
trained to classify 205 categories of scenes from the MIT Places dataset (described in Sec. 3.2).

The prior learned on ImageNet generalizes to visualizing the hidden neurons of a DNN trained on the
MIT Places dataset (Fig. S15). Interestingly, our visualizations produce similar results to the method
in [28] that requires showing each neuron a large, external dataset of images to discover what feature
each neuron has learned to detect (Fig. 6). Sometimes, DGN-AM reveals additional information: a
unit that fires for TV screens also fires for people on TV (Fig. 6, unit 106). Overall, DGN-AM thus
not only generalizes well to a different dataset, but also produces visualizations that qualitatively fall
within the human-provided categories of what type of image features each neuron responds to [28].

Figure 6: Visualizations of example hidden neurons at layer 5 of an AlexNet DNN trained to classify
categories of scenes from [28]. For each unit: we compare the two visualizations produced by a
method from [28] (left) to two visualizations produced by our method (right). The left two images
are real images, each highlighting a region that highly activates the neuron, and humans provide text
labels describing the common theme in the highlighted regions. Our synthetic images enable the
same conclusion regarding what feature a hidden neuron has learned. An extended version of this
figure with more units is in Fig. S16. Best viewed electronically with zoom.

3.5 Do the synthesized images teach us what the neurons prefer or what the prior prefers?

Visualizing neurons trained on unseen, modified images. We have shown that DGN-AM can
generate preferred image stimuli with realistic colors and coherent global structures by harnessing the
DGN’s strong, learned, natural image prior (Fig. 1). To what extent do the global structure, natural
colors, and sharp textures (e.g. of the brambling bird, Fig. 1) reflect the features learned by the
“brambling” neuron vs. those preferred by the prior? To investigate that, we train 3 different DNNs:
one on images that have less global structure, one on images of non-realistic colors, and one on blurry
images. We test whether DGN-AM with the same prior produces visualizations that reflect these
modified, unrealistic features.

Specifically, we train 3 different DNNs following CaffeNet architecture to discriminate 2000 classes.
The first 1000 classes contain regular ImageNet images, and the 2nd 1000 classes contain modified
ImageNet images. We perform 3 types of modifications: 1) we cut up each image into quarters
and re-stitch them back in a random order (Fig. S19); 2) we convert regular RGB into BRG images
(Fig. S20); 3) we blur out images with Gaussian blur with radius of 3 (Fig. S21).

We visualize both groups of output neurons (those trained on 1000 regular vs. 1000 modified classes)
in each DNN (Figs. S19, S20, & S21). The visualizations for the neurons that are trained on regular
images often show coherent global structures, realistic-looking colors and sharpness. In contrast, the
visualizations for neurons that are trained on modified images indeed show cut-up objects (Fig. S19),
images in BRG color space (Fig. S20), and objects with washed out details (Fig. S21). The results
show that DGN-AM visualizations do closely reflect the features learned by neurons from the data
and that these properties are not exclusively produced by the prior.

7



Why do visualizations of some neurons not show canonical images? While many DGN-AM
visualizations show global structure (e.g. a single, centered table lamp, Fig. 1); some others do not
(e.g. blobs of textures instead of a dog with 4 legs, Fig. S18) or otherwise are non-canonical (e.g.
a school bus off to the side of an image, Fig. S7). Sec. S5 describes our experiments investigating
whether this is a shortcoming of our method or whether these non-canonical visualizations reflect
some property of the neurons. The results suggest that DGN-AM can accurately visualize a class of
images if the images of that set are mostly canonical, and the reason why the visualizations for some
neurons lack global structure or are not canonical is that the set of images that neuron has learned to
detect are often diverse (multi-modal), instead of having canonical pose. More research is needed
into multifaceted feature visualization algorithms that separately visualize each type of image that
activates a neuron [9].

3.6 Other applications of our proposed method

DGN-AM can also be useful for a variety of other important tasks. We briefly describe our experiments
for these tasks, and refer the reader to the supplementary section for more information.

1. One advantage of synthesizing preferred images is that we can watch how features evolve during
training to better understand what occurs during deep learning. Doing so also tests whether the
learned prior (trained to invert features from a well-trained encoder) generalizes to visualizing underfit
and overfit networks. The results suggest that the visualization quality is indicative of a DNN’s
validation accuracy to some extent, and the learned prior is not overly specialized to the well-trained
encoder DNN. See Sec. S6 for more details.

2. Our method for synthesizing preferred images could naturally be applied to synthesize preferred
videos for an activity recognition DNN to better understand how it works. For example, we found
that a state-of-the-art DNN classifies videos without paying attention to temporal information across
video frames (Sec. S7).

3. Our method can be extended to produce creative, original art by synthesizing images that activate
two neurons at the same time (Sec. S8).

4 Discussion and Conclusion

We have shown that activation maximization—synthesizing the preferred inputs for neurons in neural
networks—via a learned prior in the form of a deep generator network is a fruitful approach. DGN-
AM produces the most realistic-looking, and thus interpretable, preferred images to date, making it
qualitatively the state of the art in activation maximization. The visualizations it synthesizes from
scratch improve our ability to understand which features a neuron has learned to detect. Not only
do the images closely reflect the features learned by a neuron, but they are visually interesting. We
have explored a variety of ways that DGN-AM can help us understand trained DNNs. In future work,
DGN-AM or its learned prior could dramatically improve our ability to synthesize an image from a
text description of it (e.g. by synthesizing the image that activates a certain caption) or create more
realistic “deep dream” [10] images. Additionally, that the prior used in this paper does not generalize
equally well to DNNs of different architectures motivates research into how to train such a general
prior. Successfully doing so could enable informative comparative analyses between the information
transformations that occur within different types of DNNs.

Acknowledgments

The authors would like to thank Yoshua Bengio for helpful discussions and Bolei Zhou for providing
images for our study. Jeff Clune was supported by an NSF CAREER award (CAREER: 1453549)
and a hardware donation from the NVIDIA Corporation. Jason Yosinski was supported by the NASA
Space Technology Research Fellowship and NSF grant 1527232. Alexey Dosovitskiy and Thomas
Brox acknowledge funding by the ERC Starting Grant VideoLearn (279401).

References
[1] R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant visual representation by single

neurons in the human brain. Nature, 435(7045):1102–1107, 2005.

8



[2] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Computer Vision–
ECCV 2014, pages 818–833. Springer, 2014.

[3] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence predictions
for unrecognizable images. In Computer Vision and Pattern Recognition (CVPR), 2015.

[4] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer features of a deep network.
Dept. IRO, Université de Montréal, Tech. Rep, 4323, 2009.

[5] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. ICLR workshop, 2014.

[6] A. Mahendran and A. Vedaldi. Visualizing deep convolutional neural networks using natural pre-images.
In Computer Vision and Pattern Recognition (CVPR), 2016.

[7] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks through deep
visualization. In Deep Learning Workshop, ICML conference, 2015.

[8] D. Wei, B. Zhou, A. Torrabla, and W. Freeman. Understanding intra-class knowledge inside cnn. arXiv
preprint arXiv:1507.02379, 2015.

[9] A. Nguyen, J. Yosinski, and J. Clune. Multifaceted feature visualization: Uncovering the different types of
features learned by each neuron in deep neural networks. In Visualization for Deep Learning Workshop,
ICML conference, 2016.

[10] A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism: Going deeper into neural networks. Google Research
Blog. Retrieved June, 20, 2015.

[11] A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep networks.
In NIPS, 2016.

[12] L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. In ICLR, 2016.

[13] Y. Bengio, I. J. Goodfellow, and A. Courville. Deep learning. MIT Press, 2015.

[14] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.

[15] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. Learning to generate chairs with convolutional neural
networks. In Computer Vision and Pattern Recognition (CVPR), 2015.

[16] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. In ICLR, 2016.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In NIPS, 2014.

[18] G. Alain and Y. Bengio. What regularized auto-encoders learn from the data-generating distribution. The
Journal of Machine Learning Research, 15(1):3563–3593, 2014.

[19] O. Russakovsky et al. Imagenet large scale visual recognition challenge. IJCV, 115(3):211–252, 2015.

[20] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Computer Vision and Pattern Recognition (CVPR), 2015.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[23] J. Deng et al. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[25] A. Dosovitskiy and T.Brox. Inverting visual representations with convolutional networks. In CVPR, 2016.

[26] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition
using places database. In Advances in neural information processing systems, 2014.

[27] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, et al. Long-term recurrent convolutional
networks for visual recognition and description. In Computer Vision and Pattern Recognition, 2015.

[28] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Object detectors emerge in deep scene cnns.
In International Conference on Learning Representations (ICLR), 2015.

9


