Efficient Nonparametric Smoothness Estimation: Supplementary Information

1 Proof of Variance Bound

Theorem 2. (Variance Bound) If $p, q \in H^{s'}$ for some $s' > s$, then

$$
\mathbb{V}\left[\hat{S}_n\right] \le 2C_1 \frac{Z_n^{4s+D}}{n^2} + \frac{C_2}{n},\tag{1}
$$

where C_1 *and* C_2 *are the constants (in n)*

$$
C_1:=\frac{2^D \Gamma(4s+1)}{\Gamma(4s+D+1)}\|p\|_{L^2}\|q\|_{L^2}
$$

 $and C_2 := (\|p\|_{H^s} + \|q\|_{H^s}) \, \|p\|_{W^{2s,4}} \|q\|_{W^{2s,4}} + \|p\|_{H^s}^4 \|q\|_{H^s}^4.$

Proof: We will use the Efron-Stein inequality [\[Efron and Stein, 1981\]](#page-5-0) to bound the variance of \hat{S}_n . To do this, suppose we were to draw n additional IID samples $X'_1, \ldots, X'_n \sim p$, and define, for all $\ell, j \in \{1, \ldots, n\},\$

$$
X_j^{(\ell)} = \left\{ \begin{array}{ll} X_j' & \text{if } j = \ell \\ X_j & \text{else} \end{array} \right..
$$

Let

$$
\hat{S}_n^{(\ell)} := \frac{1}{n^2} \sum_{|z| \le Z_n} z^{2s} \sum_{j=1}^n \sum_{k=1}^n \psi_z(X_j^{(\ell)}) \overline{\psi_z(Y_k)}
$$

denote our estimate when we replace X_ℓ by X'_ℓ . Noting the symmetry of $\hat S_n$ in p and q , the Efron-Stein inequality tells us that

$$
\mathbb{V}\left[\hat{S}_n\right] \le \sum_{\ell=1}^n \mathbb{E}\left[\left|\hat{S}_n - \hat{S}_n^{(\ell)}\right|^2\right],\tag{2}
$$

where the expectation above (and elsewhere in this section) is taken over all $3n$ samples $X_1, \ldots, X_{2n}, X'_1, \ldots, X'_{2n}, Y_1, \ldots, Y_n$. Expanding the difference in [\(2\)](#page-0-0), note that any terms with $j \neq \ell$ cancel, so that ^{[1](#page-0-1)}

$$
\hat{S}_n - \hat{S}_n^{(\ell)} = \frac{1}{n^2} \sum_{|z| \le Z_n} z^{2s} \sum_{j=1}^n \sum_{k=1}^n \psi_z(X_j) \overline{\psi_z(Y_k)} - \psi_z(X_j^{(\ell)}) \overline{\psi_z(Y_k)}
$$

$$
= \frac{1}{n^2} \sum_{|z| \le Z_n} z^{2s} (\psi_z(X_\ell) - \psi_z(X_\ell')) \sum_{k=1}^n \psi_{-z}(Y_k),
$$

and so

$$
\left|\hat{S}_n - \hat{S}_n^{(\ell)}\right|^2
$$

¹It is useful here to note that $\overline{\psi_z(x)} = \psi_{-z}(x)$ and that $\psi_y \psi_z = \psi_{y+z}$.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

$$
= \frac{1}{n^4} \sum_{|y|,|z| \le Z_n} (yz)^{2s} (\psi_y(X_\ell) - \psi_y(X'_\ell)) (\psi_{-z}(X_\ell) - \psi_{-z}(X'_\ell)) \left(\sum_{k=1}^n \psi_{-y}(Y_k) \right) \left(\sum_{k=1}^n \psi_z(Y_k) \right).
$$
\n(3)

Since X_{ℓ} and X'_{ℓ} are IID,

$$
\mathbb{E}\left[\left(\psi_y(X_\ell) - \psi_y(X'_\ell)\right)\left(\psi_{-z}(X_\ell) - \psi_{-z}(X'_\ell)\right)\right] = 2\left(\mathop{\mathbb{E}}_{X \sim p} \left[\psi_{y-z}(X)\right] - \mathop{\mathbb{E}}_{X \sim p} \left[\psi_y(X)\right] \mathop{\mathbb{E}}_{X \sim p} \left[\psi_{-z}(X)\right]\right)
$$

$$
= 2\left(\widetilde{p}(y-z) - \widetilde{p}(y)\widetilde{p}(-z)\right),
$$

and, since Y_1, \ldots, Y_n are IID,

$$
\mathbb{E}\left[\left(\sum_{k=1}^n \psi_{-y}(Y_k)\right)\left(\sum_{k=1}^n \psi_z(Y_k)\right)\right] = n \mathop{\mathbb{E}}_{Y \sim q}[\psi_{z-y}(Y)] + n(n-1) \mathop{\mathbb{E}}_{Y \sim q}[\psi_{-y}(Y)] \mathop{\mathbb{E}}_{Y \sim q}[\psi_z(Y)]
$$

= $n\widetilde{q}(z-y) + n(n-1)\widetilde{q}(-y)\widetilde{q}(z).$

In view of these two equalities, taking the expectation of [\(3\)](#page-1-0) and using the fact that X_ℓ and X'_ℓ are independent of X_{n+1}, \ldots, X_{2n} , [\(3\)](#page-1-0) reduces:

$$
\mathbb{E}\left[\left|\hat{S}_n - \hat{S}_n^{(\ell)}\right|^2\right] = \frac{2}{n^3} \sum_{|y|,|z| \le Z_n} (yz)^{2s} \left(\tilde{p}(y-z) - \tilde{p}(y)\tilde{p}(-z)\right) \left(\tilde{q}(z-y) + (n-1)\tilde{q}(-y)\tilde{q}(z)\right)
$$

$$
= \frac{2}{n^3} \sum_{|y|,|z| \le Z_n} (yz)^{2s} \left(\tilde{p}(y-z)\tilde{q}(z-y) - \tilde{p}(y)\tilde{p}(-z)\tilde{q}(z-y)\right)
$$

$$
+ (n-1)\tilde{p}(y-z)\tilde{q}(-y)\tilde{q}(z) - (n-1)\tilde{p}(y)\tilde{p}(-z)\tilde{q}(-y)\tilde{q}(z)). \tag{4}
$$

We now need to bound following terms in magnitude:

$$
\sum_{|y|,|z|\le Z_n} (yz)^{2s} \widetilde{p}(y-z)\widetilde{q}(z-y),\tag{5}
$$

$$
\sum_{|y|,|z|\le Z_n} (yz)^{2s}\widetilde{p}(y-z)\widetilde{q}(-y)\widetilde{q}(z),\tag{6}
$$

and
$$
\sum_{|y|,|z| \le Z_n} (yz)^{2s} \widetilde{p}(y) \widetilde{p}(-z) \widetilde{q}(-y) \widetilde{q}(z)
$$
 (7)

(the second term in [\(4\)](#page-1-1) is bounded identically to the third term).

To bound [\(5\)](#page-1-2), we perform a change of variables, replacing y by $k = y - z$:

$$
\sum_{|y|,|z| \le Z_n} (yz)^{2s} \widetilde{p}(y-z) \widetilde{q}(z-y) = \sum_{|k| \le 2Z_n} \widetilde{p}(k) \widetilde{q}(-k) \sum_{j=1}^D \sum_{z_j = \max\{-Z_n, k_j - Z_n\}}^{\min\{Z_n, k_j + Z_n\}} ((k-z)z)^{2s} \tag{8}
$$

$$
\leq \frac{2^D \Gamma(4s+1)}{\Gamma(4s+D+1)} Z_n^{4s+D} \sum_{|k| \leq 2Z_n} \widetilde{p}(k) \widetilde{q}(-k) \tag{9}
$$

$$
\leq C_1 Z_n^{4s+D},\tag{10}
$$

where C_1 is the constant (in n and Z_n)

$$
C_1 := \frac{2^D \Gamma(4s+1)}{\Gamma(4s+D+1)} \|p\|_2 \|q\|_2.
$$
 (11)

[\(8\)](#page-1-3) and [\(9\)](#page-1-4) follow from observing that

$$
\sum_{j=1}^{D} \sum_{z_j=\max\{-Z_n, k_j-Z_n\}}^{\min\{Z_n, k_j+Z_n\}} ((k_j-z_j)z_j)^{2s} = (f * f)(k_j),
$$

where $f(z) := z^{2s} 1_{\{|z| \le Z_n\}}, \forall z \in \mathbb{Z}^D$ and $*$ denotes convolution (over \mathbb{Z}^D). This convolution is clearly maximized when $k = 0$, in which case

$$
(f * f)(k) = \sum_{|z| \le Z_n} z^{4s} \le \left(\int_{B_{\infty}(0, Z_n)} z^{4s} dz \right) = \frac{2^D \Gamma(4s + 1)}{\Gamma(4s + D + 1)} Z_n^{4s + D},
$$

where we upper bounded the series by an integral over

$$
B_{\infty}(0, Z_n) := \{ z \in \mathbb{R}^D : ||z||_{\infty} = \max\{|z_1|, ..., |z_D|\} \le Z_n \}.
$$

[\(10\)](#page-1-5) then follows via Cauchy-Schwarz.

Bounding [\(6\)](#page-1-6) for general s is more involved and requires rigorously defining more elaborate notions from the theory distributions, but the basic idea is as follows:

$$
\sum_{|y|,|z|\leq Z_n} (yz)^{2s} \widetilde{p}(y-z) \widetilde{q}(-y) \widetilde{q}(z) = \sum_{|y|\leq Z_n} y^{2s} \widetilde{q}(-y) \sum_{|z|\leq Z_n} z^{2s} \widetilde{p}(y-z) \widetilde{q}(z)
$$

$$
= \sum_{|y|,|z|\leq Z_n} y^{2s} \widetilde{q}(-y) \left(p_n^{(s)} q_n^{(s)} \right)(y)
$$

$$
\leq \sqrt{\sum_{|y|\leq Z_n} y^{2s} |\widetilde{q}(y)|^2 \sum_{|y|\leq Z_n} y^{2s} \left(\left(p^{(s)} q^{(s)} \right)(y) \right)^2}
$$

$$
= ||q||_{H^s} ||p_n^{(s)} q_n^{(s)}||_{H^s} \leq ||q||_{H^s} ||p_n||_{W^{2s,4}} ||q_n||_{W^{2s,4}}. (12)
$$

Here, $p_n^{(s)}$ and $q_n^{(s)}$ denote s-order fractional derivatives of p_n and q_n , respectively, and $W^{2s,4}$ is a Sobolev space (with associated pseudonorm $\|\cdot\|_{W^{2s,4}}$), which can be informally thought of as $W^{2s,4} := \left\{p \in L^2 : \left(p^{(s)}\right)^2 \in H^s\right\}$. The equality between the first and second lines follows from Proposition [6,](#page-4-0) and both inequalities are simply applications of Cauchy-Schwarz. For sake of intuition, it can be noted that the above steps are relatively elementary when $s = 0$. Now, it suffices to note that, by the Rellich-Kondrachov embedding theorem [\[Rellich, 1930,](#page-5-1) [Evans, 2010\]](#page-5-2), $W^{2s,4} \subseteq H^{s'}$, and hence $||p_n||_{W^{2s,4}} \le ||p||_{W^{2s,4}} < \infty$, as long as $s' \ge 2s + \frac{D}{4}$.

Bounding [\(7\)](#page-1-7) is a simple application of Cauchy-Schwarz:

$$
\sum_{|y|,|z|\leq Z_n} (yz)^{2s} \widetilde{p}(y) \widetilde{p}(-z) \widetilde{q}(-y) \widetilde{q}(z) = \left(\sum_{|y|\leq Z_n} y^{2s} \widetilde{p}(y) \widetilde{q}(-y)\right) \left(\sum_{|z|\leq Z_n} z^{2s} \widetilde{p}(-z) \widetilde{q}(z)\right)
$$

$$
\leq \left(\sum_{|z|\leq Z_n} z^{2s} |\widetilde{p}(z)|^2\right)^2 \left(\sum_{|z|\leq Z_n} z^{2s} |\widetilde{q}(z)|^2\right)^2
$$

$$
= \|p\|_{H^s}^4 \|q\|_{H^s}^4
$$
(13)

Plugging [\(10\)](#page-1-5), [\(12\)](#page-2-0), and [\(13\)](#page-2-1) into [\(4\)](#page-1-1) gives

$$
\mathbb{E}\left[\left|\hat{S}_n - \hat{S}_n^{(\ell)}\right|^2\right] \le 2C_1 \frac{Z_n^{4s+D}}{n^3} + \frac{C_2}{n^2},
$$

where C_2 denotes the constant (in n and Z_n)

$$
C_2 := (\|p\|_{H^s} + \|q\|_{H^s}) \, \|p\|_{W^{2s,4}} \|q\|_{W^{2s,4}} + \|p\|_{H^s}^4 \|q\|_{H^s}^4. \tag{14}
$$

П

Plugging this into the Efron-Stein inequality [\(2\)](#page-0-0) gives, by symmetry of \hat{S}_n in $X_1, ..., X_n$,

$$
\mathbb{V}\left[\hat{S}_n\right] \le 2C_1 \frac{Z_n^{4s+D}}{n^2} + \frac{C_2}{n}.
$$

2 Proofs of Asymptotic Distributions

Theorem 4. (Asymptotic Normality) Suppose that, for some $s' > 2s + \frac{D}{4}$, $p, q \in H^{s'}$, and suppose $Z_n n^{\frac{1}{4(s-s')}} \to \infty$ and $Z_n n^{-\frac{1}{4s+D}} \to 0$ as $n \to \infty$. Then, \hat{S}_n is asymptotically normal with mean $\langle p, q \rangle$ *. In particular, for* $j \in \{1, \ldots, n\}$ *, define the following quantities:*

$$
W_j := \begin{bmatrix} Z_n^s e^{iZ_n X_j} \\ \vdots \\ e^{iX_j} \\ \vdots \\ Z_n^s e^{-iZ_n X_j} \end{bmatrix}, \quad V_j := \begin{bmatrix} Z_n^s e^{iZ_n Y_j} \\ \vdots \\ e^{iY_j} \\ e^{iY_j} \\ \vdots \\ Z_n^s e^{-iZ_n Y_j} \end{bmatrix}, \quad \overline{W} := \frac{1}{n} \sum_{j=1}^n W_j, \quad \overline{V} := \frac{1}{n} \sum_{j=1}^n V_j \in \mathbb{R}^{2Z_n},
$$

$$
\Sigma_W := \frac{1}{n} \sum_{j=1}^n (W_j - \overline{W})(W_j - \overline{W})^T, \quad \text{and} \quad \Sigma_V := \frac{1}{n} \sum_{j=1}^n (V_j - \overline{V})(V_j - \overline{V})^T \in \mathbb{R}^{2Z_n \times 2Z_n}.
$$

Then, for

$$
\hat{\sigma}_n^2 := \left[\frac{\overline{V}}{W}\right]^T \begin{bmatrix} \Sigma_W & 0 \\ 0 & \Sigma_V \end{bmatrix} \begin{bmatrix} \overline{V} \\ \overline{W} \end{bmatrix},
$$

we have

$$
\sqrt{n}\left(\frac{\hat{S}_n - \langle p, q \rangle_{H^s}}{\hat{\sigma}_n}\right) \stackrel{D}{\to} \mathcal{N}(0, 1).
$$

Proof: Let

$$
\widetilde{p}_{Z_n} := \begin{bmatrix} \widetilde{p}(-Z_n) \\ \widetilde{p}(-Z_n+1) \\ \vdots \\ \widetilde{p}(Z_n-1) \\ \widetilde{p}(Z_n) \end{bmatrix}, \quad \widehat{p}_{Z_n} := \begin{bmatrix} \widehat{p}(-Z_n) \\ \widehat{p}(-Z_n+1) \\ \vdots \\ \widehat{p}(Z_n-1) \\ \widehat{p}(Z_n) \end{bmatrix},
$$

$$
\widetilde{q}_{Z_n} := \begin{bmatrix} \widetilde{q}(-Z_n) \\ \widetilde{q}(-Z_n+1) \\ \vdots \\ \widetilde{q}(Z_n-1) \\ \widetilde{q}(Z_n) \end{bmatrix}, \quad \text{and} \quad \widehat{q} := \begin{bmatrix} \widehat{q}(-Z_n) \\ \widehat{q}(-Z_n+1) \\ \vdots \\ \widehat{q}(Z_n-1) \\ \widehat{q}(Z_n) \end{bmatrix}
$$

Also let

$$
\sigma_n^2 := \left(\nabla h\left(\widetilde{p}_{Z_n}, \widetilde{q}_{Z_n}\right)\right)' \begin{bmatrix} \Sigma_p & 0 \\ 0 & \Sigma_q \end{bmatrix} \left(\nabla h\left(\widetilde{p}_{Z_n}, \widetilde{q}_{Z_n}\right)\right),
$$

where, $h: \mathbb{R}^{2Z_n+1} \times \mathbb{R}^{2Z_n+1} \to \mathbb{R}$ is defined by $h(x, y) = \sum_{z=-Z_n}^{Z_n} z^{2s} x_z y_{-z}$. By the bias bound and the assumption $Z_n^{4(s-s')}n \to \infty$, it suffices to show

$$
\sqrt{n}\left(\frac{\hat{S}_n - \mathbb{E}\left[\hat{S}_n\right]}{\sigma_n}\right) \xrightarrow{D} \mathcal{N}(0,1) \quad \text{as} \quad n \to \infty. \tag{15}
$$

.

 \blacksquare

Since \hat{p}_{Z_n} and \hat{q}_{Z_n} are empirical means of bounded random vectors with means \tilde{p}_{Z_n} and \tilde{q}_{Z_n} , respectively by the central limit theorem as $n \to \infty$ respectively, by the central limit theorem, as $n \to \infty$,

$$
\sqrt{n}(\hat{p}_{Z_n}-\widetilde{p}_{Z_n})\stackrel{D}{\to} \mathcal{N}(0,\Sigma_p)\quad \text{ and }\quad \sqrt{n}(\hat{q}_{Z_n}-\widetilde{q}_{Z_n})\stackrel{D}{\to} \mathcal{N}(0,\Sigma_q),
$$

where

$$
(\Sigma_p)_{w,z} := \text{Cov}_{X \sim p} \left(\psi_w(X), \psi_z(X) \right) \quad \text{ and } \quad (\Sigma_q)_{w,z} := \text{Cov}_{X \sim q} \left(\psi_w(X), \psi_z(X) \right).
$$

[\(15\)](#page-3-0) follows by the delta method.

Theorem 5. (Asymptotic Null Distribution) *Suppose that, for some* $s' > 2s + \frac{D}{4}$, $p, q \in H^{s'}$, and $suppose \ Z_n n^{\frac{1}{4(s-s')}} \to \infty$ and $Z_n n^{-\frac{1}{4s+D}} \to 0$ as $n \to \infty$ *. For* $j \in \{1, \ldots, n\}$ *, define*

$$
W_j := \begin{bmatrix} Z_n^s \left(e^{iZ_n X_j} - e^{iZ_n Y_j} \right) \\ \vdots \\ e^{iX_j} - e^{iY_j} \\ e^{-iX_j} - e^{-iY_j} \\ \vdots \\ Z_n^s \left(e^{-iZ_n X_j} - e^{-iZ_n Y_j} \right) \end{bmatrix} \in \mathbb{R}^{2Z_n}.
$$

Let

$$
\overline{W} := \frac{1}{n} \sum_{j=1}^{n} W_j \quad \text{and} \quad \Sigma := \frac{1}{n} \sum_{j=1}^{n} (W_j - \overline{W}) (W_j - \overline{W})^T
$$

denote the empirical mean and covariance of W , and define $T:=n\overline{W}^T\Sigma^{-1}\overline{W}.$ Then, if $p=q$, then

$$
Q_{\chi^2(2Z_n)}(T) \stackrel{D}{\to} \text{Uniform}([0,1]) \quad \text{as} \quad n \to \infty,
$$

where $Q_{\chi^2(2Z_n)}: [0, \infty) \to [0, 1]$ *denotes the quantile function (inverse CDF) of the* χ^2 *distribution* $\chi^2(2Z_n)$ with $2Z_n$ degrees of freedom.

Proof: Since, as shown in the proof of the previous theorem, the distance estimate is a sum of squared asymptotically normal, zero-mean random variables, this is a standard result in multivariate statistics. See, for example, Theorem 5.2.3 of [Anderson](#page-5-3) [\[2003\]](#page-5-3).

3 Generalizations: Weak and Fractional Derivatives

As mentioned in the main text, our estimator and analysis can be generalized nicely to non-integer s using an appropriate notion of fractional derivative.

For non-negative integers s, let $\delta^{(s)}$ denote the measure underlying of the s-order derivative operator at 0; that is, $\delta^{(s)}$ is the distribution such that

$$
\int_{\mathbb{R}} f(x)\delta^{(s)}(x) dx = f^{(s)}(0),
$$

for all test functions $f \in H^s$. Then, for all $z \in \mathbb{R}$, the Fourier transform of $\delta^{(s)}$ is

$$
\widetilde{\delta}(z) = \int_{\mathbb{R}} e^{-izx} \delta^{(s)}(x) dx = (-iz)^s.
$$

Thus, we can naturally generalize the derivative operator $\delta^{(s)}$ to general $s \in [0, \infty)$ as the inverse Fourier transform of the function $z \mapsto (-iz)^s$. Generalization to differentiation at an arbitrary $y \in \mathbb{R}$ follows from translation properties of the Fourier transform, and, in multiple dimensions, for $s \in \mathbb{R}^D$, we can consider the inverse Fourier transform of $z \in \mathbb{R}^D \mapsto \prod_{j=1}^D (iz_j)^{s_j}$.

With this definition in place, we can prove the following the Convolution Theorem, which equates a particular weighted convolution of Fourier transforms and a product of particular fractional derivatives. Note that we will only need this result in the case that f is a trigonometric polynomial (i.e., f has finite support), because we apply it only to p_n and q_n . Hence, the sum below has only finitely many non-zero terms and commutes freely with integrals.

Proposition 6. Suppose $p, q \in L^2$ are trigonometric polynomials. Then, $\forall s \in [0, \infty)$, and $y \in \mathbb{Z}^D$,

$$
\sum_{z \in \mathbb{Z}^D} z^{2s} \widetilde{p}(y - z) \widetilde{q}(z) = \widetilde{p^{(s)}q^{(s)}}(y).
$$

Proof: By linearity of the integral,

$$
\sum_{z \in \mathbb{Z}^D} z^{2s} \tilde{p}(y - z) \tilde{q}(z) = \sum_{z \in \mathbb{Z}^D} z^{2s} \int_{\mathbb{R}^D} p(x_1) e^{-i \langle y - z, x_1 \rangle} dx_1 \int_{\mathbb{R}^D} q(x_2) e^{-i \langle z, x_2 \rangle} dx_2
$$

\n
$$
= \int_{\mathbb{R}^D} \int_{\mathbb{R}^D} p(x_1) q(x_2) e^{-i \langle y, x_1 \rangle} \sum_{z \in \mathbb{Z}^D} z^{2s} e^{i \langle z, x_1 - x_2 \rangle} dx_1 dx_2
$$

\n
$$
= \int_{\mathbb{R}^D} \int_{\mathbb{R}^D} p(x_1) q(x_2) e^{-i \langle y, x_1 \rangle} \delta^{(s)}(x_1 - x_2) dx_1 dx_2
$$

\n
$$
= \int_{\mathbb{R}^D} p^{(s)}(x) q^{(s)}(x) e^{-i \langle y, x \rangle} dx = (p^{(s)}q^{(s)})(y).
$$

4 Additional Experimental Results

Figure [1](#page-5-4) presents results of one additional experiment showing the effect of increasing s on the convergence rate. In all four cases, we estimate squared distance of the density $p(x) = 1 + \cos(2\pi x)$ from the uniform density (both on the interval $[0, 1]$), but we vary s, such that the distance is computed according to different metrics. As s increases, the bias of the estimator increases, due to greater weight on higher frequencies of the density that are omitted by the truncated estimator.

Figure 1: Estimated and true s-order Sobolev distances between the density $p(x) = 1 + \cos(2\pi x)$ and the uniform density, for $s \in \{0, 1, 2, 3\}.$

References

TW Anderson. An introduction to multivariate statistical analysis. *Wiley*, 2003.

Bradley Efron and Charles Stein. The jackknife estimate of variance. *The Annals of Statistics*, pages 586–596, 1981.

Lawrence C Evans. *Partial differential equations*. American Mathematical Society, 2010.

Franz Rellich. Ein satz über mittlere konvergenz. *Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse*, 1930:30–35, 1930.