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1 Proximal operators

For the most common binary classification and regression methods, implementing the proximal
operator is straight-forward. In this section let yj be the label or target for regression, and Xj the
data instance vector. We assume for binary classification that yj ∈ {−1, 1}.

Hinge loss:
fj(z) = l(z; yj , Xj) = max {0, 1− yj 〈z,Xj〉} .

The proximal operator has a closed form expression:

proxγfj (z) = z − γyjνXj ,

where:

s =
1− yj 〈z,Xj〉
γ ‖Xj‖2

.

ν =


−1 s ≥ 1

0 s ≤ 0

−s otherwise
.

Logistic loss:
fj(z) = l(z; yj , Xj) = log

(
1 + exp

(
−yjXT

j z
))
.

There is no closed form expression, however it can be computed very efficiently using Newton
iteration, since it can be reduced to a 1D minimization problem. In particular, let c0 = 0, γ′ =

γ ‖Xj‖2, and a = 〈z,Xj〉. Then iterate until convergence:

sk =
−yj

1 + exp (yjck)
,

ck+1 = ck − γ′sk + ck − a
1− y′sk − γ′sksk

.

The prox operator is then proxγfj (z) = z −
(
a− ck

)
Xj/ ‖Xj‖2. Three iterations are generally

enough, but ill-conditioned problems or large step sizes may require up to 12. Correct initialization is
important, as it will diverge when initialized with a point on the opposite side of 0 from the solution.

Squared loss:
fj(z) = l(z; yj , Xj) =

1

2

(
XT
j z − yj

)2
.

Let γ′ = γ ‖Xj‖2 and a = 〈z,Xj〉. Define:

c =
a+ γ′y

1 + γ′
.

Then proxγfj (z) = z − (a− c)Xj/ ‖Xj‖2 .
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L2 regularization

Including a regularizer within each fi, i.e. Fi(x) = fi(x) + µ
2 ‖x‖

2
, can be done using the proximal

operator of fi. Define the scaling factor:

ρ = 1− µγ

1 + µγ
.

Then proxγFi(z) = proxργfi(ρz).

2 Proofs

Lemma 1. Under Algorithm 1, taking the expectation over the random choice of j, conditioning on
xk and each gki , allows us to bound the following inner product at step k:

E

〈
γ

[
gkj −

1

n

n∑
i=1

gki

]
− γg∗j ,

(
xk − x∗

)
+ γ

[
gkj −

1

n

n∑
i=1

gki

]
− γg∗j

〉

≤ γ2 1

n

n∑
i=1

∥∥gki − g∗i ∥∥2 .
Proof. We start by splitting on the right hand side of the inner product:

= E

〈
γ

[
gkj −

1

n

n∑
i=1

gki

]
− γg∗j , xk − x∗

〉

+E

〈
γ

[
gkj −

1

n

n∑
i=1

gki

]
− γg∗j , γ

[
gkj −

1

n

n∑
i=1

gki

]
− γg∗j

〉
(1)

The first inner product has expectation 0 on the left hand side (Recall that E[g∗j ] = 0), so it’s simply 0
in expectation (we may take expectation on the left since the right doesn’t depend on j). The second
inner product is the same on both sides, so we may convert it to a norm-squared term. So we have:

= γ2E

∥∥∥∥∥gkj − 1

n

n∑
i=1

gki − g∗j

∥∥∥∥∥
2

≤ γ2E
∥∥gkj − g∗j∥∥2 = γ2

1

n

n∑
i=1

∥∥gki − g∗i ∥∥2 .
The inequality used is just an application of the variance formula E[(X − E[X])

2
] = E[X2] −

E[X]2 ≤ E[X2].

Corollary 2. Chaining the main theorem gives a convergence rate for point-saga at step k under the
constants given in of:

E
∥∥xk − x∗∥∥2 ≤ (1− κ)

k µ+ L

µ

∥∥x0 − x∗∥∥2 ,
if each fi : Rd → R is L-smooth and µ-strongly convex.

Proof. First we simplify T 0 using c = 1/µL and use Lipschitz smoothness:

T 0 =
1

µL
· 1

n

∑
i

∥∥g0i − g∗i ∥∥2 +
∥∥x0 − x∗∥∥2

≤ L

µ
·
∥∥x0 − x∗∥∥2 +

∥∥x0 − x∗∥∥2
=

µ+ L

µ

∥∥x0 − x∗∥∥2 .
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Now recall that the main theorem gives a bound E
[
T k+1

]
≤ (1− κ)T k where the expectation is

conditional on xk and each gki from step k, taking expectation over the randomness in the choice of j.
We can further take expectation with respect to xk and each gki , giving the unconditional bound:

E
[
T k+1

]
≤ (1− κ)E

[
T k
]
.

Chaining over k gives the result.

Theorem 3. Suppose each fi : Rd → R is µ-strongly convex,
∥∥g0i − g∗i ∥∥ ≤ B and

∥∥x0 − x∗∥∥ ≤ R.
Then after k iterations of Point-SAGA with step size γ = R/B

√
n:

E
∥∥x̄k − x∗∥∥2 ≤ 2

√
n (1 + µ (R/B

√
n))

µk
RB,

where x̄k = 1
kE
∑k
t=1 x

t.

Proof. Recall the bound on the Lyapunov function established in the main theorem:

E
[
T k+1

]
≤ T k +

(
αγ2 − c

n

) 1

n

n∑
i

∥∥gki − g∗i ∥∥2
+
( c
n
− αγ2 − αγ

L

)
E
∥∥gk+1
j − g∗j

∥∥2
− κE

∥∥xk − x∗∥∥2 .
In the non-smooth case this holds with L =∞. In particular, if we take c = αγ2n, then:

−κE
∥∥xk+1 − x∗

∥∥2 ≥ E [T k+1
]
− T k.

Recall that this expectation is (implicitly) conditional on xk and each gki from step k, Taking
expectation over the randomness in the choice of j. We can further take expectation with respect to
xk and each gki , and negate the inequality, giving the unconditional bound:

κE
∥∥xk+1 − x∗

∥∥2 ≤ E [T k]− E [T k+1
]
.

We now sum this over t = 0 . . . k:

κE

k∑
t=1

∥∥xt − x∗∥∥2 ≤ T 0 − E
[
T k
]
.

We can drop the −E
[
T k
]

since it is always negative. Dividing through by k:

1

k
E

k∑
t=1

∥∥xt − x∗∥∥2 ≤ 1

κk
T 0.

Now using Jensen’s inequality on the left gives:

E
∥∥x̄k − x∗∥∥2 ≤ 1

κk
T 0,

where x̄k = 1
kE
∑k
t=1 x

t. Now we plug in T 0 = c
n

∑
i

∥∥g0i − g∗i ∥∥2+
∥∥x0 − x∗∥∥2 with c = αγ2n ≤

γ2n:

E
∥∥x̄k − x∗∥∥2 ≤ γ2n

κk

1

n

∑
i

∥∥g0i − g∗i ∥∥2 +
1

κk

∥∥x0 − x∗∥∥2 .
Now we plug in the bounds in terms of B and R:

E
∥∥x̄k − x∗∥∥2 ≤ γ2n

κk
B2 +

1

κk
R2.

In order to balance the terms on the right, we need:

γ2n

κk
B2 =

1

κk
R2,
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∴ γ2nB2 = R2,

∴ γ2 =
R2

nB2
.

So we can take γ = R/B
√
n, giving a rate of:

E
∥∥x̄k − x∗∥∥2 ≤ 2

κk
R2

= 2
1 + µγ

µγk
R2

= 2

√
n (1 + µ (R/B

√
n))

µk
RB.

3 Proximal operator bounds

In this section we rehash some simple bounds from proximal operator theory that we will use in
this work. Define the short-hand pγf (x) = proxγf (x), and let gγf (x) = 1

γ (x− pγf (x)), so that
pγf (x) = x− γgγf (x). Note that gγf (x) is a subgradient of f at the point pγf (x). This relation is
known as the optimality condition of the proximal operator.

We will also use a few standard convexity bounds without proof. Let f : Rd → R be a convex
function with strong convexity constant µ ≥ 0 and Lipschitz smoothness constant L. Let x∗ be the
minimizer of f , then for any x, y ∈ Rd:

〈f ′(x)− f ′(y), x− y〉 ≥ µ ‖x− y‖2 , (2)

‖f ′(x)− f ′(y)‖2 ≤ L2 ‖x− y‖2 . (3)

Proposition 4. (Firm non-expansiveness) For any x, y ∈ Rd, and any convex function f : Rd → R
with strong convexity constant µ ≥ 0,

〈x− y, pγf (x)− pγf (y)〉 ≥ (1 + µγ) ‖pγf (x)− pγf (y)‖2 .

Proof. Using strong convexity of f, we apply Equation 2 at the (sub-)gradients gγf (x) and gγf (y),
and their corresponding points pγf (x) and pγf (y):

〈gγf (x)− gγf (y), pγf (x)− pγf (y)〉 ≥ µ ‖pγf (x)− pγf (y)‖2 .

We now multiply both sides by γ, then add ‖pγf (x)− pγf (y)‖2 to both sides:

〈pγf (x) + γgγf (x)− pγf (y)− γgγf (y), pγf (x)− pγf (y)〉 ≥ (1 + µγ)
∥∥pγf (x)− pγf (y)

∥∥2 ,
leading to the bound by using the optimality condition: pγf (x) + γgγf (x) = x.

Proposition 5. (Moreau decomposition) For any x ∈ Rd, and any convex function f : Rd → R with
Fenchel conjugate f∗ :

pγf (x) = x− γp 1
γ f

∗(x/γ). (4)

Recall our definition of gγf (x) = 1
γ (x− pγf (x)) also. After combining, the following relation thus

holds between the proximal operator of the conjugate f∗ and gγf :

p 1
γ f

∗(x/γ) =
1

γ
(x− pγf (x)) = gγf (x). (5)
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Proof. Let u = pγf (x), and v = 1
γ (x− u). Then v ∈ ∂f(u) by the optimality condition of the

proximal operator of f (namely if u = pγf (x) then u = x − γv ⇔ v ∈ ∂f(u)). It follows by
conjugacy of f that u ∈ ∂f∗(v). Thus we may interpret v = 1

γ (x− u) as the optimality condition
of a proximal operator of f∗ :

v = p 1
γ f

∗(
1

γ
x).

Plugging in the definition of v then gives:

1

γ
(x− u) = p 1

γ f
∗(

1

γ
x).

Further plugging in u = pγf (x) and rearranging gives the result.

5


	Proximal operators
	Proofs
	Proximal operator bounds

