
SDP Relaxation with Randomized Rounding for
Energy Disaggregation

Kiarash Shaloudegi
Imperial College London

k.shaloudegi16@imperial.ac.uk

András György
Imperial College London

a.gyorgy@imperial.ac.uk

Csaba Szepesvári
University of Alberta

szepesva@ualberta.ca

Wilsun Xu
University of Alberta
wxu@ualberta.ca

Abstract

We develop a scalable, computationally efficient method for the task of energy
disaggregation for home appliance monitoring. In this problem the goal is to
estimate the energy consumption of each appliance over time based on the total
energy-consumption signal of a household. The current state of the art is to model
the problem as inference in factorial HMMs, and use quadratic programming to
find an approximate solution to the resulting quadratic integer program. Here we
take a more principled approach, better suited to integer programming problems,
and find an approximate optimum by combining convex semidefinite relaxations
randomized rounding, as well as a scalable ADMM method that exploits the special
structure of the resulting semidefinite program. Simulation results both in synthetic
and real-world datasets demonstrate the superiority of our method.

1 Introduction

Energy efficiency is becoming one of the most important issues in our society. Identifying the
energy consumption of individual electrical appliances in homes can raise awareness of power
consumption and lead to significant saving in utility bills. Detailed feedback about the power
consumption of individual appliances helps energy consumers to identify potential areas for energy
savings, and increases their willingness to invest in more efficient products. Notifying home owners
of accidentally running stoves, ovens, etc., may not only result in savings but also improves safety.
Energy disaggregation or non-intrusive load monitoring (NILM) uses data from utility smart meters
to separate individual load consumptions (i.e., a load signal) from the total measured power (i.e., the
mixture of the signals) in households.

The bulk of the research in NILM has mostly concentrated on applying different data mining and
pattern recognition methods to track the footprint of each appliance in total power measurements.
Several techniques, such as artificial neural networks (ANN) [Prudenzi, 2002, Chang et al., 2012,
Liang et al., 2010], deep neural networks [Kelly and Knottenbelt, 2015], k-nearest neighbor (k-NN)
[Figueiredo et al., 2012, Weiss et al., 2012], sparse coding [Kolter et al., 2010], or ad-hoc heuristic
methods [Dong et al., 2012] have been employed. Recent works, rather than turning electrical events
into features fed into classifiers, consider the temporal structure of the data[Zia et al., 2011, Kolter
and Jaakkola, 2012, Kim et al., 2011, Zhong et al., 2014, Egarter et al., 2015, Guo et al., 2015],
resulting in state-of-the-art performance [Kolter and Jaakkola, 2012]. These works usually model the
individual appliances by independent hidden Markov models (HMMs), which leads to a factorial
HMM (FHMM) model describing the total consumption.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

FHMMs, introduced by Ghahramani and Jordan [1997], are powerful tools for modeling times series
generated from multiple independent sources, and are great for modeling speech with multiple people
simultaneously talking [Rennie et al., 2009], or energy monitoring which we consider here [Kim et al.,
2011]. Doing exact inference in FHMMs is NP hard; therefore, computationally efficient approximate
methods have been the subject of study. Classic approaches include sampling methods, such as
MCMC or particle filtering [Koller and Friedman, 2009] and variational Bayes methods [Wainwright
and Jordan, 2007, Ghahramani and Jordan, 1997]. In practice, both methods are nontrivial to make
work and we are not aware of any works that would have demonstrated good results in our application
domain with the type of FHMMs we need to work and at practical scales.

In this paper we follow the work of Kolter and Jaakkola [2012] to model the NILM problem by
FHMMs. The distinguishing features of FHMMs in this setting are that (i) the output is the sum of
the output of the underlying HMMs (perhaps with some noise), and (ii) the number of transitions
are small in comparison to the signal length. FHMMs with the first property are called additive. In
this paper we derive an efficient, convex relaxation based method for FHMMs of the above type,
which significantly outperforms the state-of-the-art algorithms. Our approach is based on revisiting
relaxations to the integer programming formulation of Kolter and Jaakkola [2012]. In particular,
we replace the quadratic programming relaxation of Kolter and Jaakkola, 2012 with a relaxation
to an semi-definite program (SDP), which, based on the literature of relaxations is expected to be
tighter and thus better. While SDPs are convex and could in theory be solved using interior-point
(IP) methods in polynomial time [Malick et al., 2009], IP scales poorly with the size of the problem
and is thus unsuitable to our large scale problem which may involve as many a million variables. To
address this problem, capitalizing on the structure of our relaxation coming from our FHMM model,
we develop a novel variant of ADMM [Boyd et al., 2011] that uses Moreau-Yosida regularization
and combine it with a version of randomized rounding that is inspired by the the recent work of
Park and Boyd [2015]. Experiments on synthetic and real data confirm that our method significantly
outperforms other algorithms from the literature, and we expect that it may find its applications in
other FHMM inference problems, too.

1.1 Notation

Throughout the paper, we use the following notation: R denotes the set of real numbers, Sn+ denotes
the set of n × n positive semidefinite matrices, I{E} denotes the indicator function of an event E
(that is, it is 1 if the event is true and zero otherwise), 1 denotes a vector of appropriate dimension
whose entries are all 1. For an integer K, [K] denotes the set {1, 2, . . . ,K}. N (µ,Σ) denotes the
Gaussian distribution with mean µ and covariance matrix Σ. For a matrix A, trace(A) denotes its
trace and diag(A) denotes the vector formed by the diagonal entries of A.

2 System Model

Following Kolter and Jaakkola [2012], the energy usage of the household is modeled using an additive
factorial HMM [Ghahramani and Jordan, 1997]. Suppose there are M appliances in a household.
Each of them is modeled via an HMM: let Pi ∈ RKi×Ki denote the transition-probability matrix of
appliance i ∈ [M], and assume that for each state s ∈ [Ki], the energy consumption of the appliance
is constant µi,s (µi denotes the corresponding Ki-dimensional column vector (µi,1, . . . , µi,Ki)

>).
Denoting by xt,i ∈ {0, 1}Ki the indicator vector of the state st,i of appliance i at time t (i.e.,
xt,i,s = I{st,i=s}), the total power consumption at time t is

∑
i∈[M] µ

>
i xt,i, which we assume is

observed with some additive zero mean Gaussian noise of variance σ2: yt ∼ N (
∑
i∈[M] µ

>
i xt,i, σ

2).1

Given this model, the maximum likelihood estimate of the appliance state vector sequence can be
obtained by minimizing the log-posterior function

arg min
xt,i

T∑
t=1

(yt −
∑M
i=1 x

>
t,iµi)

2

2σ2
−
T−1∑
t=1

M∑
i=1

x>t,i(logPi)xt+1,i

subject to xt,i ∈ {0, 1}Ki , 1>xt,i = 1, i ∈ [M] and t ∈ [T],

(1)

1Alternatively, we can assume that the power consumption yt,iof each appliance is normally distributed with
mean µ>i xt,i and variance σ2

i , where σ2 =
∑

i∈[M] σ
2
i , and yt =

∑
i∈[M] yt,i.

2

where logPi denotes a matrix obtained from Pi by taking the logarithm of each entry.

In our particular application, in addition to the signal’s temporal structure, large changes in total power
(in comparison to signal noise) contain valuable information that can be used to further improve the
inference results (in fact, solely this information was used for energy disaggregation, e.g., by Dong
et al., 2012, 2013, Figueiredo et al., 2012). This observation was used by Kolter and Jaakkola [2012]
to amend the posterior with a term that tries to match the large signal changes to the possible changes
in the power level when only the state of a single appliance changes.

Formally, let ∆yt = yt+1 − yt, ∆µ
(i)
m,k = µi,k − µi,m, and define the matrices Et,i ∈ RKi×Ki

by (Et,i)m,k = (∆yt −∆µ
(i)
m,k)2/(2σ2

diff), for some constant σdiff > 0. Intuitively, (Et,i)m,k is
the negative log-likelihood (up to a constant) of observing a change ∆yt in the power level when
appliance i transitions from state m to state k under some zero-mean Gaussian noise with variance
σ2

diff. Making the heuristic approximation that the observation noise and this noise are independent
(which clearly does not hold under the previous model), Kolter and Jaakkola [2012] added the term
(−
∑T−1
t=1

∑M
i=1 x

>
t,iEt,ixt+1,i) to the objective of (1), arriving at

arg min
xt,i

f(x1, . . . , xT) :=

T∑
t=1

(yt −
∑M
i=1 x

>
t,iµi)

2

2σ2
−
T−1∑
t=1

M∑
i=1

x>t,i(Et,i + logPi)xt+1,i

subject to xt,i ∈ {0, 1}Ki , 1>xt,i = 1, i ∈ [M] and t ∈ [T] .

(2)

In the rest of the paper we derive an efficient approximate solution to (2), and demonstrate that it is
superior to the approximate solution derived by Kolter and Jaakkola [2012] with respect to several
measures quantifying the accuracy of load disaggregation solutions.

3 SDP Relaxation and Randomized Rounding

There are two major challenges to solve the optimization problem (2) exactly: (i) the optimization is
over binary vectors xt,i; and (ii) the objective function f , even when considering its extension to a
convex domain, is in general non-convex (due to the second term). As a remedy we will relax (2) to
make it an integer quadratic programming problem, then apply an SDP relaxation and randomized
rounding to solve approximately the relaxed problem. We start with reviewing the latter methods.

3.1 Approximate Solutions for Integer Quadratic Programming

In this section we consider approximate solutions to the integer quadratic programming problem

minimize f(x) = x>Dx+ 2d>x

subject to x ∈ {0, 1}n,
(3)

where D ∈ Sn+ is positive semidefinite, and d ∈ Rn. While an exact solution of (3) can be found
by enumerating all possible combination of binary values within a properly chosen box or ellipsoid,
the running time of such exact methods is nearly exponential in the number n of binary variables,
making these methods unfit for large scale problems.

One way to avoid exponential running times is to replace (3) with a convex problem with the hope that
the solutions of the convex problems can serve as a good starting point to find high-quality solutions
to (3). The standard approach to this is to linearize (3) by introducing a new variable X ∈ Sn+
tied to x trough X = xx>, so that x>Dx = trace(DX), and then relax the nonconvex constraints
X = xx>, x ∈ {0, 1}n to X � xx>, diag(X) = x, x ∈ [0, 1]n. This leads to the relaxed SDP
problem

minimize trace(D>X) + 2d>x

subject to
[

1 x>

x X

]
� 0, diag(X) = x, x ∈ [0, 1]n

(4)

3

By introducing X̂ =

[
1 x>

x X

]
this can be written in the compact SDP form

minimize trace(D̂>X̂)

subject to X̂ � 0, AX̂ = b .
(5)

where D̂ =

[
0 d>

d D

]
∈ Sn+1

+ , b ∈ Rm and A : Sn+ → Rm is an appropriate linear operator. This

general SDP optimization problem can be solved with arbitrary precision in polynomial time using
interior-point methods [Malick et al., 2009, Wen et al., 2010]. As discussed before, this approach
becomes impractical in terms of both the running time and the required memory if either the number
of variables or the optimization constraints are large [Wen et al., 2010]. We will return to the issue of
building scaleable solvers for NILM in Section 5.

Note that introducing the new variable X , the problem is projected into a higher dimensional space,
which is computationally more challenging than just simply relaxing the integrality constraint in (3),
but leads to a tighter approximation of the optimum (c.f., Park and Boyd, 2015; see also Lovász and
Schrijver, 1991, Burer and Vandenbussche, 2006).

To obtain a feasible point of (3) from the solution of (5), we still need to change the solution x to
a binary vector. This can be done via randomized rounding [Park and Boyd, 2015, Goemans and
Williamson, 1995]: Instead of letting x ∈ [0, 1]n, the integrality constraint x ∈ {0, 1}n in (3) can be
replaced by the inequalities xi(xi − 1) ≥ 0 for all i ∈ [n]. Although these constraints are nonconvex,
they admit an interesting probabilistic interpretation: the optimization problem

minimize Ew∼N (µ,Σ)[w
>Dw + 2d>w]

subject to Ew∼N (µ,Σ)[wi(wi − 1)] ≥ 0, i ∈ [n], µ ∈ Rn, Σ � 0

is equivalent to

minimize trace((Σ + µµ>)D) + 2d>µ

subject to Σi,i + µ2
i − µi ≥ 0, i ∈ [n],

(6)

which is in the form of (4) with X = Σ + µµ> and x = µ (above, Ex∼P [f(x)] stands for∫
f(x)dP (x)). This leads to the rounding procedure: starting from a solution (x∗, X∗) of (4),

we randomly draw several samples w(j) from N (x∗, X∗ − x∗x∗>), round w(j)
i to 0 or 1 to obtain

x(j), and keep the x(j) with the smallest objective value. In a series of experiments, Park and Boyd
[2015] found this procedure to be better than just naively rounding the coordinates of x∗.

4 An Efficient Algorithm for Inference in FHMMs

To arrive at our method we apply the results of the previous subsection to (2). To do so, as mentioned
at the beginning of the section, we need to change the problem to a convex one, since the elements of
the second term in the objective of (2), −x>t,i(Et,i + logPi)xt+1,i are not convex. To address this
issue, we relax the problem by introducing new variables Zt,i = xt,ix

>
t+1,i and replace the constraint

Zt,i = xt,ix
>
t+1,i with two new ones:

Zt,i1 = xt,i and Z>t,i1 = xt+1,i.

To simplify the presentation, we will assume thatKi = K for all i ∈ [M]. Then problem (2) becomes

arg min
xt,i

T∑
t=1

{
1

2σ2

(
yt − x>t µ

)2 − p>t zt}
subject to xt ∈ {0, 1}MK , t ∈ [T],

ẑt ∈ {0, 1}MKK , t ∈ [T − 1],

1>xt,i = 1, t ∈ [T] and i ∈ [M],

Zt,i1
> = xt,i, Z>t,i1

> = xt+1,i , t ∈ [T − 1] and i ∈ [M],

(7)

4

Algorithm 1 ADMM-RR: Randomized rounding algorithm for suboptimal solution to (2)
Given: number of iterations: itermax, length of input data: T
Solve the optimization problem (8): Run Algorithm 2 to get X∗t and z∗t
Set xbestt := z∗t and Xbest

t := X∗t for t = 1, . . . , T
for t = 2, . . . , T − 1 do

Set x := [xbestt−1
>
, xbestt

>
, xbestt+1

>
]>

Set X := block(Xbest
t−1 , X

best
t , Xbest

t+1) where block(·, ·) constructs block diagonal matrix from input
arguments
Set fbest :=∞
Form the covariance matrix Σ := X − xxT and find its Cholesky factorization LL> = Σ.
for k = 1, 2, . . . , itermax do

Random sampling: zk := x+ Lw, where w ∼ N (0, I)
Round zk to the nearest integer point xk that satisfies the constraints of (7)
If fbest > ft(x

k) then update xbestt and Xbest
t from the corresponding entries of xk and xkxk

>
,

respectively
end for

end for

where x>t = [x>t,1, . . . , x
>
t,M], µ> = [µ>1 , . . . , µ

>
M], z>t = [vec(Zt,1)>, . . . , vec(Zt,M)>] and

p>t = [vec(Et,1 + logP1), . . . , vec(logPT)], with vec(A) denoting the column vector obtained
by concatenating the columns of A for a matrix A. Expanding the first term of (7) and following the
relaxation method of Section 3.1, we get the following SDP problem:2

arg min
Xt,zt

T∑
t=1

trace(D>t Xt) + d>t zt

subject to AXt = b, BXt + Czt + EXt+1 = g,

Xt � 0, Xt, zt ≥ 0 .

(8)

Here A : SMK+1
+ → Rm, B, E : SMK+1

+ → Rm′
and C ∈ RMKK×m′

are all appropriate linear
operators, and the integers m and m′ are determined by the number of equality constraints, while

Dt = 1
2σ2

[
0 −ytµ>
−ytµ µµ>

]
and dt = pt. Notice that (8) is a simple, though huge-dimensional SDP

problem in the form of (5) where D̂ has a special block structure.

Next we apply the randomized rounding method from Section 3.1 to provide an approximate solution
to our original problem (2). Starting from an optimal solution (z∗, X∗) of (8) , and utilizing that
we have an SDP problem for each time step t, we obtain Algorithm 1 that performs the rounding
sequentially for t = 1, 2, . . . , T . However we run the randomized method for three consecutive time
steps, since Xt appears at both time steps t − 1 and t + 1 in addition to time t (cf., equation 9).
Following Park and Boyd [2015], in the experiments we introduce a simple greedy search within
Algorithm 1: after finding the initial point xk, we greedily try to objective the target value by change
the status of a single appliance at a single time instant. The search stops when no such improvement
is possible, and we use the resulting point as the estimate.

5 ADMM Solver for Large-Scale, Sparse Block-Structured SDP Problems

Given the relaxation and randomized rounding presented in the previous subsection all that remains
is to find X∗t , z

∗
t to initialize Algorithm 1. Although interior point methods can solve SDP problems

efficiently, even for problems with sparse constraints as (4), the running time to obtain an ε optimal
solution is of the order of n3.5 log(1/ε) [Nesterov, 2004, Section 4.3.3], which becomes prohibitive
in our case since the number of variables scales linearly with the time horizon T .

As an alternative solution, first-order methods can be used for large scale problems [Wen et al., 2010].
Since our problem (8) is an SDP problem where the objective function is separable, ADMM is a
promising candidate to find a near-optimal solution. To apply ADMM, we use the Moreau-Yosida
quadratic regularization [Malick et al., 2009], which is well suited for the primal formulation we

2The only modification is that we need to keep the equality constraints in (7) that are missing from (3).

5

Algorithm 2 ADMM for sparse SDPs of the form (8)
Given: length of input data: T , number of iterations: itermax.
Set the initial values to zero. W 0

t , P
0
t , S

0 = 0, λ0
t = 0, ν0t = 0, and r0t , h0

t = 0
Set µ = 0.001 {Default step-size value}
for k = 0, 1, . . . , itermax do

for t = 1, 2, . . . , T do
Update P k

t , W k
t , λk, Sk

t , rkt , hk
t , and νkt , respectively, according to (11) (Appendix A).

end for
end for

consider. When implementing ADMM over the variables (Xt, zt)t, the sparse structure of our
constraints allows to consider the SDP problems for each time step t sequentially:

arg min
Xt,zt

trace(D>t Xt) + d>t zt

subject to AXt = b,

BXt + Czt + EXt+1 = g,

BXt−1 + Czt−1 + EXt = g,

Xt � 0, Xt, zt ≥ 0 .

(9)

The regularized Lagrangian function for (9) is3

Lµ =trace(D>X) + d>z +
1

2µ
‖X − S‖2F +

1

2µ
‖z − r‖22 + λ>(b−AX)

+ ν>(g − BX − Cz − EX+) + ν>−(g − BX− − Cz− − EX)

− trace(W>X)− trace(P>X)− h>z,

(10)

where λ, ν, W ≥ 0, P � 0, and h ≥ 0 are dual variables, and µ > 0 is a constant. By taking the
derivatives of Lµ and computing the optimal values of X and z, one can derive the standard ADMM
updates, which, due to space constraints, are given in Appendix A. The final algorithm, which updates
the variables for each t sequentially, is given by Algorithm 2.

Algorithms 1 and 2 together give an efficient algorithm for finding an approximate solution to (2) and
thus also to the inference problem of additive FHMMs.

6 Learning the Model

The previous section provided an algorithm to solve the inference part of our energy disaggregation
problem. However, to be able to run the inference method, we need to set up the model. To learn
the HMMs describing each appliance, we use the method of Kontorovich et al. [2013] to learn the
transition matrix, and the spectral learning method of Anandkumar et al. [2012] (following Mattfeld,
2014) to determine the emission parameters.

However, when it comes to the specific application of NILM, the problem of unknown, time-varying
bias also needs to be addressed, which appears due to the presence of unknown/unmodeled appliances
in the measured signal. A simple idea, which is also followed by Kolter and Jaakkola [2012], is to
use a “generic model” whose contribution to the objective function is downweighted. Surprisingly,
incorporating this idea in the FHMM inference creates some unexpected challenges.4

Therefore, in this work we come up with a practical, heuristic solution tailored to NILM. First we
identify all electric events defined by a large change ∆yt in the power usage (using some ad-hoc
threshold). Then we discard all events that are similar to any possible level change ∆µ

(i)
m,k. The

remaining large jumps are regarded as coming from a generic HMM model describing the unregistered
appliances: they are clustered into K − 1 clusters, and an HMM model is built where each cluster is
regarded as power usage coming from a single state of the unregistered appliances. We also allow an
“off state” with power usage 0.

3We drop the subscript t and replace t+ 1 and t− 1 with + and − signs, respectively.
4For example, the incorporation of this generic model breaks the derivation of the algorithm of Kolter and

Jaakkola [2012]. See Appendix B for a discussion of this.

6

7 Experimental Results

We evaluate the performance of our algorithm in two setups:5 we use a synthetic dataset to test
the inference method in a controlled environment, while we used the REDD dataset of Kolter and
Johnson [2011] to see how the method performs on non-simulated, “real” data. The performance of
our algorithm is compared to the structured variational inference (SVI) method of Ghahramani and
Jordan [1997], the method of Kolter and Jaakkola [2012] and that of Zhong et al. [2014]; we shall
refer to the last two algorithms as KJ and ZGS, respectively.

7.1 Experimental Results: Synthetic Data

The synthetic dataset was generated randomly (the exact procedure is described in Appendix C).
To evaluate the performance, we use normalized disaggregation error as suggested by Kolter and
Jaakkola [2012] and also adopted by Zhong et al. [2014]. This measures the reconstruction error for
each individual appliance. Given the true output yt,i and the estimated output ŷt,i (i.e. ŷt,i = µ>i x̂t,i),
the error measure is defined as

NDE =
√∑

t,i(yt,i − ŷt,i)2/
∑
t,i (yt,i)

2
.

Figures 1 and 2 show the performance of the algorithms as the number HMMs (M) (resp., number of
states, K) is varied. Each plot is a report for T = 1000 steps averaged over 100 random models and
realizations, showing the mean and standard deviation of NDE. Our method, shown under the label
ADMM-RR, runs ADMM for 2500 iterations, runs the local search at the end of each 250 iterations,
and chooses the result that has the maximum likelihood. ADMM is the algorithm which applies naive
rounding. It can be observed that the variational inference method is significantly outperformed by
all other methods, while our algorithm consistently obtained better results than its competitors, KJ
coming second and ZGS third.

2 3 4 5 6 7 8 9
-1

0

1

2

3

4

5

N
o

rm
a

liz
e

d
 e

rr
o

r

Number of states: 3; Data length T=1000; Number of samples: 100

ADMM-RR

KJ method

ADMM

Variational Approx.

ZGS method

2 3 4 5 6 7 8 9
-0.2

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z
e

d
 e

rr
o

r

Number of states: 3; Data length T=1000; Number of samples: 100

ADMM-RR

KJ method

ADMM

ZGS method

Figure 1: Disaggregation error varying the number of HMMs.

2 3 4 5 6
-0.5

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

liz
e

d
 e

rr
o

r

Number of appliances: 5; Data length T=1000; Number of samples: 100

ADMM-RR

KJ method

ADMM

Variational Approx.

ZGS method

2 3 4 5 6
-0.2

0

0.2

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 e

rr
o

r

Number of appliances: 5; Data length T=1000; Number of samples: 100

ADMM-RR

KJ method

ADMM

ZGS method

Figure 2: Disaggregation error varying the number of states.

7.2 Experimental Results: Real Data

In this section, we also compared the 3 best methods on the real dataset REDD [Kolter and Johnson,
2011]. We use the first half of the data for training and the second half for testing. Each HMM (i.e.,

5Our code is available online at https://github.com/kiarashshaloudegi/FHMM_inference.

7

https://github.com/kiarashshaloudegi/FHMM_inference

Appliance ADMM-RR KJ method ZGS method
1 Oven-3 61.70/78.30% 27.62/72.32% 5.35/15.04%
2 Fridge 90.22/97.63% 41.20/97.46% 46.89/87.10%
3 Microwave 12.40/74.74% 13.40/96.32% 4.55/45.07%
4 Bath. GFI-12 50.88/60.25% 12.87/51.46% 6.16/42.67%
5 Kitch. Out.-15 69.23/98.85% 16.66/79.47% 5.69/26.72%
6 Wash./Dry.-20-A 98.23/93.80% 70.41/98.19% 15.91/35.51%
7 Unregistered-A 94.27/87.80% 85.35/25.91% 57.43/99.31%
8 Oven-4 25.41/76.37% 13.60/78.59% 9.52/12.05%
9 Dishwasher-6 54.53/90.91% 25.20/98.72% 29.42/31.01%
10 Wash./Dryer-10 21.92/63.58% 18.63/25.79% 7.79/3.01%
11 Kitch. Out.-16 17.88/79.04% 8.87/100% 0.00/0.00%
12 Wash./Dry.-20-B 98.19/28.31% 72.13/77.10% 27.44/71.25%
13 Unregistered-B 97.78/91.73% 96.92/73.97% 33.63/99.98%
Average 60.97/78.56% 38.68/75.02% 17.97/36.22%

Table 1: Comparing the disaggregation performance of three different algorithms: precision/recall.
Bold numbers represent statistically better performance on both measures.

appliance) is trained separately using the associated circuit level data, and the HMM corresponding
to unregistered appliances is trained using the main panel data. In this set of experiments we monitor
appliances consuming more than 100 watts. ADMM-RR is run for 1000 iterations, and the local
search is run at the end of each 250 iterations, and the result with the largest likelihood is chosen.
To be able to use the ZGS method on this data, we need to have some prior information about the
usage of each appliance; the authors suggestion is to us national energy surveys, but in the lack of
this information (also about the number of residents, type of houses, etc.) we used the training data to
extract this prior knowledge, which is expected to help this method.

Detailed results about the precision and recall of estimating which appliances are ‘on’ at any given
time are given in Table 1. In Appendix D we also report the error of the total power usage assigned
to different appliances (Table 2), as well as the amount of assigned power to each appliance as
a percentage of total power (Figure 3). As a summary, we can see that our method consistently
outperformed the others, achieving an average precision and recall of 60.97% and 78.56%, with about
50% better precision than KJ with essentially the same recall (38.68/75.02%), while significantly
improving upon ZGS (17.97/36.22%). Considering the error in assigning the power consumption to
different appliances, our method achieved about 30− 35% smaller error (ADMM-RR: 2.87%, KJ:
4.44%, ZGS: 3.94%) than its competitors.

In our real-data experiments, there are about 1 million decision variables: M = 7 or 6 appliances
(for phase A and B power, respectively) with K = 4 states each and for about T = 30, 000 time
steps for one day, 1 sample every 6 seconds. KJ and ZGS solve quadratic programs, increasing their
memory usage (14GB vs 6GB in our case). On the other hand, our implementation of their method,
using the commercial solver MOSEK inside the Matlab-based YALMIP [Löfberg, 2004], runs in 5
minutes, while our algorithm, which is purely Matlab-based takes 5 hours to finish. We expect that an
optimized C++ version of our method could achieve a significant speed-up compared to our current
implementation.

8 Conclusion

FHMMs are widely used in energy disaggregation. However, the resulting model has a huge
(factored) state space, making standard inference FHMM algorithms infeasible even for only a
handful of appliances. In this paper we developed a scalable approximate inference algorithm, based
on a semidefinite relaxation combined with randomized rounding, which significantly outperformed
the state of the art in our experiments. A crucial component of our solution is a scalable ADMM
method that utilizes the special block-diagonal-like structure of the SDP relaxation and provides a
good initialization for randomized rounding. We expect that our method may prove useful in solving
other FHMM inference problems, as well as in large scale integer quadratic programming.

Acknowledgements

This work was supported in part by the Alberta Innovates Technology Futures through the Alberta Ingenuity
Centre for Machine Learning and by NSERC. K. is indebted to Pooria Joulani and Mohammad Ajallooeian,
whom provided much useful technical advise, while all authors are grateful for Zico Kolter for sharing his code.

8

References

A. Anandkumar, D. Hsu, and S. M. Kakade. A Method of Moments for Mixture Models and Hidden Markov
Models. In COLT, volume 23, pages 33.1–33.34, 2012.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and Statistical Learning via
the Alternating Direction Method of Multipliers. FTML, 3(1):1–122, 2011.

S. Burer and D. Vandenbussche. Solving Lift-and-Project Relaxations of Binary Integer Programs. SIAM Journal
on Optimization, 16(3):726–750, 2006.

H.-H. Chang, K.-L. Chen, Y.-P. Tsai, and W.-J. Lee. A New Measurement Method for Power Signatures of
Nonintrusive Demand Monitoring and Load Identification. IEEE T. on Industry Applications, 48:764–771,
2012.

M. Dong, P. C. M. Meira, W. Xu, and W. Freitas. An Event Window Based Load Monitoring Technique for
Smart Meters. IEEE Transactions on Smart Grid, 3(2):787–796, June 2012.

M. Dong, Meira, W. Xu, and C. Y. Chung. Non-Intrusive Signature Extraction for Major Residential Loads.
IEEE Transactions on Smart Grid, 4(3):1421–1430, Sept. 2013.

D. Egarter, V. P. Bhuvana, and W. Elmenreich. PALDi: Online Load Disaggregation via Particle Filtering. IEEE
Transactions on Instrumentation and Measurement, 64(2):467–477, 2015.

M. Figueiredo, A. de Almeida, and B. Ribeiro. Home Electrical Signal Disaggregation for Non-intrusive Load
Monitoring (NILM) Systems. Neurocomputing, 96:66–73, Nov. 2012.

Z. Ghahramani and M. Jordan. Factorial Hidden Markov Models. Machine learning, 29(2):245–273, 1997.
M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms for Maximum Cut and Satisfiability

Problems Using Semidefinite Programming. J. of the ACM, 42(6):1115–1145, 1995.
Z. Guo, Z. J. Wang, and A. Kashani. Home Appliance Load Modeling From Aggregated Smart Meter Data.

IEEE Transactions on Power Systems, 30(1):254–262, Jan. 2015.
J. Kelly and W. Knottenbelt. Neural NILM: Deep Neural Networks Applied to Energy Disaggregation. In

BuildSys, pages 55–64, 2015.
H. Kim, M. Marwah, M. F. Arlitt, G. Lyon, and J. Han. Unsupervised Disaggregation of Low Frequency Power

Measurements. In ICDM, volume 11, pages 747–758, 2011.
D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. Adaptive computation

and machine learning. MIT Press, Cambridge, MA, 2009.
J. Z. Kolter and T. Jaakkola. Approximate Inference in Additive Factorial HMMs with Application to Energy

Disaggregation. In AISTATS, pages 1472–1482, 2012.
J. Z. Kolter and M. J. Johnson. REDD: A Public Data Set for Energy Disaggregation Research. In Workshop on

Data Mining Applications in Sustainability (SIGKDD), pages 59–62, 2011.
J. Z. Kolter, S. Batra, and A. Y. Ng. Energy Disaggregation via Discriminative Sparse Coding. In Advances in

Neural Information Processing Systems, pages 1153–1161, 2010.
A. Kontorovich, B. Nadler, and R. Weiss. On Learning Parametric-Output HMMs. In ICML, pages 702–710,

2013.
J. Liang, S. K. K. Ng, G. Kendall, and J. W. M. Cheng. Load Signature Study -Part I: Basic Concept, Structure,

and Methodology. IEEE Transactions on Power Delivery, 25(2):551–560, Apr. 2010.
J. Löfberg. YALMIP : A Toolbox for Modeling and Optimization in MATLAB. In CACSD, 2004.
L. Lovász and A. Schrijver. Cones of Matrices and Set-functions and 0-1 Optimization. SIAM Journal on

Optimization, 1(2):166–190, 1991.
J. Malick, J. Povh, F. Rendl, and A. Wiegele. Regularization Methods for Semidefinite Programming. SIAM

Journal on Optimization, 20(1):336–356, Jan. 2009. ISSN 1052-6234, 1095-7189.
C. Mattfeld. Implementing spectral methods for hidden Markov models with real-valued emissions. arXiv

preprint arXiv:1404.7472, 2014.
Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, 2004.
J. Park and S. Boyd. A Semidefinite Programming Method for Integer Convex Quadratic Minimization. arXiv

preprint arXiv:1504.07672, 2015.
A. Prudenzi. A neuron nets based procedure for identifying domestic appliances pattern-of-use from energy

recordings at meter panel. In PESW, volume 2, pages 941–946, 2002.
S. J. Rennie, J. R. Hershey, and P. Olsen. Single-channel speech separation and recognition using loopy belief

propagation. In ICASSP, pages 3845–3848, 2009.
M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and Variational Inference. FTML,

1(1–2):1–305, 2007.
M. Weiss, A. Helfenstein, F. Mattern, and T. Staake. Leveraging smart meter data to recognize home appliances.

In PerCom, pages 190–197, 2012.
Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented Lagrangian methods for semidefinite

programming. Mathematical Programming Computation, 2(3-4):203–230, Dec. 2010.
M. Zhong, N. Goddard, and C. Sutton. Signal Aggregate Constraints in Additive Factorial HMMs, with

Application to Energy Disaggregation. In NIPS, pages 3590–3598, 2014.
T. Zia, D. Bruckner, and A. Zaidi. A hidden Markov model based procedure for identifying household electric

loads. In IECON, pages 3218–3223, 2011.

9

A ADMM updates

In this section we derive the ADMM updates for the regularized Lagrangian Lµ given by (10). Taking
derivatives with respect to X and z and setting them to zeros, we get

∇XLµ = D +
1

µ
(X − S)−A>λ− B>ν − E>ν− −W − P = 0,

X∗ = S + µ(A>λ+ B>ν + E>ν− +W + P −D)

and

∇zLµ = d+
1

µ
(z − r)− C>ν − h = 0,

z∗ = r + µ(C>ν + h− d) .

Substituting X = X∗ and z = z∗ in (10) defines L̂µ. Then the standard ADMM iteration yields

P k+1 = arg min
P�0
L̂µ(Sk, P,W k, λk, νk, νk−),

W k+1 = arg min
W≥0

L̂µ(Sk, P k+1,W, λk, νk, νk−),

λk+1 = arg min
λ
L̂µ(Sk, P k+1,W k+1, λ, νk, νk−),

Sk+1 = Sk + µ(A>λk+1 + B>νk + E>νk+1
− +W k+1 + P k+1 −D),

rk+1 = rk + µ(C>νk + hk − d),

hk+1 = arg min
h≥0
L̂µ(rk+1, νk),

νk+1 = arg min
ν
L̂µ(Sk+1, P k+1,W k+1, λk+1, ν, νk+1

− , hk+1, rk+1).

By rearranging the terms in L̂µ, the following update equations can be found:

W k+1 = max{(D −A>λk − B>νk − E>νk− − P k −D − Sk/µ),0},
P k+1 =(D −A>λk − B>νk − E>νk− −W k −D − Sk/µ)+,

λk+1 =
1

µ
(AA>)†

(
b−A(B>νk + E>νk− +W k+1 + P k+1 −D)

)
,

hk+1 = max{d− C>νk − rk/µ,0},

νk+1 =
1

µ
(BB> + CC> + EE>)†

(
g − B

(
Sk+1 + µ(A>λk+1 + E>νk+1

− +W k+1 + P k+1 −D)
)

−C
(
rk+1 + µ(hk+1 − d)

)
− E

(
Sk+ + µ(A>λk+ + B>νk+ +W k

+ + P k+ −D)
))
.

(11)

Here max : X × X → X works elementwise, and for any square matrix A, A† denotes the Moore-
Penrose pseudo inverse, and for any real symmetric matrix A, A+ is the projection of A onto the
positive semidefinite cone (if the spectral decomposition of A is given by A =

∑
i λiviv

>
i , where λi

and vi are the ith eigenvalue and eigenvector of A, respectively, then A+ =
∑
λi>0 λiviv

>
i). Note

that the projections are done on matrices of small size. Note also that the pseudo-inverses of the
matrices involved need only be calculated once.

B Discussion of the Derivation in Kolter and Jaakkola [2012] in the
Presence of the “Generic Model”

The “generic model” affects the derivation of the algorithm of Kolter and Jaakkola [2012] as follows.
The authors of this paper claim to derive the final optimization problem given in equation (15) of
their paper from (9) and (10) as follows: equation (9) defines the problem minz∈Z,Q∈A f1(z,Q),
while (10) defines the problem minz′∈Z′,Q∈A f2(z′, Q) where z′ = g(z). Here, z, z′ are variables
that describe the state of the “generic model” over time.

10

Appliance Actual ADMM-RR KJ ZGS
power error error error

1 Oven 2.26% 0.82% 0.08% 1.47%
2 Fridge 17.45% 0.98% 8.38% 0.44%
3 Micro. 4.79% 0.49% 1.89% 4.01%
4 Bath. GFI 2.10% 0.13% 0.14% 0.17%
5 Kitch. Out. 1.77% 0.41% 0.85% 0.13%
6 Wash./Dry. 13.54% 0.36% 0.61% 7.20%
7 Unregistered 14.45% 1.46% 9.64% 16.87%
8 Oven 3.14% 8.09% 8.49% 1.44%
9 Dishwasher 8.07% 3.18% 8.24% 0.60%
10 Wash./Dryer 1.96% 4.02% 0.54% 1.48%
11 Kitch. Out. 0.27% 0.96% 1.48% 0.71%
12 Wash./Dry. 13.54% 9.47% 8.02% 7.20%
13 Unregistered 16.17% 6.92% 9.36% 9.51%
Total 100% – – –
Average – 2.87% 4.44% 3.94%
Std dev. – 3.26% 4.14% 5.00%
Median – 0.98% 1.89% 1.47%

Table 2: Energy disaggregation error as a percentage of total energy for three different algorithms.

The claim in the paper is that with some set B (coming from their “one-at-a-time” constraint),
minz∈Z,z′∈Z′,Q∈A∩B,z′=g(z) f1(z,A) + f2(z′, Q) is equivalent to the minimization problem in
equation (15). However, careful checking the derivation shows that (15) is equivalent to
minz∈Z,z′∈Z′,Q∈A∩B f1(z,A) + minz′∈Z′ f2(z′, Q), which is smaller in general.

C Generating the Synthetic Dataset

The synthetic dataset used in the experiments was generated in the following way: The power levels
corresponding to each on state (µ) were generated uniformly at random from [100, 4500] with the
additional constraint that the difference of any two non-zero levels must be greater than 100 (to
encourage identifiability). The levels for “off states” were set to 0. The transition matrices for each
appliance were generated the following way: diagonal elements for “off states” were drawn uniformly
at random from [0, 35] and for on-states from [0, 30], while non-diagonal elements were selected
from [0, 1] to ensure sparse transitions. Finally, the data matrices were normalized to ensure they are
proper transition matrices. The output of each appliance was subject to an additive Gaussian noise
with variance σ ∈ [0, 6] selected proportionally to the energy consumption level of the given on state,
and 1 for off states.

D Additional Results for the Real-Data Experiment

In Table 1 we provided prediction and recall values for our experiments on real data. As promised,
here we provide some additional results about these experiments: Table 2 presents the total power
usage assigned to different appliances, and Figure 3 shows the amount of assigned power to each
appliance.

11

1:
O
ve

n

2:
Frid

ge

3:
M

ic
ro

.

4:
B
at

h

5:
K
itc

h.

6:
W

as
h./D

ry
.

7:
U
nre

gis
.

8:
O
ve

n

9:
D
is

h.

10
:W

as
h./D

ry
.

11
:K

itc
h.

12
:W

as
h./D

ry
.

13
:U

nre
gis

.
0

5

10

15

20

25

30

35

%

Percentage of Total Power (%)

ADMM-RR

Actual data

KJ method

ZGS method

Figure 3: Total energy assigned to different appliances.

12

	Introduction
	Notation

	System Model
	SDP Relaxation and Randomized Rounding
	Approximate Solutions for Integer Quadratic Programming

	An Efficient Algorithm for Inference in FHMMs
	ADMM Solver for Large-Scale, Sparse Block-Structured SDP Problems
	Learning the Model
	Experimental Results
	Experimental Results: Synthetic Data
	Experimental Results: Real Data

	Conclusion
	ADMM updates
	Discussion of the Derivation in kolterapproximate2012 in the Presence of the ``Generic Model''
	Generating the Synthetic Dataset
	Additional Results for the Real-Data Experiment

