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A Summary and Comparison of Regret Bounds

In Table 1, we list the bounds we derive as well as those from previous works. As can be seen, we
have completed a basic picture of the regret landscape characterized by the parameters Γ, V,Λ, and
T , in both the full-information and bandit settings. Note that we did not provide a bandit upper
bound for switching distributions because a good upper bound is already shown in [6]. Although
that upper bound does not depend on Λ which may lead one to wonder if a better bound is possible
with a smaller Λ, we show that it is in fact impossible by providing a matching lower bound using
distributions with Λ = 0. Let us remark that although an Ω(

√
ΓT ) lower bound was also given in

[6], it was achieved by distributions with Λ ≥ Ω(T ). Moreover, the upper bounds of previous works,
such as [6, 2, 3], do not take Λ into account, so their algorithms do not seem to produce our regret
bounds in terms of Λ. The full-information algorithms of [8, 5] can produce a regret bound of the
form O(

√
ΓL∗) for switching distributions, with the quantity L∗ being the smallest accumulated

loss by an expert sequence that changes at most Γ times. Finally, in the full-information setting, [7]
provides a regret upper bound which resembles that of ours for drifting distributions but using slightly
different definition of parameters.

Table 1: Summary of regret bounds for switching and drifting distributions

Setting This paper [8, 5] [6] [2, 3]

Feedback Distributions Upper Lower Upper Lower Upper Lower Upper Lower

Full-info Switching
√

ΓΛ + Γ
√

ΓΛ + Γ
√

ΓL∗ - - - - -
Full-info Drifting 3

√
V ΛT + V 3

√
V ΛT + V - - - - 3

√
V T 2 3

√
V T 2

Bandit Switching -
√

ΓT - -
√

ΓT
√

ΓT - -
Bandit Drifting 3

√
V ΛT +

√
V T 3

√
V ΛT +

√
V T - - - - 3

√
V T 2 3

√
V T 2

B Proof of Theorem 3.1

To prove the theorem, we rely on the following key lemma, which we prove in Subsection B.1.

Lemma B.1. Consider a time interval I. Let VI =
∑
t∈I ‖µt − µt−1‖∞ and ΛI =∑

t∈I E
[
‖`t − µt‖22

]
be the drift and variance, respectively, in I. Then the expected regret of

Algorithm 1 in I is at most Õ
(
K
√

ΛI +K + |I|VI
)
.
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By applying Lemma B.1 on each interval, we can bound the total regret of Algorithm 1 by

T/B∑
γ=1

Õ
(
K
√

ΛIγ +K +BVIγ

)
≤ Õ

(
K
√
TΛ/B +KT/B +BV

)
from the Cauchy–Schwarz inequality. This gives the bound of Õ(

3
√
K2ΛV T ) with B =

3
√
K2ΛT/V 2 when KΛ2 ≥ TV , while the bound becomes Õ(

√
KV T ) with B =

√
KT/V

otherwise. Combining these two bounds together gives the regret bound of the theorem.

B.1 Proof of Lemma B.1

Let us first consider a time step t and bound the regret of our algorithm at that step, which is
µt,at − µt,u∗t , where at denotes the arm chosen by our algorithm and u∗t is the best arm. Let
µ̄t,i =

∑
s∈St,i

µs,i
|St,i| , which is the expected value of µ̂t,i. Note that when arm at is pulled, we have

µ̂t,at − λt,at ≤ µ̂t,u∗t − λt,u∗t . This implies

µ̄t,at − µ̄t,u∗t ≤ 2λt,at

when |µ̄t,i − µ̂t,i| ≤ λt,i for every arm i, which happens with probability 1− δK by Theorem 2.1
and a union bound. Using the fact that |µ̄t,i − µt,i| ≤ VI for any arm i, we have

µt,at − µt,u∗t ≤ µ̄t,at − µ̄t,u∗t + 2VI ≤ 2λt,at + 2VI

with probability 1− δK.

As a result, by summing over t ∈ I, the total regret of our algorithm is at most

2
∑
t∈I

λt,at + 2VI |I|+ δK|I|, (1)

with the last term being at most 1 for δ ≤ 1/(KT ). It remains to bound the first term above, for
which we rely on the following lemma.
Lemma B.2. For any time step t and any arm i such that |St,i| > 0,

λt,i ≤ Õ

 1

|St,i|

√ ∑
r∈St,i

σ̂2
r,i + 1

+ VI

 , where σ̂2
r,i = (`r,i − µr,i)2.

Before proving the lemma, let us first use it to bound the first term in (1). Let us divide I into two
parts: I ′ = {t ∈ I : |St,at | ≥ 2} and I \ I ′. Then

∑
t∈I′ λt,at is at most

Õ

∑
t∈I′

1

|St,at |

√∑
r∈I′

σ̂2
r,ar + 1

+ |I ′|VI′

 ≤ Õ
K√∑

r∈I′
σ̂2
r,ar +K + |I|VI

 ,

since
∑
t∈I′

1
|St,at |

≤ K
∑
t∈I

1
t ≤ K ln |I|, and recall that we use Õ(·) to hide logarithmic factors.

Then by combining all the bounds together, we have

∑
t∈I

λt,at ≤ 2K +
∑
t∈I′

λt,at ≤ Õ

K√∑
t∈I

σ̂2
t,at +K + |I|VI

 .

Substituting this into the bound in (1) and taking its expectation, we can conclude that the expected
regret of our algorithm is at most

Õ

K√∑
t∈I

∑
i∈[K]

E
[
σ̂2
r,i

]
+K + |I|VI

 = Õ
(
K
√

ΛI +K + |I|VI
)
,

by Jensen’s inequality and the definition of ΛI . This gives the regret bound claimed by Lemma B.1.
Thus, to complete the proof, it remains to prove Lemma B.2, which we do next.
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Proof of Lemma B.2. Consider any t and i, and for ease of presentation, let us drop the indices
involving t and i. To bound λ = ρ(|S|, Λ̂, δ), defined in Theorem 2.1, let us first bound Λ̂ =∑
r,s∈S(`r − `s)2/(|S|(|S| − 1)). Note that each (`r − `s)2 can be expressed as

((`r − µr)− (`s − µs) + (µr − µs))2 ≤ 3
(
(`r − µr)2 + (`s − µs)2 + (µr − µs)2

)
(2)

≤ 3
(
σ̂2
r + σ̂2

s + V 2
)
,

using the Cauchy–Schwarz inequality as well as the definition (`r − µr)
2 = σ̂2

r and the fact
(µr − µs)2 ≤ V 2. Thus, we have

Λ̂ =
∑
r,s∈S

(`r − `s)2

|S|(|S| − 1)
≤ O

(∑
r∈S

σ̂2
r

|S|
+ V 2

)
.

By plugging this bound into the definition of λ and using Õ(·) to hide logarithmic factors, we have

λ ≤ Õ

(√∑
r∈S

σ̂2
r

|S|2
+ V 2 +

1

|S|

)
≤ Õ

 1

|S|

√∑
r∈S

σ̂2
r + 1

+ V

 ,

since
√
a+ b ≤

√
a+
√
b for any a, b ≥ 0. This proves the lemma.

C Proof of Theorem 3.2

Recall that our Algorithm 2 is based on that of [4] which is known to have a good regret bound against
any offline comparator which does not switch arms. As we consider the dynamic regret here, we
need to extend the bound to work against offline comparators which can switch arms. The following
lemma provides such a bound.

Lemma C.1. With the choice of η =
√
N/(Λ +KV ), the regret of Algorithm 2, against an offline

comparator switching arms less than N times, is at most O(
√
N(Λ +KV )).

Proof. Consider any offline comparator which switches arms N −1 times, say at t1, . . . , tN−1. More
specifically, assuming t0 = 1 and tN = T + 1, the arm it plays at step t ∈ [tn, tn+1) remains the
same as that at step tn, for any 0 ≤ n ≤ N − 1. Let πt denote the characteristic vector of the arm it
plays at step t. Then when compared against it, the expected regret of our algorithm at step t with
respect to a realized loss vector `t (sampled from the distribution) is

K∑
i=1

`t,i (x̂t,i − πt,i) = 〈`t, x̂t − πt〉,

which according to [4] is at most

η‖`t − `t−1‖22 +
1

2η

(
‖πt − x̂t‖22 − ‖πt − x̂t+1‖22

)
.1

To bound the total expected regret with respect to these realized loss vectors, let us sum the above
over t and observe that the second term above can telescope within each interval and have only N
terms remaining at the boundaries between intervals. More precisely, we have

T∑
t=1

(
‖πt − x̂t‖22 − ‖πt − x̂t+1‖22

)
=

N−1∑
n=0

tn+1−1∑
t=tn

(
‖πtn − x̂t‖22 − ‖πtn − x̂t+1‖22

)
≤

N−1∑
n=0

‖πtn − x̂tn‖22,

1Although [4] considered the case with identical πt = π for every t, it is straightforward to see this from
their Lemma 5 and their proof of Theorem 8.
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which is at most 2N as ‖πn − x̂tn‖22 ≤ 2. Finally, by taking an additional expectation over the
randomness of these loss vectors, the resulting expected regret of Algorithm 2 can be bounded from
above by

η

T∑
t=1

E
[
‖`t − `t−1‖22

]
+
N

η
.

To bound the first sum above, note that using the notation σ2
τ = E

[
‖`τ‖22

]
− ‖µτ‖22, we have

E
[
‖`t − `t−1‖22

]
= E

[
‖`t‖22

]
+ E

[
‖`t−1‖22

]
− 2〈µt, µt−1〉

= σ2
t + σ2

t−1 + ‖µt‖22 + ‖µt−1‖22 − 2〈µt, µt−1〉
= σ2

t + σ2
t−1 + ‖µt − µt−1‖22. (3)

This implies that the expected regret of Algorithm 2 is at most

2η

T∑
t=0

σ2
t + η

T∑
t=1

‖µt − µt−1‖22 +
N

η
≤ 2ηΛ + ηKV +

N

η
,

as σ2
t = E

[
‖`t − µt‖22

]
and

∑T
t=0 E

[
‖`t − µt‖22

]
≤ Λ, using the convention that σ0 = 0. Then the

lemma follows by choosing η =
√
N/(Λ +KV ).

For switching distributions parameterized by Γ, we have V ≤ Γ, and by choosing N = Γ and
η =

√
Γ/(Λ +KΓ), Lemma C.1 provides a regret bound ofO(

√
Γ(Λ +KΓ)) ≤ O(

√
ΓΛ+

√
KΓ)

for Algorithm 2.

D Proof of Theorem 3.3

Let us first focus on a single interval I = [t1, t2] of time steps, and consider the simpler case of static
regret, measured against a single fixed arm. Recall that our learning rates are set as

ηt = 1/

√√√√4

t−1∑
τ=t1

‖`τ − `τ−1‖22

for t ∈ I, with ηt1 = ∞ initially for every interval. Note that our learning rates are set similarly
to those used in [7]. The main difference is that we allow them to be∞, which prevents us from
applying their result directly. Still, similarly to [7, Lemma 1], we can have the following guarantee.
Lemma D.1. Using the learning rates given above, the regret of Algorithm 2 in any interval

I = [t1, t2] with respect to any fixed arm is at most O
(√∑

t∈I‖`t − `t−1‖22
)
.

Proof. Let ρ be the first time step in I such that ‖`ρ − `ρ−1‖2 6= 0, so that for any step t < ρ in I,
we have ηt =∞ and `t = `t−1. This implies that for any step t < ρ in I, what Algorithm 2 plays
is x̂t = arg minx∈X 〈`t−1, x〉 = arg minx∈X 〈`t, x〉, which is optimal and has no positive regret.
Therefore, it suffices to bound the regret accumulated from step ρ to step t2, which we can do by
applying [7, Lemma 1]. To see this, note that the bound there works for any arbitrary starting point x̂ρ
(here computed according to ηρ =∞), and after that we indeed have ηt <∞ for t > ρ in I. Then
according to [7, Lemma 1], we can upper-bound the regret accumulated from step ρ to step t2 by

t2∑
t=ρ

ηt+1

2
‖`t − `t−1‖22 +

8

ηt2+1
= O

√√√√ t2∑
t=t1

‖`t − `t−1‖22

 .

This proves the lemma.

The regret bound above is stated in terms of any specific realization of loss vectors. By taking the
expectation over their randomness, we can upper-bound the expected regret by

O

E

√√√√ t2∑
t=t1

‖`t − `t−1‖22

 ≤ O
√√√√ t2∑

t=t1

E [‖`t − `t−1‖22]

 ,
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using Jensen’s inequality, which according to (3) in the proof of Lemma C.1 is at most

O

√√√√ t2∑
t=t1−1

σ2
t +

t2∑
t=t1

‖µt − µt−1‖22

 ≤ O
√√√√ t2∑

t=t1−1
σ2
t +
√
K

t2∑
t=t1

‖µt − µt−1‖∞

 ,

using the fact that
√
a+ b ≤

√
a+
√
b for a, b ≥ 0 and ‖µt − µt−1‖22 ≤ K‖µt − µt−1‖2∞.

By summing such bounds for the T/B intervals, we can upper bound the total regret by

O


√√√√(T/B)

T∑
t=0

σ2
t +
√
K

T∑
t=1

‖µt − µt−1‖∞

 ≤ O(
√

(T/B)Λ +
√
KV )

using the Cauchy–Schwarz inequality and the definition of Λ and V . Note that the regret above works
against the best offline comparator which plays a fixed arm in each interval (possibly different arms in
different intervals), while our goal is to compete with any fully dynamic comparator which can switch
arms at every step. Therefore, we would like to bound the difference between the total losses of these
two comparators. This can be done similarly to that in the proof of Lemma B.1. More precisely, let us
focus on one interval I, and we claim that the difference between their losses in I is at most 2BVI ,
where VI =

∑
t∈I ‖µt − µt−1‖∞ is the total drift in I. To see this, suppose arm k is the best fixed

arm in I, which implies that it must the best arm at some step s ∈ I. Then for any step t ∈ I, it has
µt,k ≤ µs,k +VI while the best arm at step t, denoted as ut∗, has µt,ut∗ ≥ µs,ut∗−VI ≥ µs,k−VI .
Therefore, we have∑

t∈I
(µt,k − µt,ut∗) ≤

∑
t∈I

((µs,k + VI)− (µs,k − VI)) ≤ 2BVI .

Summing over the intervals, we can then upper-bound their total difference by 2BV .

As a result, we can conclude that the total regret of our algorithm against any fully dynamic comparator
is at most O(

√
(T/B)Λ +

√
KV + BV ). This bound is at most O( 3

√
ΛV T +

√
KV ) by setting

B = 3
√

ΛT/V 2 when ΛT > V 2 and at most O(
√
KV ) by setting B = 1 otherwise. Thus, we have

the required bound in each case, which proves the theorem.

E Proof of Theorem 3.4

Let RT,k denote the regret of our Optimistic-Adapt-ML-Prod algorithm (Algorithm 3) with respect
to expert k, which is defined as

RT,k =

T∑
t=1

rt,k =

T∑
t=1

(〈pt, `t〉 − `t,k).

First, as in [5, Theorem 3], we can bound the regret RT,k in the following form.
Lemma E.1. For any k, Rt,k is at most

1

η0,k
ln

1

w0,k
+

T∑
t=1

ηt−1,k(rt,k −mt,k)2 +
1

ηT,k
ln

(
1 +

1

e

K∑
k′=1

T∑
t=1

(
ηt−1,k′

ηt,k′
− 1

))
. (4)

Proof. Following [5] we derive (4) by bounding lnWT from above and from below. For the lower
bound, one can use a similar inductive proof as in [5] to show that for every expert k ∈ [K],

lnWT ≥ lnwT,k =
ηT,k
η0,k

lnw0,k + ηT,k

T∑
t=1

(
rt,k − ηt−1,k(rt,k −mt,k)2

)
.

For the upper bound, some care is needed as we play w̃t instead of wt at step t. As in [5], we would
like to upper-bound each Wt+1 in terms of Wt. For this, consider any k, and note that

wt+1,k ≤ (wt+1,k)
ηt,k
ηt+1,k +

1

e

(
ηt,k
ηt+1,k

− 1

)
,
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using the fact that x ≤ xα + (α− 1)/e for any x > 0 and α ≥ 1 (see [5, Lemma 13]). The first term
on the right-hand side above can be bounded as

(wt+1,k)
ηt,k
ηt+1,k = wt,k exp

(
ηt,krt+1,k − η2t,k(rt+1,k −mt+1,k)2

)
= w̃t,k exp

(
ηt,k(rt+1,k −mt+1,k)− η2t,k(rt+1,k −mt+1,k)2

)
≤ w̃t,k(1 + ηt,k(rt+1,k −mt+1,k)),

using the fact that exp(x− x2) ≤ 1 + x for any x ≥ −1/2. Summing the above over k, we obtain

K∑
k=1

(wt+1,k)
ηt,k
ηt+1,k ≤

K∑
k=1

w̃t,k +

K∑
k=1

w̃t,kηt,krt+1,k −
K∑
k=1

w̃t,kηt,kmt+1,k

≤
K∑
k=1

w̃t,k exp(−ηt,kmt+1,k) +

K∑
k=1

w̃t,kηt,krt+1,k,

using the fact that 1− x ≤ exp(−x) for any x. The first sum equals
∑K
k=1 wt,k = Wt by definition.

The second sum above equals to zero because w̃t,kηt,k ∝ pt+1,k so that the sum is a multiple of∑
k pt+1,krt+1,k =

∑
k pt+1,k(〈pt+1, `t+1〉 − `t+1,k) = 0. As a result, we have

Wt+1 =

K∑
k=1

wt+1,k ≤Wt +

K∑
k=1

1

e

(
ηt,k
ηt+1,k

− 1

)
for any t. This implies that

WT ≤ 1 +
1

e

K∑
k=1

T∑
t=1

(
ηt−1,k
ηt,k

− 1

)
,

as W0 = 1. Connecting the upper bound and the lower bound for lnWT , we have

T∑
t=1

rt,k ≤
1

η0,k
ln

1

w0,k
+

T∑
t=1

ηt−1,k(rt,k −mt,k)2 +
1

ηT,k
ln

(
1 +

1

e

K∑
k=1

T∑
t=1

(
ηt−1,k
ηt,k

− 1

))
,

which proves the lemma.

Note that as in [5, Theorem 3], the third term in (4) is the price paid for using adaptive learning rates,
while our second term is different, which depends on rt,k −mt,k instead of rt,k. Next, similarly to
[5, Corollary 4], by using the the prior w0 = (1/K, . . . , 1/K) and the specific learning rates defined
in Eq. (6), one can show that

RT,k ≤
CT,K√

lnK

√√√√1 +

(
T∑
t=1

(rt,k −mt,k)2

)
+DT,K ,

where CT,K = lnK+ln(1+ K
e (1+ln(T +1))) andDT,K = 1

4 (lnK+ln(1+ K
e (1+ln(T +1))))+

2
√

lnK + 16 lnK. We omit the proof because it is almost identical to that of [5, Proof of Corollary
4], except we have rt,k −mt,k in place of rt,k and we rely on the condition |rt,k −mt,k| ≤ 2 instead
of |rt,k| ≤ 1. Using the notation Ô(·) to hide the ln lnT factor, we obtain

RT,k ≤ Ô


√√√√ T∑

t=1

(rt,k −mt,k)2 lnK + lnK

 . (5)

Finally, since

rt,k −mt,k = (〈pt, `t〉 − `t,k)− (〈pt, `t−1〉 − `t−1,k) = 〈pt, `t − `t−1〉 − (`t,k − `t−1,k),

we have (rt,k −mt,k)2 ≤ (2‖`t − `t−1‖∞)2. Substituting this into the bound in (5) completes the
proof of the theorem.
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Algorithm 1 Modified Optimistic-Adapt-ML-Prod
for t = 1, 2, . . . , T do

Call Algorithm 3 on K̃ sleeping experts to obtain its distribution p̃t at step t.
Play the distribution pt, with pt,k ∝

∑t
s=1 p̃t,(s,k), and then receive loss vector `t.

Compute ˜̀
t,(s,k) = 1s>t · 〈pt, `t〉+ 1s≤t · `t,k and m̃t,(s,k) = 1s≤t ·mt,k, for all s, k.

Feed ˜̀
t as the loss vector and m̃t as the estimate vector to Algorithm 3 for update.

end for

F Proof of Theorem 3.5

The new algorithm is shown in Algorithm 1, which runs Algorithm 3 on K̃ = KT sleeping experts.
Each expert is indexed by a pair (s, k), with s ∈ [1, T ] and k ∈ [K], which is asleep before step s and
is awake for steps t ≥ s. Our Algorithm 1 at step t first calls Algorithm 3 to obtain the distribution p̃t
over K̃ = KT sleeping experts, from which it computes the distribution pt over K arms, with

pt,k =

t∑
s=1

p̃t,(s,k)/Zt, where Zt =

K∑
k′=1

t∑
s′=1

p̃t,(s′,k′).

Then it plays pt at step t, receives the loss vector `t, and suffers the expected loss 〈pt, `t〉. Finally,
before proceeding to the next step, it updates Algorithm 3 using the modified loss vector ˜̀

t, where

˜̀
t,(s,k) =

{
`t,k if expert (s, k) is awake (when s ≤ t),
〈pt, `t〉 otherwise,

as well as the estimate vector m̃t, where

m̃t,(s,k) =

{
mt,k if expert (s, k) is awake (when s ≤ t),
0 otherwise.

With such a definition, we can relate the instantaneous regret r̃t,(s,k), defined as 〈p̃t, ˜̀
t〉 − ˜̀

t,(s,k), of
Algorithm 3 to rt,k of Algorithm 1, defined as 〈pt, `t〉 − `t,k, as shown in the following.
Lemma F.1. For any s, t and any k, r̃t,(s,k) = 0 if s > t and r̃t,(s,k) = rt,k otherwise.

We prove the lemma in Subsection F.1. From this, together with Theorem 3.4, we can bound the
regret of Algorithm 1 during an interval against some arm in the following, which we prove in
Subsection F.2.

Lemma F.2. For any t1 ≤ t2 and any k,
∑t2
t=t1

rt,k ≤ Õ
(√∑t2

t=t1
‖`t − `t−1‖2∞ lnK + lnK

)
.

Using this lemma, we can show the following dynamic regret bound for our Algorithm 1.
Lemma F.3. For distributions with parameters Λ and V , the expected regret of Algo-
rithm 1, against any offline comparator switching arms less than N times, is at most
Õ
(√

NΛ lnK + V
√

lnK +N lnK
)
.

We will prove the lemma in Subsection F.3. With this lemma, we are now ready to prove Theorem 3.5.
First, for switching distributions parameterized by Γ and Λ, we can simply choose N = Γ in
Lemma F.3 and have the regret bound of Õ(

√
ΓΛ lnK + Γ lnK) as V ≤ Γ.

Next, for drifting distributions parameterized by V and Λ, we need to choose N appropriately.
As shown in the proof of Theorem 3.3, a regret bound with respect to comparators making less
than N equally-spaced switches immediately implies a regret bound with respect to fully-dynamic
comparators with an additional term of O(V T/N). This leads to a dynamic regret bound of
Õ(
√
NΛ lnK + V

√
lnK + N lnK) + O(V T/N) for our algorithm. When Λ2 ≥ V T lnK, we

can choose N = 3
√
V 2T 2/(Λ lnK) to give a regret bound of Õ( 3

√
ΛV T lnK). On the other hand,

when Λ2 < V T lnK, we can choose N =
√
V T/(lnK) to give a regret bound of Õ(

√
V T lnK).

By combining these two bounds together, we have the theorem.
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F.1 Proof of Lemma F.1

First, we claim that 〈p̃t, ˜̀
t〉 = 〈pt, `t〉 for any t, which means that the expected loss of Algorithm 1

equals that of Algorithm 3 at any step. To see this, note that from the definition of ˜̀
t, we have

〈p̃t, ˜̀
t〉 =

K∑
k=1

t∑
s=1

p̃t,(s,k)`t,k +

K∑
k=1

T∑
s=t+1

p̃t,(s,k)〈pt, `t〉,

where the first sum above, using the definition of pt,k, equals
K∑
k=1

Ztpt,k`t,k = Zt〈pt, `t〉 =

K∑
k=1

t∑
s=1

p̃t,(s,k)〈pt, `t〉.

This implies that

〈p̃t, ˜̀
t〉 =

K∑
k=1

T∑
s=1

p̃t,(s,k)〈pt, `t〉 = 〈pt, `t〉.

Then for s > t, we have r̃t,(s,k) = 〈p̃t, ˜̀
t〉 − 〈pt, `t〉 = 0, while for s ≤ t, we have r̃t,(s,k) =

〈p̃t, ˜̀
t〉 − `t,k = rt,k, which proves the lemma.

F.2 Proof of Lemma F.2

According to Lemma F.1 and Theorem 3.4, we have

t2∑
t=t1

rt,k =

t2∑
t=t1

r̃t,(t1,k) =

t2∑
t=1

r̃t,(t1,k) ≤ Ô


√√√√ t2∑

t=1

(
r̃t,(t1,k) − m̃t,(t1,k)

)2
ln K̃ + ln K̃

 .

Then using Lemma F.1 as well as the definition of m̃t,(t1,k), we know that r̃t,(t1,k) − m̃t,(t1,k) equals
0 if t < t1 and it equals rt,k − mt,k otherwise. As (rt,k − mt,k)2 ≤ (2‖`t − `t−1‖∞)2 and as
K̃ = KT , we have

t2∑
t=t1

rt,k = Õ

√√√√ t2∑
t=t1

‖`t − `t−1‖2∞ lnK + lnK

 ,

with the notation Õ(·) hiding an additional log T factor. This proves the lemma.

F.3 Proof of Lemma F.3

Consider any offline algorithm, which divides the time steps into N intervals: I1, . . . , IN , and plays
the best fixed arm in each interval. For any one such interval I = [t1, t2] and any arm k, we know
from Lemma F.2 that

t2∑
t=t1

rt,k ≤ Õ

√√√√ t2∑
t=t1

‖`t − `t−1‖2∞ lnK + lnK

 . (6)

From Eq. (2) in the proof of Lemma B.2, we know that

‖`t − `t−1‖2∞ ≤ 3
(
‖`t − µt‖2∞ + ‖µt − µt−1‖2∞ + ‖`t−1 − µt−1‖2∞

)
.

Using the fact that ‖`τ − µτ‖2∞ ≤ ‖`τ − µτ‖22 and
√
a+ b ≤

√
a+
√
b for a, b ≥ 0, we have√√√√ t2∑

t=t1

‖`t − `t−1‖2∞ lnK ≤

√√√√6

t2∑
t=t1−1

‖`t − µt‖22 lnK +

t2∑
t=t1

‖µt − µt−1‖∞
√

3 lnK.

Then taking the expectation on both sides of (6) and applying Jensen’s inequality, we have

t2∑
t=t1

E [rt,k] ≤ Õ

√√√√ t2∑
t=t1−1

E [‖`t − µt‖22] lnK +

t2∑
t=t1

‖µt − µt−1‖∞
√

lnK + lnK

 .
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Note that the bound above work for any arm k. Therefor, if we let kn be the best arm in interval
In and sum the above over the intervals, we can bound the expected regret against such a dynamic
comparator as

N∑
n=1

∑
t∈In

E [rt,kn ] ≤ Õ

√N ∑
t∈[T ]

E [‖`t − µt‖22] lnK +
∑
t∈[T ]

‖µt − µt−1‖∞
√

lnK +N lnK

 ,

by the Cauchy–Schwarz inequality. Then the lemma follows from the definition of Λ and V .

G Proof of Theorem 4.2

Fix any full-information algorithm A. Let us consider two cases depending on whether or not Λ > Γ.
First, for the case with Λ > Γ, we divide the time horizon into Γ intervals of equal length. In the first
Λ/Γ time steps of each interval, according to the lower bound proof in [1], there exists a stationary loss
distribution of variance 1 for making the regret of any algorithm A at least Ω(

√
Λ/Γ). For the rest of

the intervals we use a fixed distribution with no variance. With this choice of distributions, the total
variance does not exceed Λ, and the regret lower bound is Γ ·Ω(

√
Λ/Γ) ≥ Ω(

√
ΓΛ) ≥ Ω(

√
ΓΛ+Γ).

Next, for the case with Γ ≥ Λ, we show a lower bound of Ω(Γ) ≥ Ω(
√

ΓΛ + Γ). Let `(i), for
i ∈ [K], be the loss vector with 0 in dimension i and 1 elsewhere, which can serve as a distribution
with mean `(i) and variance 0, with arm i being the optimal one. Then one can show the existence of
a sequence of Γ loss vectors, chosen from these K vectors, which makes the expected regret of A at
least Γ(K − 1)/K for the first Γ steps, by a probabilistic argument. Formally, by choosing one of
the loss vectors uniformly and independently for each step, the expected loss of A is Γ(K − 1)/K,
which implies the existence of a fixed sequence of Γ loss vectors achieving this bound. On the other
hand, the total loss of a fully dynamic offline algorithm is clearly 0, which implies that the expected
regret ofA with respect to this fixed sequence of Γ loss vectors is at least Γ(K − 1)/K = Ω(Γ). The
last loss vector is then kept for the remaining T − Γ steps, which cannot decrease the regret, and the
total number of switches is at most Γ− 1. This completes the proof of the theorem.

H Proof of Lemma 4.4

We letQ and P both be Bernoulli-type distributions taking values from {0, 2σ}. ForQ, we let it take
each value with equal probability so that it has mean σ and variance σ2. For P , we make it have
mean σ − ε, by letting it take the value 0 with probability σ+ε

2σ and the value 2σ with probability σ−ε
2σ .

Then the variance of P is σ+ε
2σ (σ − ε)2 + σ−ε

2σ (σ + ε)2 = (σ − ε)(σ + ε) < σ2. Thus, the first two
conditions are satisfied. For the last condition, note that

(ln 2)KL(Q,P) =
1

2
ln

( 1
2
σ−ε
2σ

)
+

1

2
ln

( 1
2
σ+ε
2σ

)
=

1

2
ln

(
σ2

σ2 − ε2

)
=

1

2
ln

(
1 +

ε2

σ2 − ε2

)
which, using the fact that 1 + x ≤ ex and ε2 ≤ σ2/2, is at most ε2

2(σ2−ε2) ≤
ε2

σ2 as required.
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