
Robust Spectral Detection of Global Structures in the
Data by Learning a Regularization

Pan Zhang
Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

panzhang@itp.ac.cn

Abstract

Spectral methods are popular in detecting global structures in the given data that
can be represented as a matrix. However when the data matrix is sparse or noisy,
classic spectral methods usually fail to work, due to localization of eigenvectors
(or singular vectors) induced by the sparsity or noise. In this work, we propose
a general method to solve the localization problem by learning a regularization
matrix from the localized eigenvectors. Using matrix perturbation analysis, we
demonstrate that the learned regularizations suppress down the eigenvalues asso-
ciated with localized eigenvectors and enable us to recover the informative eigen-
vectors representing the global structure. We show applications of our method
in several inference problems: community detection in networks, clustering from
pairwise similarities, rank estimation and matrix completion problems. Using ex-
tensive experiments, we illustrate that our method solves the localization problem
and works down to the theoretical detectability limits in different kinds of syn-
thetic data. This is in contrast with existing spectral algorithms based on data
matrix, non-backtracking matrix, Laplacians and those with rank-one regulariza-
tions, which perform poorly in the sparse case with noise.

1 Introduction

In many statistical inference problems, the task is to detect, from given data, a global structure such
as low-rank structure or clustering. The task is usually hard to solve since modern datasets usually
have a large dimensionality. When the dataset can be represented as a matrix, spectral methods are
popular as it gives a natural way to reduce the dimensionality of data using eigenvectors or singular
vectors. In the point-of-view of inference, data can be seen as measurements to the underlying
structure. Thus more data gives more precise information about the underlying structure.

However in many situations when we do not have enough measurements, i.e. the data matrix is
sparse, standard spectral methods usually have localization problems thus do not work well. One
example is the community detection in sparse networks, where the task is to partition nodes into
groups such that there are many edges connecting nodes within the same group and comparatively
few edges connecting nodes in different groups. It is well known that when the graph has a large
connectivity c, simply using the first few eigenvectors of the adjacency matrix A ∈ {0, 1}n×n
(with Aij = 1 denoting an edge between node i and node j,and Aij = 0 otherwise) gives a good
result. In this case, like that of a sufficiently dense Erdős-Rényi (ER) random graph with average
degree c, the spectral density follows Wigner’s semicircle rule, P (λ) =

√
4c− λ2/2πc, and there

is a gap between the edge of bulk of eigenvalues and the informative eigenvalue that represents the
underlying community structure. However when the network is large and sparse, the spectral density
of the adjacency matrix deviates from the semicircle, the informative eigenvalue is hidden in the
bulk of eigenvalues, as displayed in Fig. 1 left. Its eigenvectors associated with largest eigenvalues
(which are roughly proportional to log n/ log log n for ER random graphs) are localized on the large-
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degree nodes, thus reveal only local structures about large degrees rather than the underlying global
structure. Other standard matrices for spectral clustering [19, 22], e.g. Laplacian, random walk
matrix, normalized Laplacian, all have localization problems but on different local structures such
as dangling trees.

Another example is the matrix completion problem which asks to infer missing entries of matrix
A ∈ Rm×n with rank r �

√
mn from only few observed entries. A popular method for this

problem is based on the singular value decomposition (SVD) of the data matrix. However it is
well known that when the matrix is sparse, SVD-based method performs very poorly, because the
singular vectors corresponding to the largest singular values are localized, i.e. highly concentrated
on high-weight column or row indices.

A simple way to ease the pain of localization induced by high degree or weight is trimming [6, 13]
which sets to zero columns or rows with a large degree or weight. However trimming throws away
part of the information, thus does not work all the way down to the theoretical limit in the com-
munity detection problem [6, 15]. It also performs worse than other methods in matrix completion
problem [25].

In recent years, many methods have been proposed for the sparsity-problem. One kind of methods
use new linear operators related to the belief propagation and Bethe free energy, such as the non-
backtracking matrix [15] and Bethe Hessian [24]. Another kind of methods add to the data matrix or
its variance a rank-one regularization matrix [2, 11, 16–18, 23]. These methods are quite successful
in some inference problems in the sparse regime. However in our understanding none of them works
in a general way to solve the localization problem. For instance, the non-backtracking matrix and
the Bethe Hessian work very well when the graph has a locally-tree-like structure, but they have
again the localization problems when the system has short loops or sub-structures like triangles and
cliques. Moreover its performance is sensitive to the noise in the data [10]. Rank-one regularizations
have been used for a long time in practice, the most famous example is the “teleportation” term
in the Google matrix. However there is no satisfactory way to determine the optimal amount of
regularization in general. Moreover, analogous to the non-backtracking matrix and Bethe Hessian,
the rank-one regularization approach is also sensitive to the noise, as we will show in the paper.

The main contribution of this paper is to illustrate how to solve the localization problem of spec-
tral methods for general inference problems in sparse regime and with noise, by learning a proper
regularization that is specific for the given data matrix from its localized eigenvectors. In the fol-
lowing text we will first discuss in Sec. 2 that all three methods for community detection in sparse
graphs can be put into the framework of regularization. Thus the drawbacks of existing methods
can be seen as improper choices of regularizations. In Sec. 3 we investigate how to choose a good
regularization that is dedicated for the given data, rather than taking a fixed-form regularization as
in the existing approaches. We use matrix perturbation analysis to illustrate how the regulariza-
tion works in penalizing the localized eigenvectors, and making the informative eigenvectors that
correlate with the global structure float to the top positions in spectrum. In Sec. 4 we use exten-
sive numerical experiments to validate our approach on several well-studied inference problems,
including the community detection in sparse graphs, clustering from sparse pairwise entries, rank
estimation and matrix completion from few entries.
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Figure 1: Spectral density of the adjacency matrix (left) and X-Laplacian (right) of a graph generated
by the stochastic block model with n = 10000 nodes, average degree c = 3, q = 2 groups and
ε = 0.125. Red arrows point to eigenvalues out of the bulk.
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2 Regularization as a unified framework

We see that the above three methods for the community detection problem in sparse graphs, i.e.
trimming, non-backtracking/Bethe Hessian, and rank-one regularizations, can be understood as do-
ing different ways of regularizations. In this framework, we consider a regularized matrix

L = Â+ R̂. (1)

Here matrix Â is the data matrix or its (symmetric) variance, such as Ã = D−1/2AD−1/2 with
D denoting the diagonal matrix of degrees, and matrix R̂ is a regularization matrix. The rank-one
regularization approaches [2, 11, 16–18, 23] fall naturally into this framework as they set R to be a
rank-one matrix, −ζ11T , with ζ being a tunable parameter controlling strength of regularizations.
It is also easy to see that in the trimming, Â is set to be the adjacency matrix and R̂ contains entries
to remove columns or rows with high degrees from A.

For spectral algorithms using the non-backtracking matrix, its relation to form Eq. (1) is not straight-
forward. However we can link them using the theory of graph zeta function [8] which says that an
eigenvalue µ of the non-backtracking operator satisfies the following quadratic eigenvalue equation,

det[µ2I − µA+ (D − I)] = 0,

where I is the identity matrix. It indicates that a particular vector v that is related to the eigenvector
of the non-backtracking matrix satisfies (A − D−I

µ )v = µv. Thus spectral clustering algorithm
using the non-backtracking matrix is equivalent to the spectral clustering algorithm using matrix
with form in Eq. (1), while Â = A, R̂ = D−I

µ , and µ acting as a parameter. We note here that
the parameter does not necessarily be an eigenevalue of the non-backtracking matrix. Actually a
range of parameters work well in practice, like those estimated from the spin-glass transition of the
system [24]. So we have related different approaches of resolving localizations of spectral algorithm
in sparse graphs into the framework of regularization. Although this relation is in the context of
community detection in networks, we think it is a general point-of-view, when the data matrix has a
general form rather than a {0, 1} matrix.

As we have argued in the introduction, above three ways of regularization work from case to case
and have different problems, especially when system has noise. It means that in the framework
of regularizations, the effective regularization matrix R̂ added by these methods do not work in a
general way and is not robust. In our understanding, the problem arises from the fact that in all
these methods, the form of regularization is fixed for all kinds of data, regardless of different reasons
for the localization. Thus one way to solve the problem would be looking for the regularizations
that are specific for the given data, as a feature. In the following section we will introduce our
method explicitly addressing how to learn such regularizations from localized eigenvectors of the
data matrix.

3 Learning regularizations from localized eigenvectors

The reason that the informative eigenvectors are hidden in the bulk is that some random eigenvectors
have large eigenvalues, due to the localization which represent the local structures of the system. In
the complementary side, if these eigenvectors are not localized, they are supposed to have smaller
eigenvalues than the informative ones which reveal the global structures of the graph. This is the
main assumption that our idea is based on.

In this work we use the Inverse Participation Ratio (IPR), I(v) =
∑n
i=1 v

4
i , to quantify the amount

of localization of a (normalized) eigenvector v. IPR has been used frequently in physics, for exam-
ple for distinguishing the extended state from the localized state when applied on the wave func-
tion [3]. It is easy to check that I(v) ranges from 1

n for vector { 1√
n
, 1√

n
, ..., 1√

n
} to 1 for vector

{0, ..., 0, 1, 0, ..., 0}. That is, a larger I(v) indicates more localization in vector v.

Our idea is to create a matrix LX with similar structures to A, but with non-localized leading eigen-
vectors. We call the resulting matrix X-Laplacian, and define it as LX = A+X , where matrix A is
the data matrix (or its variant), and X is learned using the procedure detailed below:

3



Algorithm 1: Regularization Learning
Input: Real symmetric matrix A, number of eigenvectors q, learning rate η = O(1), threshold ∆.
Output: X-Laplacian, LX , whose leading eigenvectors reveal the global structures in A.

1. Set X to be all-zero matrix.
2. Find set of eigenvectors U = {u1, u2, ..., uq} associated with the first q largest

eigenvalues (in algebra) of LX .
3. Identify the eigenvector v that has the largest inverse participation ratio among the q

eigenvectors in U . That is, find v = argmaxu∈U I(u).

4. if I(v) < ∆, return LX = A+X; Otherwise, ∀i,Xii ← Xii − ηv2i , then go to step 2.

We can see that the regularization matrix X is a diagonal matrix, its diagonal entries are learned
gradually from the most localized vector among the first several eigenvectors. The effect of X is to
penalize the localized eigenvectors, by suppressing down the eigenvalues associated with the local-
ized eigenvectors. The learning will continue until all q leading eigenvectors are delocalized, thus
are supposed to correlate with the global structure rather than the local structures. As an example,
we show the effect of X to the spectrum in Fig. 1. In the left panel, we plot the spectrum of the
adjacency matrix (i.e. before learning X) and the X-Laplacian (i.e. after learning X) of a sparse
network generated by the stochastic block model with q = 2 groups. For the adjacency matrix in
the left panel, localized eigenvectors have large eigenvalues and contribute a tail to the semicircle,
covering the informative eigenvalue, leaving only one eigenvalue, which corresponds to the eigen-
vector that essentially sorts vertices according to their degree, out of the bulk. The spectral density
of X-Laplacian is shown in the right panel of Fig. 1. We can see that the right corner of the continues
part of the spectral density appearing in the spectrum of the adjacency matrix , is missing here. This
is because due to the effect of X , the eigenvalues that are associated with localized eigenvectors in
the adjacency matrix are pushed into the bulk, maintaining a gap between the edge of bulk and the
informative eigenvalue (being pointed by the left red arrow in the figure).

The key procedure of the algorithm is the learning part in step 4, which updates diagonal terms of
matrix X using the most localized eigenvector v. Throughout the paper, by default we use learning
rate η = 10 and threshold ∆ = 5/n. As η = O(1) and v2i = O(1/n), we can treat the learned entries
in each step, L̂, as a perturbation to matrix LX . After applying this perturbation, we anticipate that
an eigenvalue of L changes from λi to λi + λ̂i, and an eigenvector changes from ui to ui + ûi. If
we assume that matrix LX is not ill-conditioned, and the first few eigenvectors that we care about
are distinct, then we have λ̂i = uTi L̂ui. Derivation of the above expression is straightforward, but
for the completeness we put the derivations in the SI text. In our algorithm, L̂ is a diagonal matrix
with entries L̂ii = −ηv2i with v denoting the identified eigenvector who has the largest inverse
participation ratio, so last equation can be written as λ̂i = −η

∑
k v

2
ku

2
ik. For the identified vector

v, we further have
λ̂v = −η

∑
i

v4i = −ηI(v). (2)

It means the eigenvalue of the identified eigenvector with inverse participation ratio I(v) is decreased
by amount ηI(v). That is, the more localized the eigenvector is, the larger penalty on its eigenvalue.

In addition to the penalty to the localized eigenvalues, We see that the leading eigenvectors are delo-
calizing during learning. We have analyzed the change of eigenvectors after the perturbation given
by the identified vector v, and obtained (see SI for the derivations) the change of an eigenvector ûi
as a function of all the other eigenvalues and eigenvectors, ûi =

∑
j 6=i

∑
k ujkv

2
kuik

λi−λj
uj . Then the

inverse participation ratio of the new vector ui + ûi can be written as

I(ui + ûi) = I(ui)− 4η

n∑
l=1

∑
j 6=i

u2jlv
2
l u

4
il

λi − λj
− 4η

n∑
l=1

∑
j 6=i

∑
k 6=l

u3ilv
2
kujkuikujl
λi − λj

. (3)

As eigenvectors ui and uj are orthogonal to each other, the term 4η
∑n
l=1

∑
j 6=i

u2
jlv

2
l u

4
il

λi−λj
can be

seen as a signal term and the last term can be seen as a cross-talk noise with zero mean. We see
that the cross-talk noise has a small variance, and empirically its effect can be neglected. For the
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leading eigenvector corresponding to the largest eigenvalue λi = λ1, it is straightforward to see that
the signal term is strictly positive. Thus if the learning is slow enough, the perturbation will always
decrease the inverse participation ratio of the leading eigenvector. This is essentially an argument
for convergence of the algorithm. For other top eigenvectors, i.e. the second and third eigenvectors
and so on, though λi − λj is not strictly positive, there are much more positive terms than negative
terms in the sum, thus the signal should be positive with a high probability. Thus one can conclude
that the process of learning X makes first few eigenvectors de-localizing.

An example illustrating the process of the learning is shown in Fig. 2 where we plot the second
eigenvector vs. the third eigenvector, at several times steps during the learning, for a network gen-
erated by the stochastic block model with q = 3 groups. We see that at t = 0, i.e. without learning,
both eigenvectors are localized, with a large range of distribution in entries. The color of eigen-
vectors encodes the group membership in the planted partition. We see that at t = 0 three colors
are mixed together indicating that two eigenvectors are not correlated with the planted partition. At
t = 4 three colors begin to separate, and range of entry distribution become smaller, indicating that
the localization is lighter. At t = 25, three colors are more separated, the partition obtained by ap-
plying k-means algorithm using these vectors successfully recovers 70% of the group memberships.
Moreover we can see that the range of entries of eigenvectors shrink to [−0.06, 0.06], giving a small
inverse participation ratio.

Figure 2: The second eigenvector V2 compared with the third eigenvector V3 of LX for a network at
three steps with t = 0, 4 and 25 during learning. The network has n = 42000 nodes, q = 3 groups,
average degree c = 3, ε = 0.08, three colors represent group labels in the planted partition.

4 Numerical evaluations

In this section we validate our approach with experiments on several inference problems, i.e. com-
munity detection problems, clustering from sparse pairwise entries, rank estimation and matrix com-
pletion from a few entries. We will compare performance of the X-Laplacian (using mean-removed
data matrix) with recently proposed state-of-the-art spectral methods in the sparse regime.

4.1 Community Detection

First we use synthetic networks generated by the stochastic block model [9], and its variant with
noise [10]. The standard Stochastic Block Model (SBM), also called the planted partition model, is
a popular model to generate ensemble of networks with community structure. There are q groups
of nodes and a planted partition {t∗i } ∈ {1, ..., q}. Edges are generated independently according
to a q × q matrix {pab}. Without loss of generality here we discuss the commonly studied case
where the q groups have equal size and where {pab} has only two distinct entries, pab = cin/n if
a = b and cout/n if a 6= b. Given the average degree of the graph, there is a so-called detectability
transition ε∗ = cout/cin = (

√
c − 1)/(

√
c − 1 + q) [7] , beyond which point it is not possible to

obtain any information about the planted partition. It is also known spectral algorithms based on
the non-backtracking matrix succeed all the way down to the transition [15]. This transition was
recently established rigorously in the case of q = 2 [20, 21]. Comparisons of spectral methods using
different matrices are shown in Fig. 3 left. From the figure we see that the X-Laplacian works as
well as the non-backtracking matrix, down to the detectability transition. While the direct use of the
adjacency matrix, i.e. LX before learning, does not work well when ε exceeds about 0.1.

In the right panel of Fig. 3, each network is generated by the stochastic block model with the same
parameter as in the left panel, but with 10 extra cliques, each of which contains 10 randomly selected
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nodes. Theses cliques do not carry information about the planted partition, hence act as noise to the
system. In addition to the non-backtracking matrix, X-Laplacian, and the adjacency matrix, we put
into comparison the results obtained using other classic and newly proposed matrices, including
Bethe Hessian [24], Normalized Laplacian (N. Laplacian) Lsym = I − Ã, and regularized and
normalized Laplacian (R.N. Laplacian) LA = Ã − ζ11T, with a optimized regularization ζ (we
have scanned the whole range of ζ, and chosen an optimal one that gives the largest overlap, i.e.
fraction of correctly reconstructed labels, in most of cases). From the figure we see that with the
noise added, only X-Laplacian works down to the original transition (of SBM without cliques). All
other matrices fail in detecting the community structure with ε > 0.15.

We have tested other kinds of noisy models, including the noisy stochastic block model, as proposed
in [10]. Our results show that the X-Laplacian works well (see SI text) while all other spectral
methods do not work at all on this dataset [10]. Moreover, in addition to the classic stochastic block
model, we have extensively evaluated our method on networks generated by the degree-corrected
stochastic block model [12], and the stochastic block model with extensive triangles. We basically
obtained qualitatively results as in Fig. 3 that the X-Laplacian works as well as the state-of-the-art
spectral methods for the dataset. The figures and detailed results can be found at the SI text.

We have also tested real-world networks with an expert division, and found that although the expert
division is usually easy to detect by directly using the adjacency matrix, the X-Laplacian signifi-
cantly improves the accuracy of detection. For example on the political blogs network [1], spectral
clustering using the adjacency matrix gives 83 mis-classified labels among totally 1222 labels, while
the X-Laplacian gives only 50 mis-classified labels.
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Figure 3: Accuracy of community detection, represented by overlap (fraction of correctly recon-
structed labels) between inferred partition and the planted partition, for several methods on networks
generated by the stochastic block model with average degree c = 3 (left) and with extra 10 size-10
cliques (right). All networks has n = 10000 nodes and q = 2 groups, ε = cout/cin. The black dashed
lines denote the theoretical detectability transition. Each data point is averaged over 20 realizations.

4.2 Clustering from sparse pairwise measurements

Consider the problem of grouping n items into clusters based on the similarity matrix S ∈ Rn×n,
where Sij is the pairwise similarity between items i and j. Here we consider not using all pairwise
similarities, but only O(n) random samples of them. In other words, the similarity graph which
encodes the information of the global clustering structure is sparse, rather than the complete graph.
There are many motivations for choosing such sparse observations, for example in some cases all
measurements are simply not available or even can not be stored.

In this section we use the generative model recently proposed in [26], since there is a theoretical
limit that can be used to evaluate algorithms. Without loss of generality, we consider the problem
with only q = 2 clusters. The model in [26] first assigns items hidden clusters {ti} ∈ {1, 2}n, then
generates similarity between a randomly sampled pairs of items according to probability distribution,
pin and pout, associated with membership of two items. There is a theoretical limit ĉ satisfying
1
ĉ = 1

q

∫
ds (pin(s)−pout(s))

2

pin(s)+(q−1)pout(s)
, that with c < ĉ no algorithm could obtain any partial information of

the planted clusters; while with c > ĉ some algorithms, e.g. spectral clustering using the Bethe
Hessian [26], achieve partial recovery of the planted clusters.
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Similar to the community detection in sparse graphs, spectral algorithms directly using the eigen-
vectors of a similarity matrix S does not work well, due to the localization of eigenvectors induced
by the sparsity. To evaluate whether our method, the X-Laplacian, solves the localization problem,
and how it works compared with the Bethe Hessian, in Fig. 4 we plot the performance (in overlap,
the fraction of correctly reconstructed group labels) of three algorithms on the same set of similarity
matrices. For all the datasets there are two groups with distributions pin and pout being Gaussian
with unit variance and mean 0.75 and −0.75 respectively. In the left panel of Fig. 4 the topology
of pairwise entries is random graph, Bethe Hessian works down to the theoretical limit, while di-
rectly using of the measurement matrix gives a poor performance. We can also see that X-Laplacian
has fixed the localization problem of directly using of the measurement matrix, and works almost
as good as the Bethe-Hessian. We note that the Bethe Hessian needs to know the parameters (i.e.
parameters of distributions pin and pout), while the X-Laplacian does not use them at all.

In the right panel of Fig. 4, on top of the ER random graph topology, we add some noisy local
structures by randomly selecting 20 nodes and connecting neighbors of each selected node to each
other. The weights for the local pairwise were set to 1, so that the noisy structures do not contain
information about the underlying clustering. We can see that Bethe Hessian is influenced by noisy
local structures and fails to work, while X-Laplacian solves the localization problems induced by
sparsity, and is robust to the noise. We have also tested other kinds of noise by adding cliques, or
hubs, and obtained similar results (see SI text).
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Figure 4: Spectral clustering using sparse pairwise measurements. The X-axis denotes the average
number of pairwise measurements per data point, and the Y-axis is the fraction of correctly recon-
structed labels, maximized over permutations. The model used to generate pairwise measurements
is proposed in [26], see text for detailed descriptions. In the left panel, the topologies of the pair-
wise measurements are random graphs. In the right panel in addition to the random graph topology
there are 20 randomly selected nodes with all their neighbors connected. Each point in the figure is
averaged over 20 realizations of size 104.

4.3 Rank estimation and Matrix Completion

The last problem we consider in this paper for evaluating the X-Laplacian is completion of a low rank
matrix from few entries. This problem has many applications including the famous collaborative
filtering. A problem that is closely related to it is the rank estimation from revealed entries. Indeed
estimating rank of the matrix is usually the first step before actually doing the matrix completion.
The problem is defined as follows: let Atrue = UV T , where U ∈ Rn×r and V ∈ Rm×r are chosen
uniformly at random and r �

√
nm is the ground-true rank. Only few, say c

√
mn, entries of

matrix Atrue are revealed. That is we are given a matrix A ∈ Rn×m who contains only subset of
Atrue, with other elements being zero. Many algorithms have been proposed for matrix completion,
including nuclear norm minimization [5] and methods based on the singular value decomposition [4]
etc. Trimming which sets to zero all rows and columns with a large revealed entries, is usually
introduced to control the localizations of singular vectors and to estimate the rank using the gap of
singular values [14]. Analogous to the community detection problem, trimming is not supposed to
work optimally when matrix A is sparse. Indeed in [25] authors reported that their approach based
on the Bethe Hessian outperforms trimming+SVD when the topology of revealed entries is a sparse
random graph. Moreover, authors in [25] show that the number of negative eigenvalues of the Bethe
Hessian gives a more accurate estimate of the rank of A than that based on trimming+SVD.
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However, we see that if the topology is not locally-tree-like but with some noise, for example with
some additional cliques, both trimming of the data matrix and Bethe Hessian perform much worse,
reporting a wrong rank, and giving a large reconstruction error, as illustrated in Fig. 5. In the left
panel of the figure we plot the eigenvalues of the Bethe Hessian, and singular values of trimmed
matrix A with true rank rtrue = 2. We can see that both of them are continuously distributed: there
is no clear gap in singular values of trimmed A, and Bethe Hessian has lots of negative eigenvalues.
In this case since matrix A could be a non-squared matrix, we need to define the X-Laplacian as

LX =

(
0 A
A 0

)
−X . The eigenvalues of LX are also plotted in Fig. 5 where one can see clearly

that there is a gap between the second largest eigenvalue and the third one. Thus the correct rank
can be estimated using the value minimizing consecutive eigenvalues, as suggested in [14].

After estimating the rank of the matrix, matrix completion is done by using a local optimization
algorithm [27] starting from initial matrices, that obtained using first r singular vectors of trim-
ming+SVD, first r eigenvectors of Bethe Hessian and X-Laplacian with estimated rank r respec-
tively. The results are shown in Fig. 5 right where we plot the probability that obtained root mean
square error (RMSE) is smaller than 10−7 as a function of average number of revealed entries per
row c, for the ER random-graph topology plus noise represented by several cliques. We can see that
X-Laplacian outperforms Bethe Hessian and Trimming+SVD with c ≥ 13. Moreover, when c ≥ 18,
for all instances, only X-Laplacian gives an accurate completion for all instances.
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Figure 5: (Left:) Singular values of sparse data matrix with trimming, eigenvalues of the Bethe
Hessian and X-Laplacian. The data matrix is the outer product of two vectors of size 1000. Their
entries are Gaussian random variables with mean zero and unit variance, so the rank of the original
matrix is 2. The topology of revealed observations are random graphs with average degree c = 8
plus 10 random cliques of size 20. (Right:) Fraction of samples that RMSE is smaller than 10−7,
among 100 samples of rank-3 data matrix UV T of size 1000 × 1000, with the entries of U and V
drawn from a Gaussian distribution of mean 0 and unit variance. The topology of revealed entries is
the random graph with varying average degree c plus 10 size-20 cliques.

5 Conclusion and discussion

We have presented the X-Laplacian, a general approach for detecting latent global structure in a
given data matrix. It is completely a data-driven approach that learns different forms of regulariza-
tion for different data, to solve the problem of localization of eigenvectors or singular vectors. The
mechanics for de-localizing of eigenvectors during learning of regularizations has been illustrated
using the matrix perturbation analysis. We have validated our method using extensive numerical ex-
periments, and shown that it outperforms state-of-the-art algorithms on various inference problems
in the sparse regime and with noise.

In this paper we discuss the X-Laplacian using directly the (mean-removed) data matrix A, but
we note that the data matrix is not the only choice for the X-Laplacian. Actually we have tested
approaches using various variants of A, such as normalized data matrix Ã, and found they work as
well. We also tried learning regularizations for the Bethe Hessian, and found it succeeds in repairing
Bethe Hessian when Bethe Hessian has localization problem. These indicate that our scheme of
regularization-learning is a general spectral approach for hard inference problems.

A (Matlab) demo of our method can be found at http://panzhang.net.
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