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A Proofs

Proposition 1. For any twice differentiable strictly convex closed potential F , and p, q ∈ int(F):

DF (q ‖ p) = DF (p ‖ q) + 1
4 (p− q)

T(
HF (a)−HF (b)

)
(p− q) (1)

for some a = (1− α)p+ αq, (0 ≤ α ≤ 1
2 ), b = (1− β)q + βp, (0 ≤ β ≤ 1

2 ).

Proof. Let f(p) denote ∇F (p) and consider the midpoint q+p2 . One can express F ( q+p2 ) by two
Taylor expansions around p and q. By Taylor’s theorem there is an a = (1−α)p+αq for 0 ≤ α ≤ 1

2

and b = βp+ (1− β)q for 0 ≤ β ≤ 1
2 such that

F ( q+p2 ) = F (p) + ( q+p2 − p)
>f(p) + 1

2 (
q+p
2 − p)

>HF (a)(
q+p
2 − p) (2)

= F (q) + ( q+p2 − q)
>f(q) + 1

2 (
q+p
2 − q)

>HF (b)(
q+p
2 − q), (3)

hence, 2F ( q+p2 ) = 2F (p) + (q − p)>f(p) + 1
4 (q − p)

>HF (a)(q − p) (4)

= 2F (q) + (p− q)>f(q) + 1
4 (p− q)

>HF (b)(p− q). (5)

Therefore,

F (p) + F (q)− 2F ( q+p2 ) = F (p)− F (q)− (p− q)>f(q)− 1
4 (p− q)

>HF (b)(p− q) (6)

= F (q)− F (p)− (q − p)>f(p)− 1
4 (q − p)

>HF (a)(q − p) (7)

= DF (p ‖ q)− 1
4 (p− q)

>HF (b)(p− q) (8)

= DF (q ‖ p)− 1
4 (q − p)

>HF (a)(q − p), (9)

leading to the result.

For the proof of Proposition 2, we first need to introduce a few definitions and background results.
A Bregman divergence is defined from a strictly convex, differentiable, closed potential function F :
F → R, whose strictly convex conjugate F ∗ : F∗ → R is given by F ∗(r) = supr∈F 〈r, q〉 − F (q)
[1]. Each of these potential functions have corresponding transfers, f : F → F∗ and f∗ : F∗ → F ,
given by the respective gradient maps f = ∇F and f∗ = ∇F ∗. A key property is that f∗ = f−1

[1], which allows one to associate each object q ∈ F with its transferred image r = f(q) ∈ F∗ and
vice versa. The main property of Bregman divergences we exploit is that a divergence between any
two domain objects can always be equivalently expressed as a divergence between their transferred
images; that is, for any p ∈ F and q ∈ F , one has [1]:

DF (p ‖ q) = F (p)− 〈p, r〉+ F ∗(r) = DF∗ (r ‖ s) , (10)
DF (q ‖ p) = F ∗(s)− 〈s, q〉+ F (q) = DF∗ (s ‖ r) , (11)

where s=f(p) and r=f(q). These relations also hold if we instead chose s∈F∗ and r∈F∗ in the
range space, and used p=f∗(s) and q=f∗(r). In general (10) and (11) are not equal.



Two special cases of the potential functions F and F ∗ are interesting as they give rise to
KL divergences. These two cases include Fτ (p) = −τH (p) and F ∗τ (s) = τ lse(s/τ) =
τ log

∑
y exp (s(y)/τ), where lse(·) denotes the log-sum-exp operator. The respective gradient

maps are fτ (p) = τ(log(p) + 1) and f∗τ (s) = f∗(s/τ) = 1∑
yexp(s(y)/τ)

exp(s/τ), where f∗τ de-

notes the normalized exponential operator for 1
τ -scaled logits. Below, we derive DF∗

τ
(r ‖ s) for

such F ∗τ :

DF∗
τ
(s ‖ r) = F ∗τ (s)− F ∗τ (r)− (s− r)T∇F ∗τ (r)

= τ lse(s/τ)− τ lse(r/τ)− (s− r)Tf∗τ (r)

= − τ
(
(s/τ − lse(s/τ))− (r/τ − lse(r/τ))

)T
f∗τ (r)

= τf∗τ (r)
T(

(r/τ − lse(r/τ))− (s/τ − lse(s/τ))
)

= τf∗τ (r)
T(

log f∗τ (r)− log f∗τ (s)
)

= τDKL (f
∗
τ (r) ‖ f∗τ (s))

= τDKL (q ‖ p)

(12)

Proposition 2. The KL divergence between p and q in two directions can be expressed as,
DKL (p ‖ q) = DKL (q ‖ p) + 1

4τ2 Vary∼f∗(a/τ) [s(y)− r(y)]− 1
4τ2 Vary∼f∗(b/τ) [s(y)− r(y)](13)

< DKL (q ‖ p) + 1
τ2 ‖s− r‖22, (14)

for some a = (1− α)s+ αr, (0 ≤ α ≤ 1
2 ), b = (1− β)r + βs, (0 ≤ β ≤ 1

2 ).

Proof. First, for the potential function F ∗τ (r) = τ lse(r/τ) it is easy to verify that F ∗τ satisfies the
conditions for Proposition 1, and

HF∗
τ
(a) = 1

τ (Diag(f∗τ (a))− f∗τ (a)f∗τ (a)>) , (15)
where Diag(v) returns a square matrix the main diagonal of which comprises a vector v. Therefore,
by Proposition 1 we obtain

DF∗
τ
(r ‖ s) = DF∗

τ
(s ‖ r) + 1

4 (s− r)>(HF∗
τ
(a)−HF∗

τ
(b))(s− r) , (16)

for some a = (1 − α)s + αr, (0 ≤ α ≤ 1
2 ), b = (1 − β)r + βs, (0 ≤ β ≤ 1

2 ). Note that by the
specific form (15) we also have

(s− r)>HF∗
τ
(a)(s− r) = 1

τ (s− r)
>(Diag(f∗τ (a))− f∗τ (a)f∗τ (a)>

)
(s− r) (17)

= 1
τ

(
Ey∼f∗

τ (a)

[
(s(y)− r(y))2

]
− Ey∼f∗

τ (a)
[s(y)− r(y)]2

)
(18)

= 1
τVary∼f∗

τ (a)
[s(y)− r(y)] , (19)

and (s− r)>HF∗
τ
(b)(s− r) = 1

τVary∼f∗
τ (b)

[s(y)− r(y)] . (20)
Therefore, by combining (19) and (20) with (16) we obtain
DF∗

τ
(r ‖ s) = DF∗

τ
(s ‖ r) + 1

4τ Vary∼f∗
τ (a)

[s(y)− r(y)] − 1
4τ Vary∼f∗

τ (b)
[s(y)− r(y)] .

(21)
Equality (13) then follows by applying (12) to (21).

Next, to prove the inequality in (14), let δ = s− r and observe that
DF∗

τ
(r ‖ s)−DF∗

τ
(s ‖ r) = 1

4δ
>(HF∗

τ
(a)−HF∗

τ
(b)
)
δ (22)

= 1
4τ δ
>Diag(f∗τ (a)− f∗τ (b))δ + 1

4τ

(
δ>f∗τ (b)

)2 − 1
4τ

(
δ>f∗τ (a)

)2
(23)

≤ 1
4τ ‖δ‖

2
2‖f∗τ (a)− f∗τ (b)‖∞ + 1

4τ ‖δ‖
2
2‖f∗τ (b)‖22 (24)

≤ 1
2τ ‖δ‖

2
2 +

1
4τ ‖δ‖

2
2 (25)

since ‖f∗τ (a) − f∗τ (b)‖∞ ≤ 2 and ‖f∗τ (b)‖22 ≤ ‖f∗τ (b)‖21 ≤ 1. The result follows by applying (12)
to (25).
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