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Abstract

Influence maximization in social networks has typically been studied in the context
of contagion models and irreversible processes. In this paper, we consider an
alternate model that treats individual opinions as spins in an Ising system at dynamic
equilibrium. We formalize the Ising influence maximization problem, which has a
natural physical interpretation as maximizing the magnetization given a budget of
external magnetic field. Under the mean-field (MF) approximation, we present a
gradient ascent algorithm that uses the susceptibility to efficiently calculate local
maxima of the magnetization, and we develop a number of sufficient conditions
for when the MF magnetization is concave and our algorithm converges to a
global optimum. We apply our algorithm on random and real-world networks,
demonstrating, remarkably, that the MF optimal external fields (i.e., the external
fields which maximize the MF magnetization) shift from focusing on high-degree
individuals at high temperatures to focusing on low-degree individuals at low
temperatures. We also establish a number of novel results about the structure of
steady-states in the ferromagnetic MF Ising model on general graph topologies,
which are of independent interest.

1 Introduction

With the proliferation of online social networks, the problem of optimally influencing the opinions
of individuals in a population has garnered tremendous attention [1–3]. The prevailing paradigm
treats marketing as a viral process, whereby the advertiser is given a budget of seed infections and
chooses the subset of individuals to infect such that the spread of the ensuing contagion is maximized.
The development of algorithmic methods for influence maximization under the viral paradigm has
been the subject of vigorous study, resulting in a number of efficient techniques for identifying
meaningful marketing strategies in real-world settings [4–6]. While the viral paradigm accurately
describes out-of-equilibrium phenomena, such as the introduction of new ideas or products to a
system, these models fail to capture reverberant opinion dynamics wherein repeated interactions
between individuals in the network give rise to complex macroscopic opinion patterns, as, for example,
is the case in the formation of political opinions [7–10]. In this context, rather than maximizing
the spread of a viral advertisement, the marketer is interested in optimally shifting the equilibrium
opinions of individuals in the network.

To describe complex macroscopic opinion patterns resulting from repeated microscopic interactions,
we naturally employ the language of statistical mechanics, treating individual opinions as spins in an
Ising system at dynamic equilibrium and modeling marketing as the addition of an external magnetic
field. The resulting problem, which we call Ising influence maximization (IIM), has a natural physical
interpretation as maximizing the magnetization of an Ising system given a budget of external field.
While a number of models have been proposed for describing reverberant opinion dynamics [11], our
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use of the Ising model follows a vibrant interdisciplinary literature [12, 13], and is closely related
to models in game theory [14, 15] and sociophysics [16, 17]. Furthermore, complex Ising models
have found widespread use in machine learning, and our model is formally equivalent to a pair-wise
Markov random field or a Boltzmann machine [18–20].

Our main contributions are as follows:

1. We formalize the influence maximization problem in the context of the Ising model, which
we call the Ising influence maximization (IIM) problem. We also propose the mean-field
Ising influence maximization (MF-IIM) problem as an approximation to IIM (Section 2).

2. We find sufficient conditions under which the MF-IIM objective is smooth and concave,
and we present a gradient ascent algorithm that guarantees an ε-approximation to MF-IIM
(Section 4).

3. We present numerical simulations that probe the structure and performance of MF optimal
marketing strategies. We find that at high temperatures, it is optimal to focus influence on
high-degree individuals, while at low temperatures, it is optimal to spread influence among
low-degree individuals (Sections 5 and 6).

4. Throughout the paper we present a number of novel results concerning the structure of
steady-states in the ferromagnetic MF Ising model on general (weighted, directed) strongly-
connected graphs, which are of independent interest. We name two highlights:
• The well-known pitchfork bifurcation structure for the ferromagnetic MF Ising model

on a lattice extends exactly to general strongly-connected graphs, and the critical
temperature is equal to the spectral radius of the adjacency matrix (Theorem 3).

• There can exist at most one stable steady-state with non-negative (non-positive) com-
ponents, and it is smooth and concave (convex) in the external field (Theorem 4).

2 The Ising influence maximization problem

We consider a weighted, directed social network consisting of a set of individuals N = {1, . . . , n},
each of which is assigned an opinion σi ∈ {±1} that captures its current state. By analogy with the
Ising model, we refer to σ = (σi) as a spin configuration of the system. Individuals in the network
interact via a non-negative weighted coupling matrix J ∈ Rn×n≥0 , where Jij ≥ 0 represents the
amount of influence that individual j holds over the opinion of individual i, and the non-negativity of
J represents the assumption that opinions of neighboring individuals tend to align, known in physics
as a ferromagnetic interaction. Each individual also interacts with forces external to the network via
an external field h ∈ Rn. For example, if the spins represent the political opinions of individuals in a
social network, then Jij represents the influence that j holds over i’s opinion and hi represents the
political bias of node i due to external forces such as campaign advertisements and news articles.

The opinions of individuals in the network evolve according to asynchronous Glauber dynamics. At
each time t, an individual i is selected uniformly at random and her opinion is updated in response to
the external field h and the opinions of others in the network σ(t) by sampling from

P (σi(t+ 1) = 1|σ(t)) = eβ(
∑

j Jijσj(t)+hi)∑
σ′i=±1

eβσ
′
i(

∑
j Jijσj(t)+hi)

, (1)

where β is the inverse temperature, which we refer to as the interaction strength, and unless otherwise
specified, sums are assumed over N . Together, the quadruple (N, J,h, β) defines our system. We
refer to the total expected opinion, M =

∑
i 〈σi〉, as the magnetization, where 〈·〉 denotes an average

over the dynamics in Eq. (1), and we often consider the magnetization as a function of the external
field, denoted M(h). Another important concept is the susceptibility matrix, χij = ∂〈σi〉

∂hj
, which

quantifies the response of individual i to a change in the external field on node j.

We study the problem of maximizing the magnetization of an Ising system with respect to the external
field. We assume that an external field h can be added to the system, subject to the constraints
h ≥ 0 and

∑
i hi ≤ H , where H > 0 is the external field budget, and we denote the set of feasible

external fields by FH = {h ∈ Rn : h ≥ 0,
∑
i hi = H}. In general, we also assume that the system

experiences an initial external field b ∈ Rn, which cannot be controlled.
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Definition 1. (Ising influence maximization (IIM)) Given a system (N, J, b, β) and a budget H , find
a feasible external field h ∈ FH that maximizes the magnetization; that is, find an optimal external
field h∗ such that

h∗ = argmax
h∈FH

M(b+ h). (2)

Notation. Unless otherwise specified, bold symbols represent column vectors with the appropriate
number of components, while non-bold symbols with subscripts represent individual components.
We often abuse notation and write relations such asm ≥ 0 to mean mi ≥ 0 for all components i.

2.1 The mean-field approximation

In general, calculating expectations over the dynamics in Eq. (1) requires Monte-Carlo simulations
or other numerical approximation techniques. To make analytic progress, we employ the variational
mean-field approximation, which has roots in statistical physics and has long been used to tackle
inference problems in Boltzmann machines and Markov random fields [21–24]. The mean-field
approximation replaces the intractable task of calculating exact averages over Eq. (1) with the
problem of solving the following set of self-consistency equations:

mi = tanh

β
∑

j

Jijmj + hi

 , (3)

for all i ∈ N , where mi approximates 〈σi〉. We refer to the right-hand side of Eq. (3) as the
mean-field map, f(m) = tanh [β(Jm+ h)], where tanh(·) is applied component-wise. In this
way, a fixed point of the mean-field map is a solution to Eq. (3), which we call a steady-state.

In general, there may be many solutions to Eq. (3), and we denote byMh the set of steady-states for
a system (N, J,h, β). We say that a steady-statem is stable if ρ(f ′(m)) < 1, where ρ(·) denotes
the spectral radius and

f ′(m)ij =
∂fi
∂mj

∣∣∣∣
m

= β
(
1−m2

i

)
Jij ⇒ f ′(m) = βD(m)J, (4)

where D(m)ij = (1 −m2
i )δij . Furthermore, under the mean-field approximation, given a stable

steady-statem, the susceptibility has a particularly nice form:

χMF
ij = β

(
1−m2

i

)(∑
k

Jikχkj + δij

)
⇒ χMF = β (I − βD(m)J)

−1
D(m), (5)

where I is the n× n identity matrix.

For the purpose of uniquely defining our objective, we optimistically choose to maximize the
maximum magnetization among the set of steady-states, defined by

MMF (h) = max
m∈Mh

∑
i

mi(h). (6)

We note that the pessimistic framework of maximizing the minimum magnetization yields an equally
valid objective. We also note that simply choosing a steady-state to optimize does not yield a
well-defined objective since, as h increases, steady-states can pop in and out of existence.

Definition 2. (Mean-field Ising influence maximization (MF-IIM)) Given a system (N, J, b, β) and a
budget H , find an optimal external field h∗ such that

h∗ = argmax
h∈FH

MMF (b+ h). (7)

3 The structure of steady-states in the MF Ising model

Before proceeding further, we must prove an important result concerning the existence and structure
of solutions to Eq. (3), for if there exists a system that does not admit a steady-state, then our objective
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is ill-defined. Furthermore, if there exists a unique steady-statem, then MMF =
∑
imi, and there

is no ambiguity in our choice of objective.

Theorem 3 establishes that every system admits a steady-state and that the well-known pitchfork
bifurcation structure for steady-states of the ferromagnetic MF Ising model on a lattice extends exactly
to general (weighted, directed) strongly-connected graphs. In particular, for any strongly-connected
graph described by J , there is a critical interaction strength βc below which there exists a unique
and stable steady-state. For h = 0, as β crosses βc from below, two new stable steady-states appear,
one with all-positive components and one with all-negative components. Interestingly, the critical
interaction strength is equal to the inverse of the spectral radius of J , denoted βc = 1/ρ(J).

Theorem 3. Any system (N, J,h, β) exhibits a steady-state. Furthermore, if its network is strongly-
connected, then, for β < βc, there exists a unique and stable steady-state. For h = 0, as β crosses
βc from below, the unique steady-state gives rise to two stable steady-states, one with all-positive
components and one with all-negative components.

Proof sketch. The existence of a steady-state follows directly by applying Brouwer’s fixed-point
theorem to f . For β < βc, it can be shown that f is a contraction mapping, and hence admits a unique
and stable steady-state by Banach’s fixed point theorem. For h = 0 and β < βc,m = 0 is the unique
steady-state and f ′(m) = βJ . Because J is strongly-connected, the Perron-Frobenius theorem
guarantees a simple eigenvalue equal to ρ(J) and a corresponding all-positive eigenvector. Thus,
when β crosses 1/ρ(J) from below, the Perron-Frobenius eigenvalue of f ′(m) crosses 1 from below,
giving rise to a supercritical pitchfork bifurcation with two new stable steady-states corresponding to
the Perron-Frobenius eigenvector.

Remark. Some of our results assume J is strongly-connected in order to use the Perron-Frobenius
theorem. We note that this assumption is not restrictive, since any graph can be efficiently decomposed
into strongly-connected components on which our results apply independently.

Theorem 3 shows that the objectiveMMF (b+h) is well-defined. Furthermore, for β < βc, Theorem
3 guarantees a unique and stable steady-state m for all b + h. In this case, MF-IIM reduces to
maximizing MMF =

∑
imi, and because m is stable, MMF (b + h) is smooth for all h by the

implicit function theorem. Thus, for β < βc, we can use standard gradient ascent techniques to
efficiently calculate locally-optimal solutions to MF-IIM. In general, MMF is not necessarily smooth
in h since the topological structure of steady-states may change as h varies. However, in the next
section we show that if there exists a stable and entry-wise non-negative steady-state, and if J is
strongly-connected, then MMF (b+h) is both smooth and concave in h, regardless of the interaction
strength.

4 Sufficient conditions for when MF-IIM is concave

We consider conditions for which MF-IIM is smooth and concave, and hence exactly solvable by
efficient techniques. The case under consideration is when J is strongly-connected and there exists a
stable non-negative steady-state.

Theorem 4. Let (N, J, b, β) describe a system with a strongly-connected graph for which there
exists a stable non-negative steady-statem(b). Then, for any H , MMF (b+ h) =

∑
imi(b+ h),

MMF (b+ h) is smooth in h, and MMF (b+ h) is concave in h for all h ∈ FH .

Proof sketch. Our argument follows in three steps. We first show that m(b) is the unique stable
non-negative steady-state and that it attains the maximum total opinion among steady-states. This
guarantees that MMF (b) =

∑
imi(b). Furthermore,m(b) gives rise to a unique and smooth branch

of stable non-negative steady-states for additional h, and hence MMF (b+ h) =
∑
imi(b+ h) for

all h > 0. Finally, one can directly show that MMF (b+ h) is concave in h.

Remark. By arguments similar to those in Theorem 4, it can be shown that any stable non-positive
steady-state is unique, attains the minimum total opinion among steady-states, and is smooth and
convex for decreasing h.

The above result paints a significantly simplified picture of the MF-IIM problem when J is strongly-
connected and there exists a stable non-negative steady-state m(b). Given a budget H , for any
feasible marketing strategy h ∈ FH , m(b + h) is the unique stable non-negative steady-state,
attains the maximum total opinion among steady-states, and is smooth in h. Thus, the objective
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Algorithm 1: An ε-approximation to MF-IIM
Input: System (N, J, b, β) for which there exists a stable non-negative steady-state, budget H ,

accuracy parameter ε > 0
Output: External field h that approximates a MF optimal external field h∗
t = 0; h(0) ∈ FH ; α ∈ (0, 1

L ) ;
repeat

∂MMF (b+h(t))
∂hj

=
∑
i χ

MF
ij (b+ h(t));

h(t+ 1) = PFH

[
h(t) + αOhM

MF (b+ h(t))
]
;

t++;
until MMF (b+ h∗)−MMF (b+ h(t)) ≤ ε;
h = h(t);

MMF (b+h) =
∑
imi(b+h) is smooth, allowing us to write down a gradient ascent algorithm that

approximates a local maximum. Furthermore, sinceMMF (b+h) is concave inh, any local maximum
of MMF on FH is a global maximum, and we can apply efficient gradient ascent techniques to solve
MF-IIM.

Our algorithm, summarized in Algorithm 1, is initialized at a feasible external field. At each iteration,
we calculate the susceptibility of the system, namely ∂MMF

∂hj
=
∑
i χ

MF
ij , and project this gradient

onto FH (the projection operator PFH
is well-defined since FH is convex). Stepping along the

direction of the projected gradient with step size α ∈ (0, 1
L ), where L is a Lipschitz constant of

MMF , Algorithm 1 converges to an ε-approximation to MF-IIM in O(1/ε) iterations [25].

4.1 Sufficient conditions for the existence of a stable non-negative steady-state

In the previous section we found that MF-IIM is efficiently solvable if there exists a stable non-
negative steady-state. While this assumption may seem restrictive, we show, to the contrary, that the
appearance of a stable non-negative steady-state is a fairly general phenomenon. We first show, for J
strongly-connected, that the existence of a stable non-negative steady-state is robust to increases in h
and that the existence of a stable positive steady-state is robust to increases in β.

Theorem 5. Let (N, J,h, β) describe a system with a strongly-connected graph for which there
exists a stable non-negative steady-statem. Ifm ≥ 0, then as h increases,m gives rise to a unique
and smooth branch of stable non-negative steady-states. Ifm > 0, then as β increases,m gives rise
to a unique and smooth branch of stable positive steady-states.

Proof sketch. By the implicit function theorem, any stable steady-state can be locally defined as a
function of both h and β. Using the susceptibility, one can directly show that any stable non-negative
steady-state remains stable and non-negative as h increases and that any stable positive steady-state
remains stable and positive as β increases.

The intuition behind Theorem 5 is that increasing the external field will never destroy a steady-state in
which all of the opinions are already non-positive. Furthermore, as the interaction strength increases,
each individual reacts more strongly to the positive influence of her neighbors, creating a positive
feedback loop that results in an even more positive magnetization. We conclude by showing for J
strongly-connected that if h ≥ 0, then there exists a stable non-negative steady-state.

Theorem 6. Let (N, J,h, β) describe any system with a strongly-connected network. If h ≥ 0, then
there exists a stable non-negative steady-state.

Proof sketch. For h > 0 and β < βc, it can be shown that the unique steady-state is positive, and
hence Theorem 5 guarantees the result for all β′ > β. For h = 0, Theorem 3 provides the result.

All together, the results of this section provide a number of sufficient conditions under which MF-IIM
is exactly and efficiently solvable by Algorithm 1.

5



5 A shift in the structure of solutions to MF-IIM

The structure of solutions to MF-IIM is of fundamental theoretical and practical interest. We
demonstrate, remarkably, that solutions to MF-IIM shift from focusing on nodes of high degree at
low interaction strengths to focusing on nodes of low degree at high interaction strengths.

Consider an Ising system described by (N, J,h, β) in the limit β � βc. To first-order in β, the
self-consistency equations (3) take the form:

m = β (Jm+ h) ⇒ m = β(I − βJ)−1h. (8)

Since β < βc, we have ρ(βJ) < 1, allowing us to expand (I − βJ)−1 in a geometric series:

m = βh+ β2Jh+O(β3) ⇒ MMF (h) = β
∑
i

hi + β2
∑
i

douti hi +O(β3), (9)

where douti =
∑
j Jji is the out-degree of node i. Thus, for low interaction strengths, the MF

magnetization is maximized by focusing the external field on the nodes of highest out-degree in the
network, independent of b and H .

To study the structure of solutions to MF-IIM at high interaction strengths, we make the simplifying
assumptions that J is strongly-connected and b ≥ 0 so that Theorem 6 guarantees a stable non-
negative steady state m. For large β and an additional external field h ∈ FH , m takes the form

mi ≈ tanh

β
∑

j

Jij + bi + hi

 ≈ 1− 2e−2β(d
in
i +bi+hi), (10)

where dini =
∑
j Jij is the in-degree of node i. Thus, in the high-β limit, we have:

MMF (b+ h) ≈
∑
i

(
1− 2e−2β(d

in
i +bi+hi)

)
≈ n− 2e−2β(d

in
i∗+h

(0)

i∗ +hi∗ ), (11)

where i∗ = argmini(d
in
i + bi + hi). Thus, for high interaction strengths, the solutions to MF-IIM

for an external field budget H are given by:

h∗ = argmax
h∈FH

(
n− 2e−2β(d

in
i∗+h

(0)

i∗ +hi∗ )
)
≡ argmax

h∈FH

min
i

(
dini + bi + hi

)
. (12)

Eq. (12) reveals that the high-β solutions to MF-IIM focus on the nodes for which dini + bi + hi is
smallest. Thus, if b is uniform, the MF magnetization is maximized by focusing the external field on
the nodes of smallest in-degree in the network.

We emphasize the strength and novelty of the above results. In the context of reverberant opinion
dynamics, the optimal control strategy has a highly non-trivial dependence on the strength of
interactions in the system, a feature not captured by viral models. Thus, when controlling a social
system, accurately determining the strength of interactions is of critical importance.

6 Numerical simulations

We present numerical experiments to probe the structure and performance of MF optimal external
fields. We verify that the solutions to MF-IIM undergo a shift from focusing on high-degree nodes at
low interaction strengths to focusing on low-degree nodes at high interaction strengths. We also find
that for sufficiently high and low interaction strengths, the MF optimal external field achieves the
maximum exact magnetization, while admitting performance losses near βc. However, even at βc,
we demonstrate that solutions to MF-IIM significantly outperform common node-selection heuristics
based on node degree and centrality.

We first consider an undirected hub-and-spoke network, shown in Figure 1, where Jij ∈ {0, 1} and
we set b = 0 for simplicity. Since b ≥ 0, Algorithm 1 is guaranteed to achieve a globally optimal MF
magnetization. Furthermore, because the network is small, we can calculate exact solutions to IIM
by brute force search. The left plot in Figure 1 compares the average degree of the MF and exact
optimal external fields over a range of temperatures for an external field budget H = 1, verifying

6



Figure 1: Left: A comparison of the structure of the MF and exact optimal external fields,
denoted h∗MF and h∗, in a hub-and-spoke network. Right: The relative performance of h∗MF
compared to h∗; i.e., M(h∗MF )/M(h∗MF ), where M denotes the exact magnetization.

Figure 2: Left: A stochastic block network consisting of a highly-connected community
(Block 1) and a sparsely-connected community (Block2). Center: The solution to MF-IIM
shifts from focusing on Block 1 to Block 2 as β increases. Right: Even at βc, the MF solution
outperforms common node-selection heuristics.

that the solution to MF-IIM shifts from focusing on high-degree nodes at low interaction strengths
to low-degree nodes at high interaction strengths. Furthermore, we find that the shift in the MF
optimal external field occurs near the critical interaction strength βc = .5. The performance of the
MF optimal strategy (measured as the ratio of the magnetization achieved by the MF solution to that
achieved by the exact solution) is shown in the right plot in Figure 1. For low and high interaction
strengths, the MF optimal external field achieves the maximum magnetization, while near βc, it incurs
significant performance losses, a phenomenon well-studied in the literature [21].

We now consider a stochastic block network consisting of 100 nodes split into two blocks of 50
nodes each, shown in Figure 2. An undirected edge of weight 1 is placed between each pair of
nodes in Block 1 with probability .2, between each pair in Block 2 with probability .05, and between
nodes in different blocks with probability .05, resulting in a highly-connected community (Block
1) surrounded by a sparsely-connected community (Block 2). For b = 0 and H = 20, the center
plot in Figure 2 demonstrates that the solution to MF-IIM shifts from focusing on Block 1 at low β
to focusing on Block 2 at high β and that the shift occurs near βc. The stochastic block network is
sufficiently large that exact calculation of the optimal external fields is infeasible. Thus, we resort
to comparing the MF solutions with three node-selection heuristics: one that distributes the budget
in amounts proportional to nodes’ degrees, one that distributes the budget proportional to nodes’
centralities (the inverse of a node’s average shortest path length to all other nodes), and one that
distributes the budget randomly. The magnetizations are approximated via Monte Carlo simulations
of the Glauber dynamics, and we consider the system at β = βc to represent the worst-case scenario
for the MF optimal external fields. The right plot in Figure 2 shows that, even at βc, the solutions to
MF-IIM outperform common node-selection heuristics.

We consider a real-world collaboration network (Figure 3) composed of 904 individuals, where each
edge is unweighted and represents the co-authorship of a paper on the arXiv [26]. We note that
co-authorship networks are known to capture many of the key structural features of social networks
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Figure 3: Left: A collaboration network of 904 physicists where each edge represents the
co-authorship of a paper on the arXiv. Center: The solution to MF-IIM shifts from high- to low-
degree nodes as β increases. Right: The MF solution out-performs common node-selection
heuristics, even at βc.

[27]. For b = 0 and H = 40, the center plot in Figure 3 illustrates the sharp shift in the solution
to MF-IIM at βc = 0.05 from high- to low-degree nodes. Furthermore, the right plot in Figure
3 compares the performance of the MF optimal external field with the node-selection heuristics
described above, where we again consider the system at βc as a worst-case scenario, demonstrating
that Algorithm 1 is scalable and performs well on real-world networks.

7 Conclusions

We study influence maximization, one of the fundamental problems in network science, in the
context of the Ising model, wherein repeated interactions between individuals give rise to complex
macroscopic patterns. The resulting problem, which we call Ising influence maximization, has a
natural physical interpretation as maximizing the magnetization of an Ising system given a budget
of external magnetic field. Under the mean-field approximation, we develop a number of sufficient
conditions for when the problem is concave, and we provide a gradient ascent algorithm that uses the
susceptibility to efficiently calculate locally-optimal external fields. Furthermore, we demonstrate
that the MF optimal external fields shift from focusing on high-degree individuals at low interaction
strengths to focusing on low-degree individuals at high interaction strengths, a phenomenon not
observed in viral models. We apply our algorithm on random and real-world networks, numerically
demonstrating shifts in the solution structure and showing that our algorithm out-performs common
node-selection heuristics.

It would be interesting to study the exact Ising model on an undirected network, in which case the
spin statistics are governed by the Boltzmann distribution. Using this elegant steady-state description,
one might be able to derive analytic results for the exact IIM problem. Our work establishes a fruitful
connection between influence maximization and statistical physics, paving the way for exciting
cross-disciplinary research. For example, one could apply advanced mean-field techniques, such
as those in [21], to generate efficient algorithms of increasing accuracy. Furthermore, because our
model is equivalent to a Boltzmann machine, one could propose a framework for data-based influence
maximization based on well-known Boltzmann machine learning techniques.
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