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Abstract

In this paper, we consider a non-convex loss-minimization problem of learning Su-
pervised PageRank models, which can account for some properties not considered
by classical approaches such as the classical PageRank model. We propose gradient-
based and random gradient-free methods to solve this problem. Our algorithms
are based on the concept of an inexact oracle and unlike the state state-of-the-art
gradient-based method we manage to provide theoretically the convergence rate
guarantees for both of them. In particular, under the assumption of local convexity
of the loss function, our random gradient-free algorithm guarantees decrease of the
loss function value expectation. At the same time, we theoretically justify that with-
out convexity assumption for the loss function our gradient-based algorithm allows
to find a point where the stationary condition is fulfilled with a given accuracy. For
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both proposed optimization algorithms, we find the settings of hyperparameters
which give the lowest complexity (i.e., the number of arithmetic operations needed
to achieve the given accuracy of the solution of the loss-minimization problem).
The resulting estimates of the complexity are also provided. Finally, we apply
proposed optimization algorithms to the web page ranking problem and compare
proposed and state-of-the-art algorithms in terms of the considered loss function.

1 INTRODUCTION

The most acknowledged methods of measuring importance of nodes in graphs are based on random
walk models. Particularly, PageRank [18], HITS [11], and their variants [8, 9, 19] are originally
based on a discrete-time Markov random walk on a link graph. According to the PageRank algorithm,
the score of a node equals to its probability in the stationary distribution of a Markov process,
which models a random walk on the graph. Despite undeniable advantages of PageRank and
its mentioned modifications, these algorithms miss important aspects of the graph that are not
described by its structure. In contrast, a number of approaches allows to account for different
properties of nodes and edges between them by encoding them in restart and transition probabilities
(see [3, 4, 6, 10, 12, 20, 21]). These properties may include, e.g., the statistics about users’ interactions
with the nodes (in web graphs [12] or graphs of social networks [2]), types of edges (such as URL
redirecting in web graphs [20]) or histories of nodes’ and edges’ changes [22]. Particularly, the
transition probabilities in BrowseRank algorithm [12] are proportional to weights of edges which are
equal to numbers of users’ transitions.

In the general ranking framework called Supervised PageRank [21], weights of nodes and edges in a
graph are linear combinations of their features with coefficients as the model parameters. The existing
optimization method [21] of learning these parameters and the optimizations methods proposed
in the presented paper have two levels. On the lower level, the following problem is solved: to
estimate the value of the loss function (in the case of zero-order oracle) and its derivatives (in the
case of first-order oracle) for a given parameter vector. On the upper level, the estimations obtained
on the lower level of the optimization methods (which we also call inexact oracle information) are
used for tuning the parameters by an iterative algorithm. Following [6], the authors of Supervised
PageRank consider a non-convex loss-minimization problem for learning the parameters and solve
it by a two-level gradient-based method. On the lower level of this algorithm, an estimation of the
stationary distribution of the considered Markov random walk is obtained by classical power method
and estimations of derivatives w.r.t. the parameters of the random walk are obtained by power method
introduced in [23, 24]. On the upper level, the obtained gradient of the stationary distribution is
exploited by the gradient descent algorithm. As both power methods give imprecise values of the
stationary distribution and its derivatives, there was no proof of the convergence of the state-of-the-art
gradient-based method to a local optimum (for locally convex loss functions) or to the stationary
point (for not locally convex loss functions).

The considered constrained non-convex loss-minimization problem from [21] can not be solved by
existing optimization methods which require exact values of the objective function such as [16]
and [7] due to presence of constraints for parameter vector and the impossibility to calculate exact
value of the loss function and its gradient. Moreover, standard global optimization methods can not be
applied to solve it, because they need access to some stochastic approximation for the loss-function
value which in expectation coincides with the true value of the loss-function.

In our paper, we propose two two-level methods to solve the loss-minimization problem from [21].
On the lower level of these methods, we use the linearly convergent method from [17] to calculate
an approximation to the stationary distribution of Markov random walk. We analyze other methods
from [5] and show that the chosen method is the most suitable since it allows to approximate the value
of the loss function with any given accuracy and has lowest complexity estimation among others.

Upper level of the first method is gradient-based. The main obstacle which we have overcome is
that the state-of-the-art methods for constrained non-convex optimization assume that the gradient
is known exactly, which is not the case in our problem. We develop a gradient method for general
constrained non-convex optimization problems with inexact oracle, estimate its convergence rate to
the stationary point of the problem. One of the advantages of our method is that it does not require to
know the Lipschitz-constant of the gradient of the goal function, which is usually used to define the
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stepsize of a gradient algorithm. In order to calculate approximation of the gradient which is used in
the upper-level method, we generalize linearly convergent method from [17] (and use it as part of the
lower-level method). We prove that it has a linear rate of convergence as well.

Upper level of our second method is random gradient-free. Like for the gradient-based method, we
encounter the problem that the existing gradient-free optimization methods [7, 16] require exact
values of the objective function. Our contribution to the gradient-free methods framework consists
in adapting the approach of [16] to the case of constrained optimization problems when the value
of the function is calculated with some known accuracy. We prove a convergence theorem for this
method and exploit it on the upper level of the two-level algorithm for solving the problem of learning
Supervised PageRank.

Another contribution consists in investigating both for the gradient and gradient-free methods the
trade-off between the accuracy of the lower-level algorithm, which is controlled by the number of
iterations of method in [17] and its generalization (for derivatives estimation), and the computational
complexity of the two-level algorithm as a whole. Finally, we estimate the complexity of the whole
two-level algorithms for solving the loss-minimization problem with a given accuracy.

In the experiments, we apply our algorithms to learning Supervised PageRank on real data (we
consider the problem of web pages’ ranking). We show that both two-level methods outperform
the state-of-the-art gradient-based method from [21] in terms of the considered loss function. Sum-
ming up, unlike the state-of-the-art method our algorithms have theoretically proven estimates of
convergence rate and outperform it in the ranking quality (as we prove experimentally). The main
advantages of the first gradient-based algorithm are the following. There is no need to assume that
the function is locally convex in order to guarantee that it converges to the stationary point. This
algorithm has smaller number of input parameters than gradient-free, because it does not need the
Lipschitz constant of the gradient of the loss function. The main advantage of the second gradient-free
algorithm is that it avoids calculating the derivative for each element of a large matrix.

The remainder of the paper is organized as follows. In Section 2, we describe the random walk model.
In Section 3, we define the loss-minimization problem and discuss its properties. In Section 4, we
state two technical lemmas about the numbers of iterations of Nesterov–Nemirovski method (and
its generalization) needed to achieve any given accuracy of the loss function (and its gradient). In
Section 5 and Section 6 we describe the framework of random gradient-free and gradient-based
optimization methods respectively, generalize them to the case when the objective function values and
gradients are inaccurate and propose two-level algorithms for the stated loss-minimization problem.
Proofs of all our results can be found in Appendix. The experimental results are reported in Section 7.
In Section 8, we summarize the outcomes of our study, discuss its benefits and directions of future
work.

2 MODEL DESCRIPTION

Let Γ = (V,E) be a directed graph. As in [21], we suppose that for any i ∈ V and any i→ j ∈ E,
a vector of node’s features Vi ∈ Rm1

+ and a vector of edge’s features Eij ∈ Rm2
+ are given. Let

ϕ1 ∈ Rm1 , ϕ2 ∈ Rm2 be two vectors of parameters. We denote m = m1 + m2, p = |V |,
ϕ = (ϕ1, ϕ2)T . Let us describe the random walk on the graph Γ, which was considered in [21].
A surfer starts a random walk from a random page i ∈ U (U is some subset in V called seed set,
|U | = n). We assume that ϕ1 and node features are chosen in such way that

∑
l∈U 〈ϕ1,Vl〉 is

non-zero. The initial probability of being at vertex i ∈ V is called the restart probability and equals

[π0(ϕ)]i =
〈ϕ1,Vi〉∑
l∈U 〈ϕ1,Vl〉

, i ∈ U (2.1)

and [π0(ϕ)]i = 0 for i ∈ V \ U . At each step, the surfer (with a current position i ∈ V ) either
chooses with probability α ∈ (0, 1) (originally [18], α = 0.15), which is called the damping factor,
to go to any vertex from V in accordance with the distribution π0(ϕ) (makes a restart) or chooses to
traverse an outgoing edge (makes a transition) with probability 1− α. We assume that ϕ2 and edges
features are chosen in such way that

∑
l:i→l〈ϕ2,Eil〉 is non-zero for all i with non-zero outdegree.

For i with non-zero outdegree, the probability

[P (ϕ)]i,j =
〈ϕ2,Eij〉∑
l:i→l〈ϕ2,Eil〉

(2.2)
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of traversing an edge i → j ∈ E is called the transition probability. If an outdegree of i equals
0, then we set [P (ϕ)]i,j = [π0(ϕ)]j for all j ∈ V (the surfer with current position i makes a
restart with probability 1). Finally, by Equations 2.1 and 2.2 the total probability of choosing vertex
j ∈ V conditioned by the surfer being at vertex i equals α[π0(ϕ)]j + (1− α)[P (ϕ)]i,j . Denote by
π(ϕ) ∈ Rp the stationary distribution of the described Markov process. It can be found as a solution
of the system of equations

π = απ0(ϕ) + (1− α)PT (ϕ)π (2.3)

In this paper, we learn the ranking algorithm, which orders the vertices i by their probabilities [π]i in
the stationary distribution π.

3 LOSS-MINIMIZATION PROBLEM STATEMENT

Let Q be a set of queries and, for any q ∈ Q, a set of nodes Vq which are relevant to q be given.
We are also provided with a ranking algorithm which assigns nodes ranking scores [πq]i, i ∈ Vq,
πq = πq(ϕ), as its output. For example, in web search, the score [πq]i may repesent relevance of the
page i w.r.t. the query q. Our goal is to find the parameter vector ϕ which minimizes the discrepancy
of the ranking scores from the ground truth scoring defined by assessors. For each q ∈ Q, there is a
set of nodes in Vq manually judged and grouped by relevance labels 1, . . . , `. We denote V jq the set of
nodes annotated with label `+ 1− j (i.e., V 1

q is the set of all nodes with the highest relevance score).
According to previous studies [12, 21, 22], we consider the square loss function and minimize

f(ϕ) =
1

|Q|

|Q|∑
q=1

‖(Aqπq(ϕ))+‖22 (3.1)

as a function of ϕ over some set of feasible values Φ, where vector x+ has components [x+]i =
max{xi, 0}, the matrices Aq ∈ Rrq×pq , q ∈ Q represent assessor’s view of the relevance of pages to
the query q, rq equals

∑
1≤j<l≤` |V jq ||V lq |. We denote r = maxq∈Q rq. By definition each row of

matrix Aq corresponds to some pair of pages i1 ∈ V jq , i2 ∈ V lq , where j < l, and the i1-th element
of this row is equal to −1, i2-th element is equal to 1, and all other elements are equal to 0.

We consider the ranking algorithm based on scores (2.3) in Markov random walk on a graph
Γq = (Vq, Eq). We assume that feature vectors Vq

i , i ∈ Vq, Eqij , i→ j ∈ Eq, depend on q as well.
For example, vertices in Vq may represent web pages which were visited by users after submitting
a query q and features may reflect different properties of query–page pair. For fixed q ∈ Q, we
consider all the objects related to the graph Γq introduced in the previous section: Uq := U , π0

q := π0,
Pq := P , pq := p, nq := n, πq := π. This allows ranking model to capture common (“static”)
dependencies, which do vary between different queries. In this way, the ranking scores depend on
query via the “dynamic” (query-dependent) features, but the parameters of the model α and ϕ are
not query-dependent. We also denote p = maxq∈Q pq, n = maxq∈Q nq, s = maxq∈Q sq, where
sq = maxi∈Vq

|{j : i→ j ∈ Eq}|. In order to guarantee that the probabilities in (2.1) and (2.2) are
non-negative and that they do not blow up due to zero value of the denominator, we need appropriately
choose the set Φ of possible values of parameters ϕ. Thus we choose some ϕ̂ and R > 0 such that the
set Φ defined as Φ = {ϕ ∈ Rm : ‖ϕ− ϕ̂‖2 ≤ R} lies in the set of vectors with positive components
Rm++

1. The loss-minimization problem which we solve in this paper is as follows

min
ϕ∈Φ

f(ϕ),Φ = {ϕ ∈ Rm : ‖ϕ− ϕ̂‖2 ≤ R}. (3.2)

From (2.3), we obtain the following equation for pq ×m matrix dπq(ϕ)
dϕT which is the derivative of

stationary distribution πq(ϕ) with respect to ϕ

dπq(ϕ)

dϕT
= α

dπ0
q (ϕ)

dϕT
+ (1− α)

pq∑
i=1

dpi(ϕ)

dϕT
[πq(ϕ)]i + (1− α)PTq (ϕ)

dπq(ϕ)

dϕT
, (3.3)

1As probablities [π0
q(ϕ)]i, i ∈ Vq , [Pq(ϕ)]̃i,i, ĩ→ i ∈ Eq , are scale-invariant (π0

q(λϕ) = π0
q(ϕ), Pq(λϕ) =

Pq(ϕ)), in our experiments, we consider the set Φ = {ϕ ∈ Rm : ‖ϕ− em‖2 ≤ 0.99} , where em ∈ Rm is the
vector of all ones, that has large intersection with the simplex {ϕ ∈ Rm++ : ‖ϕ‖1 = 1}
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where pi(ϕ) is the i-th column of the matrix PTq (ϕ). Then the gradient of the function f(ϕ) is easy
to derive:

∇f(ϕ) =
2

|Q|

|Q|∑
q=1

(
dπq(ϕ)

dϕT

)T
ATq (Aqπq(ϕ))+. (3.4)

4 NUMERICAL CALCULATION OF THE VALUE AND THE
GRADIENT OF f(ϕ)

One of the main difficulties in solving Problem 3.2 is that calculation of the value of the function
f(ϕ) requires to calculate |Q| vectors πq(ϕ) which solve (2.3). In our setting, this vector has huge
dimension pq and hence it is computationally very expensive to find it exactly. Moreover, in order to
calculate ∇f(ϕ) one needs to calculate the derivative for each of these huge-dimensional vectors
which is also computationally very expensive to be done exactly. At the same time our ultimate goal is
to provide methods for solving Problem 3.2 with estimated rate of convergence and complexity. Due
to the expensiveness of calculating exact values of f(ϕ) and∇f(ϕ) we have to use the framework
of optimization methods with inexact oracle which requires to control the accuracy of the oracle,
otherwise the convergence is not guaranteed. This means that we need to be able to calculate an
approximation to the function f(ϕ) value (inexact zero-order oracle) with a given accuracy for
gradient-free methods and approximation to the pair (f(ϕ),∇f(ϕ)) (inexact first-order oracle) with
a given accuracy for gradient methods. Hence we need some numerical scheme which allows to
calculate approximation for πq(ϕ) and dπq(ϕ)

dϕT for every q ∈ Q with a given accuracy.

Motivated by the last requirement we have analysed state-of-the-art methods for finding the solution of
Equation 2.3 in huge dimension summarized in the review [5] and power method, used in [18, 2, 21].
Only four methods allow to make the difference ‖πq(ϕ)− π̃q‖, where π̃q is the approximation, small
for some norm ‖ · ‖ which is crucial to estimate the error in the approximation of the function f(ϕ)
value. These methods are: Markov Chain Monte Carlo (MCMC), Spillman’s, Nesterov-Nemirovski’s
(NN) [17] and power method. Spillman’s algoritm and power method converge in infinity norm
which is usually pq times larger than 1-norm. MCMC converges in 2-norm which is usually √pq
times larger than 1-norm. Also MCMC is randomized and converges only in average which makes it
hard to control the accuracy of the approximation π̃q . Unlike the other three, NN is deterministic and
converges in 1-norm which gives minimum √pq times better approximation. At the same time, to
the best of our knowledge, NN method is the only method that admits a generalization which, as we
prove in this paper, calculates the derivative dπq(ϕ)

dϕT with any given accuracy.

The method [17] for approximation of πq(ϕ) for any fixed q ∈ Q constructs a sequence πk and the
output π̃q(ϕ,N) (for some fixed non-negative integer N ) by the following rule

π0 = π0
q (ϕ), πk+1 = PTq (ϕ)πk, π̃q(ϕ,N) =

α

1− (1− α)N+1

N∑
k=0

(1− α)kπk. (4.1)

Lemma 1. Assume that for some δ1 > 0 Method 4.1 with N =
⌈

1
α ln 8r

δ1

⌉
− 1 is used to calculate

the vector π̃q(ϕ,N) for every q ∈ Q. Then

f̃(ϕ, δ1) =
1

|Q|

|Q|∑
q=1

‖(Aqπ̃q(ϕ,N))+‖22 (4.2)

satisfies

|f̃(ϕ, δ1)− f(ϕ)| ≤ δ1. (4.3)

Moreover, the calculation of f̃(ϕ, δ1) requires not more than |Q|(3mps+ 3psN + 6r) a.o. and not
more than 3ps memory items.

The proof of Lemma 1 can be found in Appendix A.1.
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Our generalization of the method [17] for calculation of dπq(ϕ)
dϕT for any q ∈ Q is the following.

Choose some non-negative integer N1 and calculate π̃q(ϕ,N1) using (4.1). Calculate a sequence Πk

Π0 = α
dπ0

q (ϕ)

dϕT
+ (1− α)

pq∑
i=1

dpi(ϕ)

dϕT
[π̃q(ϕ,N1)]i, Πk+1 = PTq (ϕ)Πk. (4.4)

The output is (for some fixed non-negative integer N2)

Π̃q(ϕ,N2) =
1

1− (1− α)N2+1

N2∑
k=0

(1− α)kΠk. (4.5)

In what follows, we use the following norm on the space of matrices A ∈ Rn1×n2 : ‖A‖1 =
maxj=1,...,n2

∑n1

i=1 |aij |.
Lemma 2. Let β1 be a number (explicitly computable, see Appendix A.2 Equation A.13) such that
for all ϕ ∈ Φ

α

∥∥∥∥∥dπ0
q (ϕ)

dϕT

∥∥∥∥∥
1

+ (1− α)

pq∑
i=1

∥∥∥∥dpi(ϕ)

dϕT

∥∥∥∥
1

≤ β1. (4.6)

Assume that Method 4.1 with N1 =
⌈

1
α ln 24β1r

αδ2

⌉
− 1 is used for every q ∈ Q to calculate the vector

π̃q(ϕ,N1) and Method 4.4, 4.5 with N2 =
⌈

1
α ln 8β1r

αδ2

⌉
− 1 is used for every q ∈ Q to calculate the

matrix Π̃q(ϕ,N2) (4.5). Then the vector

g̃(ϕ, δ2) =
2

|Q|

|Q|∑
q=1

(
Π̃q(ϕ,N2)

)T
ATq (Aqπ̃q(ϕ,N1))+ (4.7)

satisfies
‖g̃(ϕ, δ2)−∇f(ϕ)‖∞ ≤ δ2. (4.8)

Moreover the calculation of g̃(ϕ, δ2) requires not more than |Q|(10mps+ 3psN1 + 3mpsN2 + 7r)
a.o. and not more than 4ps+ 4mp+ r memory items.

The proof of Lemma 2 can be found in Appendix A.2.

5 RANDOM GRADIENT-FREE OPTIMIZATION METHODS

In this section, we first describe general framework of random gradient-free methods with inexact
oracle and then apply it for Problem 3.2. Lemma 1 allows to control the accuracy of the inexact
zero-order oracle and hence apply random gradient-free methods with inexact oracle.

5.1 GENERAL FRAMEWORK

Below we extend the framework of random gradient-free methods [1, 16, 7] for the situation of
presence of uniformly bounded error of unknown nature in the value of an objective function in
general optimization problem. Unlike [16], we consider a constrained optimization problem and a
randomization on a Euclidean sphere which seems to give better large deviations bounds and doesn’t
need the assumption that the objective function can be calculated at any point of Rm.

Let E be a m-dimensional vector space. In this subsection, we consider a general function f(·) :
E → R and denote its argument by x or y to avoid confusion with other sections. We denote the
value of linear function g ∈ E∗ at x ∈ E by 〈g, x〉. We choose some norm ‖ · ‖ in E and say that
f ∈ C1,1

L (‖ · ‖) iff

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ L

2
‖x− y‖2, ∀x, y ∈ E . (5.1)

The problem of our interest is to find minx∈X f(x), where f ∈ C1,1
L (‖ · ‖), X is a closed convex

set and there exists a number D ∈ (0,+∞) such that diamX := maxx,y∈X ‖x − y‖ ≤ D. Also
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we assume that the inexact zero-order oracle for f(x) returns a value f̃(x, δ) = f(x) + δ̃(x), where
δ̃(x) is the error satisfying for some δ > 0 (which is known) |δ̃(x)| ≤ δ for all x ∈ X . Let
x∗ ∈ arg minx∈X f(x). Denote f∗ = minx∈X f(x).

Unlike [16], we define the biased gradient-free oracle gτ (x, δ) = m
τ (f̃(x+ τξ, δ)− f̃(x, δ))ξ, where

ξ is a random vector uniformly distributed over the unit sphere S = {t ∈ Rm : ‖t‖2 = 1}, τ is a
smoothing parameter.

Algorithm 1 below is the variation of the projected gradient descent method. Here ΠX(x) denotes
the Euclidean projection of a point x onto the set X .

Algorithm 1 Gradient-type method
Input: Point x0 ∈ X , stepsize h > 0, number of steps M .
Set k = 0.
repeat

Generate ξk and calculate corresponding gτ (xk, δ).
Calculate xk+1 = ΠX(xk − hgτ (xk, δ)).
Set k = k + 1.

until k > M
Output: The point yM = arg minx{f(x) : x ∈ {x0, . . . , xM}}.

Next theorem gives the convergence rate of Algorithm 1. Denote by Ξk = (ξ0, . . . , ξk) the history of
realizations of the vector ξ generated on each iteration of the algorithm.

Theorem 1. Let f ∈ C1,1
L (‖ · ‖2) and convex. Assume that x∗ ∈ intX , and the sequence xk is

generated by Algorithm 1 with h = 1
8mL . Then for any M ≥ 0, we have

EΞM−1
f(yM )− f∗ ≤ 8mLD2

M + 1
+
τ2L(m+ 8)

8
+
δmD

4τ
+
δ2m

Lτ2
. (5.2)

The full proof of the theorem is in Appendix B.

It is easy to see that to make the right hand side of (5.2) less than a desired accuracy ε it is sufficient
to choose

M =

⌈
32mLD2

ε

⌉
, τ =

√
2ε

L(m+ 8)
, δ ≤ ε

3
2

√
2

8mD
√
L(m+ 8)

. (5.3)

5.2 SOLVING THE LEARNING PROBLEM

In this subsection, we apply the results of the previous subsection to solve Problem 3.2 in the
following way. Note that we can not directly apply the results of [16] due to presence of constraints
and inexactness of the oracle. We assume that the set Φ is a small vicinity of some local minimum
ϕ∗ and the function f(ϕ) is convex in this vicinity (generally speaking, the function defined in (3.1)
is nonconvex). We choose the desired accuracy ε for approximation of the optimal value f∗ in
this problem. This accuracy in accordance with (5.3) gives us the number of steps of Algorithm 1,
the value of the parameter τ , the value of the required accuracy δ of the inexact zero-order oracle.
Knowing the value δ, using Lemma 1 we choose the number of steps N of Method 4.1 and calculate
an approximation f̃(ϕ, δ) for the function f(ϕ) value with accuracy δ. Then we use the inexact
zero-order oracle f̃(ϕ, δ) to make a step of Algorithm 1. Theorem 1 and the fact that the feasible set
Φ is a Euclidean ball makes it natural to choose ‖ · ‖2-norm in the space Rm of parameter ϕ. It is
easy to see that in this norm diamΦ ≤ 2R. Algorithm 2 is a formal record of these ideas. To the best
of our knowledge, this is the first time when the idea of random gradient-free optimization methods
is combined with some efficient method for huge-scale optimization using the concept of an inexact
zero-order oracle.

The most computationally hard on each iteration of the main cycle of this method are calculations of
f̃(ϕk + τξk, δ), f̃(ϕk, δ). Using Lemma 1, we obtain that each iteration of Algorithm 2 needs not

7



Algorithm 2 Gradient-free method for Problem 3.2
Input: Point ϕ0 ∈ Φ, L – Lipschitz constant for the function f(ϕ) on Φ, accuracy ε > 0.

Define M =
⌈
128mLR2

ε

⌉
, δ = ε

3
2
√

2

16mR
√
L(m+8)

, τ =
√

2ε
L(m+8) .

Set k = 0.
repeat

Generate random vector ξk uniformly distributed over a unit Euclidean sphere S in Rm.
Calculate f̃(ϕk + τξk, δ), f̃(ϕk, δ) using Lemma 1 with δ1 = δ.
Calculate gτ (ϕk, δ) = m

τ (f̃(ϕk + τξk, δ)− f̃(ϕk, δ))ξk.
Calculate ϕk+1 = ΠΦ

(
ϕk − 1

8mLgτ (ϕk, δ)
)
.

Set k = k + 1.
until k > M
Output: The point ϕ̂M = arg minϕ{f(ϕ) : ϕ ∈ {ϕ0, . . . , ϕM}}.

more than

2|Q|

(
3mps+

3ps

α
ln

128mrR
√
L(m+ 8)

ε3/2
√

2
+ 6r

)
a.o. So, we obtain the following result, which gives the complexity of Algorithm 2.
Theorem 2. Assume that the set Φ in (3.2) is chosen in a way such that f(ϕ) is convex on Φ and some
ϕ∗ ∈ arg minϕ∈Φ f(ϕ) belongs also to intΦ. Then the mean total number of arithmetic operations
of the Algorithm 2 for the accuracy ε (i.e. for the inequality EΞM−1

f(ϕ̂M )− f(ϕ∗) ≤ ε to hold) is
not more than

768mps|Q|LR
2

ε

(
m+

1

α
ln

128mrR
√
L(m+ 8)

ε3/2
√

2
+ 6r

)
.

6 GRADIENT-BASED OPTIMIZATION METHODS

In this section, we first develop a general framework of gradient methods with inexact oracle for
non-convex problems from rather general class and then apply it for the particular Problem 3.2.
Lemma 1 and Lemma 2 allow to control the accuracy of the inexact first-order oracle and hence apply
proposed framework.

6.1 GENERAL FRAMEWORK

In this subsection, we generalize the approach in [7] for constrained non-convex optimization
problems. Our main contribution consists in developing this framework for an inexact first-order
oracle and unknown "Lipschitz constant" of this oracle.

Let E be a finite-dimensional real vector space and E∗ be its dual. We denote the value of linear
function g ∈ E∗ at x ∈ E by 〈g, x〉. Let ‖ · ‖ be some norm on E , ‖ · ‖∗ be its dual. Our problem of
interest in this subsection is a composite optimization problem of the form

min
x∈X
{ψ(x) := f(x) + h(x)}, (6.1)

where X ⊂ E is a closed convex set, h(x) is a simple convex function, e.g. ‖x‖1. We assume that
f(x) is a general function endowed with an inexact first-order oracle in the following sense. There
exists a number L ∈ (0,+∞) such that for any δ ≥ 0 and any x ∈ X one can calculate f̃(x, δ) ∈ R
and g̃(x, δ) ∈ E∗ satisfying

|f(y)− (f̃(x, δ)− 〈g̃(x, δ), y − x〉)| ≤ L

2
‖x− y‖2 + δ. (6.2)

for all y ∈ X . The constant L can be considered as "Lipschitz constant" because for the exact first-
order oracle for a function f ∈ C1,1

L (‖ · ‖) Inequality 6.2 holds with δ = 0. This is a generalization
of the concept of (δ, L)-oracle considered in [25] for convex problems.
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We choose a prox-function d(x) which is continuously differentiable and 1-strongly convex on X
with respect to ‖ · ‖. This means that for any x, y ∈ X d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 1

2‖y − x‖
2.

We define also the corresponding Bregman distance V (x, z) = d(x)− d(z)− 〈∇d(z), x− z〉.

Algorithm 3 Adaptive projected gradient algorithm
Input: Point x0 ∈ X , number L0 > 0.
Set k = 0, z = +∞.
repeat

Set Mk = Lk, flag = 0.
repeat

Set δ = ε
16Mk

.
Calculate f̃(xk, δ) and g̃(xk, δ).
Find

wk = arg min
x∈Q
{〈g̃(xk, δ), x〉+MkV (x, xk) + h(x)} (6.3)

Calculate f̃(wk, δ).
If the inequality

f̃(wk, δ) ≤ f̃(xk, δ) + 〈g̃(xk, δ), wk − xk〉+
Mk

2
‖wk − xk‖2 +

ε

8Mk
(6.4)

holds, set flag = 1. Otherwise set Mk = 2Mk.
until flag = 1
Set xk+1 = wk, Lk+1 = Mk

2 .
If ‖Mk(xk − xk+1)‖ < z, set z = ‖Mk(xk − xk+1)‖, K = k.
Set k = k + 1.

until z ≤ ε
Output: The point xK+1.

Theorem 3. Assume that f(x) is endowed with the inexact first-order oracle in a sense (6.2) and
that there exists a number ψ∗ > −∞ such that ψ(x) ≥ ψ∗ for all x ∈ X . Then after M iterations of
Algorithm 3 it holds that

‖MK(xK − xK+1)‖2 ≤ 4L(ψ(x0)− ψ∗)
M + 1

+
ε

2
. (6.5)

Moreover, the total number of checks of Inequality 6.4 is not more than M + log2
2L
L0

.

The full proof of the theorem is in Appendix C.

It is easy to show that when ‖MK(xK − xK+1)‖2 ≤ ε for small ε, then for all x ∈ X it holds that
〈∇f(xK+1) +∇h(xK+1), x− xK+1〉 ≥ −c

√
ε, where c > 0 is a constant, ∇h(xK+1) is some

subgradient of h(x) at xK+1. This means that at the point xK+1 the necessary condition of a local
minimum is fulfilled with a good accuracy, i.e. xK+1 is a good approximation of a stationary point.

6.2 SOLVING THE LEARNING PROBLEM

In this subsection, we return to Problem 3.2 and apply the results of the previous subsection. Note that
we can not directly apply the results of [7] due inexactness of the oracle. For this problem, h(·) ≡ 0.
It is easy to show that in 1-norm diamΦ ≤ 2R

√
m. For any δ > 0, Lemma 1 with δ1 = δ

2 allows us
to obtain f̃(ϕ, δ1) such that Inequality 4.3 holds and Lemma 2 with δ2 = δ

4R
√
m

allows us to obtain

g̃(ϕ, δ2) such that Inequality 4.8 holds. Similar to [25], since f ∈ C1,1
L (‖ · ‖2), these two inequalities

lead to Inequality 6.2 for f̃(ϕ, δ1) in the role of f̃(x, δ), g̃(ϕ, δ2) in the role of g̃(x, δ) and ‖ · ‖2 in
the role of ‖ · ‖.
We choose the desired accuracy ε for approximating the stationary point of Problem 3.2. This
accuracy gives the required accuracy δ of the inexact first-order oracle for f(ϕ) on each step of the
inner cycle of the Algorithm 3. Knowing the value δ1 = δ

2 and using Lemma 1, we choose the
number of steps N of Algorithm 4.1 and thus approximate f(ϕ) with the required accuracy δ1 by

9



f̃(ϕ, δ1). Knowing the value δ2 = δ
4R
√
m

and using Lemma 2, we choose the number of steps N1 of
Method 4.1 and the number of steps N2 of Method 4.4, 4.5 and obtain the approximation g̃(ϕ, δ2) of
∇f(ϕ) with the required accuracy δ2. Then we use the inexact first-order oracle (f̃(ϕ, δ1), g̃(ϕ, δ2))
to perform a step of Algorithm 3.

Since Φ is the Euclidean ball, it is natural to set E = Rm and ‖ · ‖ = ‖ · ‖2, choose the prox-function
d(ϕ) = 1

2‖ϕ‖
2
2. Then the Bregman distance is V (ϕ, ω) = 1

2‖ϕ− ω‖
2
2.

Algorithm 4 is a formal record of the above ideas. To the best of our knowledge, this is the first
time when the idea of gradient optimization methods is combined with some efficient method for
huge-scale optimization using the concept of an inexact first-order oracle.

Algorithm 4 Adaptive gradient method for Problem 3.2
Input: Point ϕ0 ∈ Φ, number L0 > 0, accuracy ε > 0.
Set k = 0, z = +∞.
repeat

Set Mk = Lk, flag = 0.
repeat

Set δ1 = ε
32Mk

, δ2 = ε
64MkR

√
m

.

Calculate f̃(ϕk, δ1) using Lemma 1 and g̃(ϕk, δ2) using Lemma 2.
Find

ωk = arg min
ϕ∈Φ

{
〈g̃(ϕk, δ2), ϕ〉+

Mk

2
‖ϕ− ϕk‖22.

}
Calculate f̃(ωk, δ1) using Lemma 1.
If the inequality

f̃(ωk, δ1) ≤ f̃(ϕk, δ1) + 〈g̃(ϕk, δ2), ωk − ϕk〉+
Mk

2
‖ωk − ϕk‖22 +

ε

8Mk

holds, set flag = 1. Otherwise set Mk = 2Mk.
until flag = 1
Set ϕk+1 = ωk, Lk+1 = Mk

2 , .
If ‖Mk(ϕk − ϕk+1)‖2 < z, set z = ‖Mk(ϕk − ϕk+1)‖2, K = k.
Set k = k + 1.

until z ≤ ε
Output: The point ϕK+1.

The most computationally consuming operations of the inner cycle of Algorithm 4 are calculations
of f̃(ϕk, δ1), f̃(ωk, δ1) and g̃(ϕk, δ2). Using Lemma 1 and Lemma 2, we obtain that each inner
iteration of Algorithm 4 needs not more than

7r|Q|+ 6mps|Q|
α

ln
1024β1rRL

√
m

αε

a.o. Using Theorem 3, we obtain the following result, which gives the complexity of Algorithm 4.
Theorem 4. The total number of arithmetic operations in Algorithm 4 for the accuracy ε (i.e. for the
inequality ‖MK(ϕK − ϕK+1)‖22 ≤ ε to hold) is not more than(

8L(f(ϕ0)− f∗)
ε

+ log2

2L

L0

)
·
(

7r|Q|+ 6mps|Q|
α

ln
1024β1rRL

√
m

αε

)
.

7 EXPERIMENTAL RESULTS

We apply different learning techniques, our gradient-free and gradient-based methods and state-of-
the-art gradient-based method, to the web page ranking problem and compare their performances.
In the next section, we describe the graph and the dataset, which we exploit in our experiments. In
Section 7.2, we describe the results of the experiments.
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7.1 DATA

In our experiments, we consider the user web browsing graph Γq = (Vq, Eq), q ∈ Q (which was first
considered in [12]). We choose the user browsing graph instead of a link graph with the purpose to
make the model query-dependent. In this graph, the set of vertices consists of all the distinct elements
from all the sessions which are started from q. The set of directed edges Eq represents all the ordered
pairs of neighboring elements (̃i, i) from such sessions. We add a page i in the seed set Uq if and
only if there is a session which is started from q and contains i as its first element.

All experiments are performed with pages and links crawled by a popular commercial search engine.
We randomly choose the set of queries Q the user sessions start from, which contains 600 queries.
There are ≈ 11.7K vertices and ≈ 7.5K edges in graphs Γq , q ∈ Q, in total. For each query, a set of
pages was judged by professional assessors hired by the search engine. Our data contains ≈ 1.7K
judged query–document pairs. The relevance score is selected from among 5 labels. We divide our
data into two parts. On the first part Q1 (50% of the set of queries Q) we train the parameters and on
the second part Q2 we test the algorithms. To define weights of nodes and edges we consider a set
of m1 = 26 query–document features. For any q ∈ Q and i ∈ Vq, the vector Vq

i contains values of
all these features for query–document pair (q, i). The vector of m2 = 52 features Eq

ĩi
for an edge

ĩ→ i ∈ Eq is obtained simply by concatenation of the feature vectors of pages ĩ and i.

To study a dependency between the efficiency of the algorithms and the sizes of the graphs, we sort
the sets Q1, Q2 in ascending order of sizes of the respective graphs. Sets Q1

j , Q2
j , Q3

j contain first (in
terms of these order) 100, 200, 300 elements respectively for j ∈ {1, 2}.

7.2 PERFORMANCES OF THE OPTIMIZATION ALGORITHMS

We find the optimal values of the parameters ϕ by all the considered methods (our gradient-free
method GFN (Algorithm 2), the gradient-based method GBN (Algorithm 4), the state-of-the-art
gradient-method GBP), which solve Problem 3.1.

The sets of hyperparameters which are exploited by the optimization methods (and not tuned
by them) are the following: the Lipschitz constant L = 10−4 in GFN (and L0 = 10−4 in
GBN), the accuracy ε = 10−6 (in both GBN and GFN), the radius R = 0.99 (in both GBN
and GFN). On all sets of queries, we compare final values of the loss function for GBN when
L0 ∈ {10−4, 10−3, 10−2, 10−1, 1}. The differences are less than 10−7. We choose L in GFN to be
equal to L0. On Figure 2, we show how the choice of L influences the output of the gradient-free
algorithm. Moreover, we evaluate both our gradient-based and gradient-free algorithms for different
values of the accuracies. The outputs of the algorithms differ insufficiently on all test sets Qi2,
i ∈ {1, 2, 3}, when ε ≤ 10−6. On the lower level of the state-of-the-art gradient-based algorithm,
the stochastic matrix and its derivative are raised to the powers N1 and N2 respectively. We choose
N1 = N2 = 100, since the outputs of the algorithm differ insufficiently on all test sets, when
N1 ≥ 100, N2 ≥ 100. We evaluate GBP for different values of the step size (50, 100, 200, 500). We
stop the GBP algorithms when the differences between the values of the loss function on the next
step and the current step are less than −10−5 on the test sets. On Figure 1, we give the outputs of the
optimization algorithms on each iteration of the upper levels of the learning processes on the test sets.

In Table 1, we present the performances of the optimization algorithms in terms of the loss function
f (3.1). We also compare the algorithms with the untuned Supervised PageRank (ϕ = ϕ0 = em).

GFN significantly outperforms the state-of-the-art algorithms on all test sets. GBN significantly
outperforms the state-of-the-art algorithm on Q1

2 (we obtain the p-values of the paired t-tests for
all the above differences on the test sets of queries, all these values are less than 0.005). However,
GBN requires less iterations of the upper level (until it stops) than GBP for step sizes 50 and 100 on
Q2

2, Q
3
2.

Finally, we show that Nesterov–Nemirovski method converges to the stationary distribution faster
than the power method. On Figure 2, we demonstrate the dependencies of the value of the loss
function on Q1

1 for both methods of computing the untuned Supervised PageRank (ϕ = ϕ0 = em).
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Figure 1: Values of the loss function on each iteration of the optimization algorithms on the test sets.

8 DISCUSSIONS AND CONCLUSIONS

Let us note that Theorem 1 allows to estimate the probability of large deviations using the ob-
tained mean rate of convergence for Algorithm 1 (and hence Algorithm 2) in the following way.
If f(x) is µ-strongly convex, then we prove (see Appendix) a geometric mean rate of conver-
gence: EΞM−1

f(xM )− f∗ ≤ O
(
mL
µ ln

(
LD2

ε

))
. Using Markov’s inequality, we obtain that after

O
(
mL
µ ln

(
LD2

εσ

))
iterations the inequality f(xM )− f∗ ≤ ε holds with a probability greater than

1− σ, where σ ∈ (0, 1) is a desired confidence level. If the function f(x) is convex, but not strongly
convex, then we can introduce the regularization with the parameter µ = ε/D2 minimizing the
function f(x) + µ

2 ‖x− x̂‖
2
2 (x̂ is some point in the set X), which is strongly convex. This will give

us that after O
(
mLD2

ε ln
(
LD2

εσ

))
iterations the inequlity f(xM )− f∗ ≤ ε holds with a probability

greater than 1− σ.
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Q1
2 Q2

2 Q3
2

Meth. loss steps loss steps loss steps
PR .00357 0 .00354 0 .0033 0

GBN .00279 12 .00305 12 .00295 12

GFN .00274 106 .00297 106 .00292 106

GBP .00282 16 .00307 31 .00295 40
50s.
GBP .00282 8 .00307 16 .00295 20
100s.
GBP .00283 4 .00308 7 .00295 9
200s.
GBP .00283 2 .00308 2 .00295 3
500s.

Table 1: Comparison of the algorithms on the test sets.

Figure 2: Comparison of convergence rates of the power method and the method of Nesterov and Nemirovski
(on the left) & loss function values on each iteration of GFN with different values of the parameter L on the train
set Q1

1

We consider a problem of learning parameters of Supervised PageRank models, which are based
on calculating the stationary distributions of the Markov random walks with transition probabilities
depending on the parameters. Due to the impossibility of exact calculating derivatives of the stationary
distributions w.r.t. its parameters, we propose two two-level loss-minimization methods with inexact
oracle to solve it instead of the previous gradient-based approach. For both proposed optimization
algorithms, we find the settings of hyperparameters which give the lowest complexity (i.e., the number
of arithmetic operations needed to achieve the given accuracy of the solution of the loss-minimization
problem).

We apply our algorithm to the web page ranking problem by considering a dicrete-time Markov
random walk on the user browsing graph. Our experiments show that our gradient-free method
outperforms the state-of-the-art gradient-based method. For one of the considered test sets, our
gradient-based method outperforms the state-of-the-art as well. For other test sets, the differences
in the values of the loss function are insignificant. Moreover, we prove that under the assumption
of local convexity of the loss function, our random gradient-free algorithm guarantees decrease of
the loss function value expectation. At the same time, we theoretically justify that without convexity
assumption for the loss function our gradient-based algorithm allows to find a point where the
stationary condition is fulfilled with a given accuracy.

In future, it would be interesting to apply our algorithms to other ranking problems.

Acknowledgments The research by P. Dvurechensky and A. Gasnikov presented in Section 5 of this paper was
conducted in IITP RAS and supported by the Russian Science Foundation grant (project 14-50-00150), the
research presented in Section 6 was supported by RFBR.
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A Missed proofs for Section 4

A.1 Proof of Lemma 1

Let for any x ∈ Rp ‖x‖1 =
∑p
i=1 |xi| be its 1-norm, ‖x‖2 =

√∑p
i=1 |xi|2 be its standard Euclidean norm

and ‖x‖∞ = maxi=1,...,p |xi| be its max-norm.
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First in Lemma A.1 we estimate the complexity of Method 4.1 in terms of the number of iterations and number
of arythmetic operations which are required to approximate the solution of Equation (2.3) with a given accuracy.
Then we prove technical Lemma A.2 which is used in the proof of Lemma A.3, which tells how the error of the
approximate solution Equation (2.3) affects the error in the funcation f(ϕ) value. Finally we combine Lemma
A.1 and Lemma A.3 to prove Lemma 1.
Lemma A.1. Let us fix some q ∈ Q. Let π0

q(ϕ) be defined in (2.1), matrices Pq(ϕ) be defined in (2.2). Assume
that Method 4.1 with

N =

⌈
1

α
ln

2

∆1

⌉
− 1

is used to calculate the approximation π̃q(ϕ,N) to the ranking vector πq(ϕ) which is the solution of Equation 2.3.
Then the vector π̃q(ϕ,N) satisfies

‖π̃q(ϕ,N)− πq(ϕ)‖1 ≤ ∆1 (A.1)
and its calculation requires not more than

3mpqsq + 3pqsqN

a.o. and not more than
2pqsq

memory amount additionally to the memory which is needed to store all the data about features and matrices
Aq, bq , q ∈ Q.

Proof. As it is shown in [17] the vector π̃q(ϕ,N) satisfies

‖π̃q(ϕ,N)− πq(ϕ)‖1 ≤ 2(1− α)N+1. (A.2)

Since for any α ∈ (0, 1] it holds that α ≤ ln 1
1−α we have from the lemma assumption that

N + 1 ≥ 1

α
ln

2

∆1
≥

ln 2
∆1

ln 1
1−α

.

This gives us that 2(1− α)N+1 ≤ ∆1 which in combination with (A.2) gives (A.1).

Let us estimate the number of a.o and the memory amount used for calculations. We will go through Method 4.1
step by step and estimate from above the number of a.o. for each step. Since we need to estimate from above the
total number of a.o. used for the whole algorithm we will update this upper bound (and denote it by TAO) by
adding on each step the obtained upper bound of a.o. number for this step. On each step we also estimate from
above (and denote this estimate by MM) maximum memory amount which was used by Method 4.1 before the
end of this step. Finally, at the end of each step we estimate from above by UM the memory amount which is
still occupied besides the step is finished.

1. First iteration of this method requires to calculate π = π0
q . The variable π will store current (in terms

of steps in k) iterate πk which potentially has pq non-zero elements. In accordance to its definition
(2.1) one has for all i ∈ Uq

[π0
q ]i =

〈ϕ1,V
q
i 〉∑

j∈Uq
〈ϕ1,V

q
j 〉

(a) We calculate 〈ϕ1,V
q
i 〉 for all i ∈ Uq and store the result. This requires 2m1nq a.o. and not

more than pq memory items since |Uq| = nq ≤ pq and Vq
j ∈ Rm1 for all i ∈ Uq .

(b) We calculate 1∑
j∈Uq

〈ϕ1,V
q
j 〉

which requires nq a.o. and 2 memory items.

(c) We calculate 〈ϕ1,V
q
i 〉∑

j∈Uq
〈ϕ1,V

q
j 〉

for all i ∈ Uq . This needs nq a.o. and no additional memory.

So after this stage MM = pq + 2, UM = pq , TAO = 2m1nq + 2nq .
2. We need to calculate elements of matrix Pq(ϕ). In accordance to (2.2) one has

[Pq(ϕ)]ij =
〈ϕ2,E

q
ij〉∑

l:i→l〈ϕ2,E
q
il〉
.

This means that one needs to calculate pq vectors like π0
q on the previous step but each with not more

than sq non-zero elements and dimension of ϕ2 equal to m2. Thus we need pq(2m2sq + 2sq) a.o.
and not more than pqsq + 2 memory items additionally to pq memory items already used. At the
end of this stage we have TAO = 2m1nq + 2nq + pq(2m2sq + 2sq), MM = pq + 2 + pqsq and
UM = pq + pqsq since we store π and Pq(ϕ) in memory.

3. We set π̃Nq = π0
q (this variable will store current approximation of π̃Nq which potentially has pq

non-zero elements). This requires nq a.o. and pq memory items. Also we set a = (1− α). At the end
of this step we have TAO = 2m1nq+2nq+pq(2m2sq+2sq)+nq+1, MM = pq+2+pqsq+pq
and UM = pq + pqsq + pq + 1.
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4. For every step from 1 to N
(a) We set π1 = PTq (ϕ)π. This requires not more than 2pqsq a.o. since the number of non-zero

elements in the matrix PTq (ϕ) is not more than pqsq and we need to multiply each element by
some element of π and add it to the sum. Also we need pq memory items to store π1.

(b) We set π̃Nq = π̃Nq + aπ1 which requires 2pq a.o.
(c) We set a = (1− α)a.

At the end of this step we have. TAO = 2m1nq + 2nq + pq(2m2sq + 2sq) + nq + 1 +N(2pqsq +
2pq + 1), MM = pq + 2 + pqsq + pq + pq and UM = pq + pqsq + pq + 1 + pq

5. Set π̃Nq = α
1−(1−α)a

π̃Nq . This takes 3 + pq a.o.

So at the end we get TAO = 2m1nq + 2nq + pq(2m2sq + 2sq) +nq + 1 +N(2pqsq + 2pq + 1) + pq + 3 ≤
3mpqsq + 3pqsqN , MM = pq + 2 + pqsq + pq + pq ≤ 2pqsq and UM = pq .
Remark 1. Note that we also can store in the memory all the calculated quantities 〈ϕ1,V

q
i 〉 for all i ∈ Uq ,

〈ϕ2,E
q
ij〉 for all i, j = 1, . . . , pq s.t. i→ j ∈ Eq ,

∑
j∈Uq
〈ϕ1,V

q
j 〉,
∑
l:i→l〈ϕ2,E

q
il〉 for the case if we need

them later. This requires not more than nq + pqsq + 1 + pq memory.
Lemma A.2. Let q inQ. Assume that π1, π2 ∈ Spq (1) = {π ∈ Rpq+ :

∑pq
i=1[π]i = 1}. Assume also that

inequality ‖π1 − π2‖γ ≤ ∆1 holds for some γ ∈ {1, 2,∞}. Then
|‖(Aqπ1)+‖2 − ‖(Aqπ2)+‖2| ≤ 2∆1

√
rq, (A.3)

‖(Aqπ1)+ − (Aqπ2)+‖∞ ≤ 2∆1, (A.4)

‖(Aqπ1)+‖2 ≤
√
rq, (A.5)

‖(Aqπ1)+‖∞ ≤ 1. (A.6)

Proof. Note that for any γ ∈ {1, 2,∞} from the inequality ‖π1−π2‖γ ≤ ∆1 it follows that |[π1]i−[π2]i| ≤ ∆1

for all i ∈ 1, . . . , pq . Using Lipschitz continuity with constant 1 of the 2-norm we get
|‖(Aqπ1)+‖2 − ‖(Aqπ2)+‖2| ≤ ‖(Aqπ1)+ − (Aqπ2)+‖2 (A.7)

Let us fix arbitrary i ∈ 1, . . . , rq . By definition the i-th row of the matrix Aq contains one 1 and one -1 and all
other elements in the row are equal to zero. Let k : [Aq]ik = 1, j : [Aq]ij = −1. Using Lipschitz continuity
with constant 1 of the function (·)+ we obtain

|[(Aqπ1)+]i − [(Aqπ2)+]i| ≤ |[π1]k − [π1]j − [π2]k + [π2]j | ≤ 2∆1.

Since i ∈ 1, . . . , rq was chosen arbitrary this inequality holds for all i ∈ 1, . . . , rq and using (A.7) we obtain
(A.3). Similarly one obtains (A.4).

Now let us fix some i ∈ 1, . . . , rq and again let k : [Aq]ik = 1, j : [Aq]ij = −1. Then |[(Aqπ1)+]i| =
|([π1]k − [π1]j)+|. Since π1 ∈ Spq (1) it holds that [π1]k − [π1]j ∈ [−1, 1]. Hence |([π1]k − [π1]j)+| ≤ 1.
Now (A.5) and (A.6) become obvious.
Lemma A.3. Assume that vectors π̃q ∈ Spq (1), q ∈ Q satisfy the following inequalities

‖π̃q − πq(ϕ)‖γ ≤ ∆1, ∀q ∈ Q,
for some γ ∈ {1, 2,∞}. Then

f̃(ϕ) =
1

|Q|

|Q|∑
q=1

‖(Aqπ̃q)+‖22 (A.8)

satisfies |f̃(ϕ)− f(ϕ)| ≤ 4r∆1, where f(ϕ) is defined in (3.1).

Proof. For fixed q ∈ Q we have
|‖(Aqπ̃q)+‖22 − ‖(Aqπq(ϕ))+‖22| =

= |‖(Aqπ̃q)+‖2 − ‖(Aqπq(ϕ))+‖2| · (‖(Aqπ̃q)+‖2 + ‖(Aqπq(ϕ))+‖2)
(A.3),(A.5)
≤

≤ 4∆1rq ≤ 4∆1r.

Using (3.1) and (A.8) we obtain the statement of the lemma.

The proof ot Lemma 1. Inequality 4.3 follows from Lemma A.1 and Lemma A.3 with ∆1 = δ1
4r

and
π̃q = π̃q(ϕ,N) for all q ∈ Q.

Let us now estimate the the number of arithmetic operations and memory amount used by the method for
calculation of f(ϕ, δ1) (4.2).

We use the same notations TAO, MM, UM as in the proof of Lemma A.1.
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1. We reserve variable a to store current (in terms of steps in q) sum of summands in (4.2), variable b
to store next summand in this sum and vector π to store the approximation for π̃q(ϕ,N) for current
q ∈ Q. So TAO = 0, MM = UM = 2 + pq .

2. For every q ∈ Q repeat.

2.1. Set π = π̃q(ϕ,N). According to Lemma A.1 we obtain TAO = 3mpqsq + 3pqsqN , MM =
2pqsq + pq + 2, UM = pq + 2.

2.2. Calculate u = (Aqπ̃q(ϕ,N))+. This requires additionally 2rq a.o. and rq memory items.
2.3. Set b = ‖u‖22. This requires additionally 2rq a.o.
2.4. Set a = a+ b. This requires additionally 1 a.o.

3. Set a = 1
|Q|a. This requires additionally 1 a.o.

4. At the end we have TAO =
∑
q∈Q(3mpqsq + 3pqsqN + 4rq + 1) + 1 ≤ |Q|(3mps+ 3psN + 6r),

MM = maxq∈Q(2pqsq + pq) + 2 ≤ 3ps, UM = 1.

A.2 The proof of Lemma 2

We use the following norms on the space of matrices A ∈ Rn1×n2

‖A‖1 = max{‖Ax‖1 : x ∈ Rn2 , ‖x‖1 = 1} = max
j=1,...,n2

n1∑
i=1

|aij |, (A.9)

where the 1-norm of the vector x ∈ Rn2 is ‖x‖1 =
∑n2
i=1 |xi|.

‖A‖∞ = max{‖Ax‖∞ : x ∈ Rn2 , ‖x‖∞ = 1} = max
i=1,...,n1

n2∑
j=1

|aij |,

where the∞-norm of the vector x ∈ Rn2 is ‖x‖∞ = maxi=1,...,n2 |xi|. Note that both matrix norms possess
submultiplicative property

‖AB‖1 ≤ ‖A‖1‖B‖1, ‖AB‖1 ≤ ‖A‖∞‖B‖∞ (A.10)

for any pair of compatible matrices A,B.

Let us denote

Π0
q(ϕ) = α

dπ0
q(ϕ)

dϕT
+ (1− α)

pq∑
i=1

dpi(ϕ)

dϕT
[πq(ϕ)]i. (A.11)

Lemma A.4. Let us fix some q ∈ Q. Let Π0
q(ϕ) be defined in (A.11), π0

q(ϕ) be defined in (2.1), pi(ϕ)T ,
i ∈ 1, . . . , pq be the i-th row of the matrix Pq(ϕ) defined in (2.2). Let us denote

Vq =
∑
l∈Uq

Vq
l , Eqi =

∑
l∈Nq(i)

Eqil,

where Nq(i) = {j ∈ Vq : i→ j ∈ Eq}.

Then for the chosen restart probabilities (2.1), transition probabilities (2.2) and set Φ = {ϕ ∈ Rm : ‖ϕ−ϕ̂‖2 ≤
R} in (3.2) the following inequality holds.

‖Π0
q(ϕ)‖1 ≤ α

∥∥∥∥dπ0
q(ϕ)

dϕT

∥∥∥∥
1

+ (1− α)

pq∑
i=1

∥∥∥∥dpi(ϕ)

dϕT

∥∥∥∥
1

≤ β1 ∀ϕ ∈ Φ, (A.12)

where

β1 = 2α
〈ϕ̂1,Vq〉+R ‖Vq‖2(
〈ϕ̂1,Vq〉 −R ‖Vq‖2

)2 max
j∈1,...,m1

[Vq]j +

+ 2(1− α)

pq∑
i=1

〈ϕ̂2,Eqi 〉+R ‖Eqi ‖2(
〈ϕ̂2,Eqi 〉 −R ‖E

q
i ‖2
)2 max

j∈1,...,m2

[Eqi ]j (A.13)

and , ϕ̂1 ∈ Rm1 – first m1 components of the vector ϕ̂, ϕ̂2 ∈ Rm2 – second m2 components of the vector ϕ̂.

Proof. First inequality follows from the definition of Π0
q(ϕ) (A.11), triangle inequality for matrix norm and

inequalities |[πq(ϕ)]i| ≤ 1, i = 1, . . . , pq which hold since πq(ϕ) ∈ Spq (1).

Let us now estimate
∥∥∥∥ dπ0

q(ϕ)

dϕT

∥∥∥∥
1

. Note that ϕ = (ϕ1, ϕ2)T . From (2.1) we know that
dπ0

q(ϕ)

dϕT
2

= 0. First

we estimate the absolute value of the element in the i-th row and j-th column of the matrix
dπ0

q(ϕ)

dϕT
1

. We use
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that ϕ > 0 for all ϕ ∈ Φ and that for all i ∈ Uq vectors Vq
i are non-negative and have at least one positive

component. ∣∣∣∣∣d
[
π0
q(ϕ)

]
i

d[ϕ1]j

∣∣∣∣∣ (2.1)
=

∣∣∣∣∣∣∣
1∑

l∈Uq
〈ϕ1,V

q
l 〉

[Vq
i ]j −

〈ϕ1,V
q
i 〉(∑

l∈Uq
〈ϕ1,V

q
l 〉
)2

∑
l∈Uq

Vq
l


j

∣∣∣∣∣∣∣ =

=
1

(〈ϕ1,Vq〉)2

∣∣∣〈ϕ1,Vq〉 [Vq
i ]j − 〈ϕ1,V

q
i 〉 [V

q]j

∣∣∣ ≤
≤ 1(
〈ϕ̂1,Vq〉 −R ‖Vq‖1

)2 {(〈ϕ1,Vq〉) [Vq
i ]j + 〈ϕ1,V

q
i 〉 [V

q]j

}
∀ϕ ∈ Φ.

Here we used the fact that

min
ϕ∈Φ
〈ϕ1,Vq〉 = min

{
〈ϕ1,Vq〉 : ‖ϕ1 − ϕ̂1‖22 + ‖ϕ2 − ϕ̂2‖22 ≤ R2} = 〈ϕ̂1,Vq〉 −R ‖Vq‖2 .

Then the 1-norm of the j-th column of the matrix
dπ0

q(ϕ)

dϕT
1

satisfies for all ϕ ∈ Φ

∑
i∈Uq

∣∣∣∣∣d
[
π0
q(ϕ)

]
i

d[ϕ1]j

∣∣∣∣∣ ≤ 2(
〈ϕ̂1,Vq〉 −R ‖Vq‖2

)2 〈ϕ1,Vq〉 [Vq]j ≤

≤ 2
〈ϕ̂1,Vq〉+R ‖Vq‖2(
〈ϕ̂1,Vq〉 −R ‖Vq‖2

)2 [Vq]j .

Here we used the fact that

max
ϕ∈Φ
〈ϕ1,Vq〉 = max

{
〈ϕ1,Vq〉 : ‖ϕ1 − ϕ̂1‖22 + ‖ϕ2 − ϕ̂2‖22 ≤ R2} = 〈ϕ̂1,Vq〉+R ‖Vq‖2 .

Now we have for all ϕ ∈ Φ∥∥∥∥dπ0
q(ϕ)

dϕT

∥∥∥∥
1

(A.9)
= max

j∈1,...,m1

∑
i∈Uq

∣∣∣∣∣d
[
π0
q(ϕ)

]
i

d[ϕ1]j

∣∣∣∣∣ ≤ 2
〈ϕ̂1,Vq〉+R ‖Vq‖2(
〈ϕ̂1,Vq〉 −R ‖Vq‖2

)2 max
j∈1,...,m1

[Vq]j .

In the same manner we obtain the following estimate for all ϕ ∈ Φ∥∥∥∥dpi(ϕ)

dϕT

∥∥∥∥
1

≤ 2
〈ϕ̂2,Eqi 〉+R ‖Eqi ‖2(
〈ϕ̂2,Eqi 〉 −R ‖E

q
i ‖2
)2 max

j∈1,...,m2

[Eqi ]j .

Finally we have that for all ϕ ∈ Φ

‖Π0
q(ϕ)‖1

(A.12)
≤ 2α

〈ϕ̂1,Vq〉+R ‖Vq‖2(
〈ϕ̂1,Vq〉 −R ‖Vq‖2

)2 max
j∈1,...,m1

[Vq]j +

+ 2(1− α)

pq∑
i=1

〈ϕ̂2,Eqi 〉+R ‖Eqi ‖2(
〈ϕ̂2,Eqi 〉 −R ‖E

q
i ‖2
)2 max

j∈1,...,m2

[Eqi ]j .

This finishes the proof.

Let us fix arbitrary q ∈ Q and assume that we have some approximation π̃q ∈ Spq (1) to the vector πq(ϕ). We
consider generalized Method 4.4, 4.5 parametrized by the approximation π̃q

Π̃0(π̃q) = α
dπ0

q(ϕ)

dϕT
+ (1− α)

pq∑
i=1

dpi(ϕ)

dϕT
[π̃q]i (A.14)

and
Π0(π̃q) = Π̃0(π̃q), Πk+1(π̃q) = PTq (ϕ)Πk(π̃q). (A.15)

The output is (for some fixed non-negative integer N2)

Π̃q(ϕ,N2, π̃q) =
1

1− (1− α)N2+1

N2∑
k=0

(1− α)kΠk(π̃q). (A.16)
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Lemma A.5. Let us fix some q ∈ Q. Let Π̃0(π̃q) be defined in (A.14), where π0
q(ϕ) is defined in (2.1), pi(ϕ)T ,

i ∈ 1, . . . , pq is the i-th row of the matrix Pq(ϕ) defined in (2.2), π̃q ∈ Spq (1). Let the sequence Πk(π̃q), k ≥ 0
be defined in (A.15). Then for the chosen restart probabilities (2.1), transition probabilities (2.2) and set Φ for
all k ≥ 0 it holds that

‖Πk(π̃q)‖1 ≤ β1, ∀ϕ ∈ Φ, (A.17)∥∥∥∥[PTq (ϕ)
]k

Π0
q(ϕ)

∥∥∥∥
1

≤ β1, ∀ϕ ∈ Φ. (A.18)

Here Π0
q(ϕ) is defined in (A.11), β1 is defined in (A.13).

Proof. Similarly as it was done in Lemma A.4 one can prove that ‖Π̃0(π̃q)‖1 ≤ β1. Note that all elements of
the matrix PTq (ϕ) are non-negative for all ϕ ∈ Φ. Also the matrix Pq(ϕ) is row-stochastic: Pq(ϕ)epq = epq ,
where epq ∈ Rpq is the vector of all ones. Hence maximum 1-norm of the column of PTq (ϕ) is equal to 1 and
‖PTq (ϕ)‖1 = 1. Using the submultiplicative property (A.10) of the matrix 1-norm we obtain by induction that

‖Πk+1(π̃q)‖1 = ‖PTq (ϕ)Πk(π̃q)‖1
(A.10)
≤ ‖PTq (ϕ)‖1‖Πk(π̃q)‖1 ≤ β1.

Inequality A.18 is proved in the same way using the Lemma A.4 as the induction basis.
Lemma A.6. Let the assumptions of Lemma A.5 hold. Then for any N > 1

‖Π̃q(ϕ,N, π̃q)‖1 ≤
β1

α
, ∀ϕ ∈ Φ, (A.19)

where Π̃q(ϕ,N, π̃q) is defined in (A.16), β1 is defined in (A.13).

Proof. Using the triangle inequality for the matrix 1-norm we obtain

‖Π̃q(ϕ,N, π̃q)‖1
(A.16)
=

∥∥∥∥∥ 1

1− (1− α)N+1

N∑
k=0

(1− α)kΠk(π̃q)

∥∥∥∥∥
1

≤

1

1− (1− α)N+1

N∑
k=0

(1− α)k‖Πk(π̃q)‖1
(A.17)
≤ β1

α
.

Lemma A.7. Let us fix some q ∈ Q. Let Π0
q(ϕ) be defined in (A.11) and Π̃0(π̃q) be defined in (A.14), where

π0
q(ϕ) is defined in (2.1), pi(ϕ)T , i ∈ 1, . . . , pq is the i-th row of the matrix Pq(ϕ) defined in (2.2). Assume

that the vector π̃q ∈ Spq (1) satisfies
‖π̃q − πq(ϕ)‖1 ≤ ∆1. (A.20)

Then for the chosen restart prbabilities (2.1), transition probabilities (2.2) and set Φ it holds that.

‖Π̃0(π̃q)−Π0
q(ϕ)‖1 ≤ β1∆1 ∀ϕ ∈ Φ, (A.21)

where β1 is defined in (A.13).

Proof.

‖Π̃0(π̃q)−Π0
q(ϕ)‖1

(3.3),(A.14)
= (1− α)

∥∥∥∥∥
pq∑
i=1

dpi(ϕ)

dϕT
([π̃q]i − [πq(ϕ)]i)

∥∥∥∥∥
1

≤

≤ (1− α)

pq∑
i=1

∥∥∥∥dpi(ϕ)

dϕT

∥∥∥∥
1

|[π̃q]i − [πq(ϕ)]i|
(A.12),(A.20)
≤ β1∆1.

Lemma A.8. Let us fix some q ∈ Q. Let Π̃q(ϕ,N, π̃q) be cdefined in (A.16) and dπq(ϕ)

dϕT be given in (3.3),
where π0

q(ϕ) is defined in (2.1), pi(ϕ)T , i ∈ 1, . . . , pq is the i-th row of the matrix Pq(ϕ) defined in (2.2).
Assume that the vector π̃ ∈ Spq (1) in (A.14) satisfies ‖π̃ − πq(ϕ)‖1 ≤ ∆1. Then for the chosen restart
prbabilities (2.1), transition probabilities (2.2) and set Φ, for all N > 1 it holds that∥∥∥∥Π̃q(ϕ,N, π̃q)−

dπq(ϕ)

dϕT

∥∥∥∥
1

≤ β1∆1

α
+

2β1

α
(1− α)N+1, ∀ϕ ∈ Φ, (A.22)

where β1 is defined in (A.13).

Proof. Using (A.21) as the induction basis and making the same arguments as in the proof of the Lemma A.5
we obtain for every k ≥ 0∥∥∥Πk+1(π̃q)− [PTq (ϕ)]k+1Π0

q(ϕ)
∥∥∥

1
=
∥∥∥PTq (ϕ)

(
Πk(π̃q)− [PTq (ϕ)]kΠ0

q(ϕ)
)∥∥∥

1

(A.10)
≤

≤
∥∥∥PTq (ϕ)

∥∥∥
1

∥∥∥Πk(π̃q)− [PTq (ϕ)]kΠ0
q(ϕ)

∥∥∥
1
≤ β1∆1.
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Equation 3.3 can be rewritten in the following way

dπq(ϕ)

dϕT
=
[
I − (1− α)PTq (ϕ)

]−1

Π0
q(ϕ) =

∞∑
k=0

(1− α)k
[
PTq (ϕ)

]k
Π0
q(ϕ). (A.23)

Using this equality and the previous inequality we obtain∥∥∥∥∥
∞∑
k=0

(1− α)kΠk(π̃q)−
dπq(ϕ)

dϕT

∥∥∥∥∥
1

=

∥∥∥∥∥
∞∑
k=0

(1− α)kΠk(π̃q)−
∞∑
k=0

(1− α)k
[
PTq (ϕ)

]k
Π0
q(ϕ)

∥∥∥∥∥
1

≤

≤
∞∑
k=0

(1− α)k
∥∥∥∥Πk(π̃q)−

[
PTq (ϕ)

]k
Π0
q(ϕ)

∥∥∥∥
1

≤ β1∆1

α
. (A.24)

On the other hand∥∥∥∥∥Π̃q(ϕ,N, π̃q)−
∞∑
k=0

(1− α)kΠk(π̃q)

∥∥∥∥∥
1

(A.16)
=

=

∥∥∥∥∥ 1

1− (1− α)N+1

N∑
k=0

(1− α)kΠk(π̃q)−
∞∑
k=0

(1− α)kΠk(π̃q)

∥∥∥∥∥
1

=

=

∥∥∥∥∥ (1− α)N+1

1− (1− α)N+1

N∑
k=0

(1− α)kΠk(π̃q)−
∞∑

k=N+1

(1− α)kΠk(π̃q)

∥∥∥∥∥
1

(A.17)
≤

≤ β1(1− α)N+1

1− (1− α)N+1

N∑
k=0

(1− α)k + β1

∞∑
k=N+1

(1− α)k =
2β1

α
(1− α)N+1.

This inequality together with (A.24) gives (A.22) by the triangle inequality.

Lemma A.9. Assume that for every q ∈ Q the approximation π̃q(ϕ) to the ranking vector, satisfying ‖π̃q(ϕ)−
πq(ϕ)‖1 ≤ ∆1, is available. Assume that for every q ∈ Q the approximation Π̃q(ϕ) to the full derivative of
ranking vector dπq(ϕ)

dϕT as solution of (3.3), satisfying∥∥∥∥Π̃q(ϕ)− dπq(ϕ)

dϕT

∥∥∥∥
1

≤ ∆2

is available. Let us define

∇̃f(ϕ) =
2

|Q|

|Q|∑
q=1

(
Π̃q(ϕ)

)T
ATq (Aqπ̃q(ϕ))+. (A.25)

Then ∥∥∥∇̃f(ϕ)−∇f(ϕ)
∥∥∥
∞
≤ 2r∆2 + 4r∆1 max

q∈Q

∥∥∥Π̃q(ϕ)
∥∥∥

1
, (A.26)

where∇f(ϕ) is the gradient (3.4) of the function f(ϕ) (3.1).

Proof. Let us fix any q ∈ Q. Then we have∥∥∥∥∥(Π̃q(ϕ)
)T

ATq (Aqπ̃q(ϕ))+ −
(
dπq(ϕ)

dϕT

)T
ATq (Aqπq(ϕ))+

∥∥∥∥∥
∞

≤

≤
∥∥∥∥(Π̃q(ϕ)

)T
ATq (Aqπ̃q(ϕ))+ −

(
Π̃q(ϕ)

)T
ATq (Aqπq(ϕ))+

∥∥∥∥
∞

+

+

∥∥∥∥∥(Π̃q(ϕ)
)T

ATq (Aqπq(ϕ))+ −
(
dπq(ϕ)

dϕT

)T
ATq (Aqπq(ϕ))+

∥∥∥∥∥
∞

(A.10)
≤

≤
∥∥∥Π̃q(ϕ)

∥∥∥
1
‖Aq‖1 ‖(Aqπq(ϕ))+ − (Aqπ̃q(ϕ))+‖∞+

+

∥∥∥∥Π̃q(ϕ)− dπq(ϕ)

dϕT

∥∥∥∥
1

‖Aq‖1 ‖(Aqπq(ϕ))+‖∞
(A.4),(A.6)
≤

∥∥∥Π̃q(ϕ)
∥∥∥

1
· r · 2∆1 + ∆2 · r · 1.

Here we used that Aq ∈ Rrq×pq and its elements are either 0 or 1 and the fact that rq ≤ r for all q ∈ Q, and
that for any matrix M ∈ Rn1×n2 ‖MT ‖∞ = ‖M‖1.
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Using this inequality and definitions (3.4), (A.25) we obtain (A.26).

Proof of Lemma 2

Let us first prove Inequality 4.8. According to Lemma A.1 calculated vector π̃q(ϕ,N1) satisfies

‖π̃q(ϕ,N1)− πq(ϕ)‖1 ≤
αδ2

12β1r
, ∀q ∈ Q. (A.27)

This together with Lemma A.8 with π̃q(ϕ,N1) in the role of π̃q for all q ∈ Q gives since Π̃q(ϕ,N2) =

Π̃q(ϕ,N2, π̃q(ϕ,N1))∥∥∥∥Π̃q(ϕ,N2)− dπq(ϕ)

dϕT

∥∥∥∥
1

≤
β1

αδ2
12β1r

α
+

2β1

α
(1− α)N2+1 ≤ δ2

12r
+
β1

α

αδ2
4β1r

=
δ2
3r

This inequality together with (A.27), Lemma A.6 with π̃q(ϕ,N1) in the role of π̃q for all q ∈ Q and Lemma
A.9 with π̃q(ϕ,N1) in the role of π̃q(ϕ) and Π̃q(ϕ,N2) in the role of Π̃q(ϕ) for all q ∈ Q gives

‖g̃(ϕ, δ2)−∇f(ϕ)‖∞ ≤ 2r
δ2
3r

+ 4r
αδ2

12β1r

β1

α
= δ2.

Let us now estimate number of a.o. and memory which is needed to calculate g̃(ϕ, δ2). We use the same
notations TAO, MM, UM as in the proof of Lemma A.1.

1. We reserve vector g1 ∈ Rm to store current (in terms of steps in q) approximation of g̃(ϕ, δ2) and
g2 ∈ Rm to store next summand in the sum (4.7). So TAO = 0, MM = UM = 2m.

2. For every q ∈ Q repeat.

2.1. Set π = π̃q(ϕ,N1). Also save in memory 〈ϕ1,V
q
j 〉 for all j ∈ Uq ; 〈ϕ2,E

q
il〉 for all i ∈ Vq ,

l : i→ l;
∑
j∈Uq
〈ϕ1,V

q
j 〉 and

∑
l:i→l〈ϕ2,E

q
il〉 for all i ∈ Vq and the matrix Pq(ϕ). All this

data was calculated during the calculation of π̃q(ϕ,N1), see the proof of Lemma A.1. According
to Lemma A.1 and memory used to save the listed objects we obtain TAO = 3mpqsq+3pqsqN1,
MM = 2m+ 2pqsq + nq + pqsq + 1 + pq ≤ 2m+ 4pqsq , UM = 2m+ pq + nq + pqsq +
1 + pq + pqsq ≤ 2m+ 3pqsq .

2.2. Now we need to calculate Π̃q(ϕ,N2). We reserve variables Gt, G1, G2 ∈ Rpq×m to store
respectively sum in (4.5) , Πk, Πk+1 for current k ∈ 1, . . . , N2. Hence TAO = 3mpqsq +
3pqsqN1, MM = 2m+ 4pqsq + 3mpq , UM = 2m+ 3pqsq + 3mpq .

2.2.1. First iteration of this method requires to calculate Π̃0 = α
dπ0

q(ϕ)

dϕT + (1 −
α)
∑pq
i=1

dpi(ϕ)

dϕT [π̃q(ϕ,N1)]i.

2.2.1.1. We first calculate G1 = α
dπ0

q(ϕ)

dϕT . In accordance to its definition (2.1) one has for all
i ∈ Uq , l = 1, . . . ,m1[

α[π0
q ]i

dϕ

]
l

=

 αVq
i∑

j∈Uq
〈ϕ1,V

q
j 〉
− α〈ϕ1,V

q
i 〉(∑

j∈Uq
〈ϕ1,V

q
j 〉
)2

∑
j∈Uq

Vq
j


l

and
[
α[π0

q ]i

dϕ

]
l

= 0 for l = m1 + 1, . . . ,m. We set a = α∑
j∈Uq

〈ϕ1,V
q
j 〉

and b =

a∑
j∈Uq

〈ϕ1,V
q
j 〉

, v =
∑
j∈Uq

Vq
j . This requires 2 + m1nq a.o. and 2 + m1 memory

items. Now the calculation of all non-zero elements of α
dπ0

q(ϕ)

dϕT takes 4m1nq a.o. since
for fixed i, l we need 4 a.o. We obtain TAO = 3mpqsq + 3pqsqN1 + 5m1nq + 2,
MM = 2m+ 4pqsq + 3mpq +m1 + 2, UM = 2m+ 3pqsq + 3mpq .

2.2.1.2. Now we calculate Π̃0. For every i = 1, . . . , pq the matrix (1− α) dpi(ϕ)

dϕT [π̃q(ϕ,N1)]i ∈

Rpq×m is calculated in the same way as the matrix α
dπ0

q(ϕ)

dϕT with obvious modifications

due to dpi(ϕ)

dϕT
1

= 0 and number of non-zero elements in vector pi(ϕ) is not more than
sq . We also use additional a.o. number and memory amount to calculate and save
(1 − α)[π̃q(ϕ,N1)]i. We save the result for current i in G2. So for fixed i we need
additionally 3 + 5m2sq a.o and 3 + m2 memory items. Also on every step we set
G1 = G1 +G2 which requires not more than m2sq a.o. since at every step G2 has not
more than m2sq non-zero elements. We set Gt = G1. Note that Gt always has a block
of (pq − nq)×m1 zero elements and hence has not more than m2pq +m1nq non-zero
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elements. At the end we obtain TAO = 3mpqsq + 3pqsqN1 + 5m1nq + 2 + pq(3 +
5m2sq +m2sq) +m2pq +m1nq , MM = 2m+ 4pqsq + 3mpq +m1 + 2 +m2 + 3 ≤
3m+ 4pqsq + 3mpq + 5, UM = 2m+ pqsq + 3mpq + pq (since we need to store in
memory only g1, g2, Gt, G1, G2, P

T
q (ϕ), π).

2.2.2. Set a = (1− α).
2.2.3. For every step k from 1 to N2

2.2.3.1. We set G2 = PTq (ϕ)G1. In this pperation potentially each of pqsq elements of matrix
PTq (ϕ) needs to be multiplied my m elements of matrix G1 and this multiplication is
coupled with one addition. So in total we need 2mpqsq a.o.

2.2.3.2. We set Gt = Gt + aG1. This requires 2m1nq + 2m2pq a.o.
2.2.3.3. We set a = (1− α)a.
2.2.3.4. In total every step requires not more than 2mpqsq + 2m1nq + 2m2pq + 1 a.o.

2.2.4. At the end o this stage we have. TAO = 3mpqsq + 3pqsqN1 + 5m1nq + 2 + pq(3 +
5m2sq + m2sq) + m2pq + m1nq + N2(2mpqsq + 2m1nq + 2m2pq + 1), MM =
3m+ 4pqsq + 3mpq + 5, UM = 2m+mpq + pq (since we need to store in memory only
g1, g2, Gt, π).

2.2.5. Set Gt = α
1−(1−α)a

Gt. This takes 3 +m2pq +m1nq a.o.
2.2.6. At the end o this stage we have. TAO = 3mpqsq+3pqsqN1+5m1nq+2+pq(3+5m2sq+

m2sq) + m2pq + m1nq + N2(2mpqsq + 2m1nq + 2m2pq + 1) + 3 + m2pq + m1nq ,
MM = 3m + 4pqsq + 3mpq + 5, UM = 2m + mpq + pq (since we need to store in
memory only g1, g2, Gt, π).

2.3. Calculate u = (Aqπ̃q(ϕ,N1))+. This requires additionally 2rq a.o. and rq memory.
2.4. Calculate π = ATq u. This requires additionally 4rq a.o.

2.5. Calculate g2 = GTt π. This requires additionally 2m1nq + 2m2pq a.o.
2.6. Set g1 = g1 + g2. This requires additionally m a.o.
2.7. At the end we have TAO = 3mpqsq+3pqsqN1+5m1nq+2+pq(3+5m2sq+m2sq)+m2pq+

m1nq+N2(2mpqsq+2m1nq+2m2pq+1)+3+m2pq+m1nq+7rq+2m1nq+2m2pq+m,
MM = 3m + 4pqsq + 3mpq + 5 + rq , UM = 2m (since we need to store in memory only
g1, g2).

3. Set g1 = 2
|Q|g1. This requires additionally m+ 1 a.o.

4. At the end we have TAO =
∑
q∈Q(3mpqsq + 3pqsqN1 + 5m1nq + 2 + pq(3 + 5m2sq +m2sq) +

m2pq + m1nq + N2(2mpqsq + 2m1nq + 2m2pq + 1) + 3 + m2pq + m1nq + 6rq + 2m1nq +
2m2pq+m)+m+1 ≤ |Q|(10mps+3psN1 +3mpsN2 +7r), MM = 3m+5+maxq∈Q(4pqsq+
3mpq + rq) ≤ 4ps+ 4mp+ r, UM = m (since we need to store in memory only g1).

B Missed proofs for Section 5

Consider smoothed counterpart of the function f(x):

fτ (x) = Ef(x+ τζ) =
1

VB

∫
B
f(x+ τζ)dζ,

where ζ is uniformly distributed over unit ball B = {t ∈ Rm : ‖t‖2 ≤ 1} random vector, VB is the volume of
the unit ball B, τ ≥ 0 is a smoothing parameter. This type of smoothing is well known.

It is easy to show that

• If f is convex, then fτ is also convex

• If f ∈ C1,1
L (‖ · ‖2), then fτ ∈ C1,1

L (‖ · ‖2).

• If f ∈ C1,1
L (‖ · ‖2), then f(x) ≤ fτ (x) ≤ f(x) + Lτ2

2
for all x ∈ Rm.

The random gradient-free oracle is usually defined as follows

gτ (x) =
m

τ
(f(x+ τξ)− f(x))ξ,

where ξ is uniformly distributed vector over the unit sphere S = {t ∈ Rm : ‖t‖2 = 1}. It can be shown that
Egτ (x) = ∇fτ (x). Since we can use only inexact zeroth-order oracle we also define the counterpart of the
above random gradient-free oracle which can be really computed:

gτ (x, δ) =
m

τ
(f̃(x+ τξ, δ)− f̃(x, δ))ξ.
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The idea is to use gradient-type method with oracle gτ (x, δ) instead of the real gradient in order to minimize
fτ (x). Since fτ (x) is uniformly close to f(x) we can obtain a good approximation to the minimum value of
f(x).

We will need the following lemma.
Lemma B.10. Let ξ be random vector uniformly distributed over the unit sphere S ∈ Rm. Then

Eξ(〈∇f(x), ξ〉)2 =
1

m
‖∇f(x)‖22. (B.1)

Proof. We have Eξ(〈∇f(x), ξ〉)2 = 1
Sm(1)

∫
S(〈∇f(x), ξ〉)2dσ(ξ), where Sm(r) is the volume of the unit

sphere which is the border of the ball in Rm with radius r, σ(ξ) is unnormalized spherical measure. Note that
Sm(r) = Sm(1)rm−1. Let ϕ be the angle between∇f(x) and ξ. Then

1

Sm(1)

∫
S

(〈∇f(x), ξ〉)2dσ(ξ) =
1

Sm(1)

∫ π

0

‖∇f(x)‖22 cos2 ϕSm−1(sinϕ)dϕ =

=
Sm−1(1)

Sm(1)
‖∇f(x)‖22

∫ π

0

cos2 ϕ sinm−2 ϕdϕ

First changing the variable using equation x = cosϕ, and then t = x2, we obtain∫ π

0

cos2 ϕ sinm−2 ϕdϕ =

∫ 1

−1

x2(1− x2)(m−3)/2dx =

∫ 1

0

t1/2(1− t)(m−3)/2dt =

= B

(
3

2
,
m− 1

2

)
=

√
πΓ
(
m−1

2

)
2Γ
(
m+2

2

) ,

where Γ(·) is the Gamma-function and B is the Beta-function. Also we have

Sm−1(1)

Sm(1)
=
m− 1

m
√
π

Γ
(
m+2

2

)
Γ
(
m+1

2

) .
Finally using the relation Γ(m+ 1) = mΓ(m), we obtain

E(〈∇f(x), ξ〉)2 = ‖∇f(x)‖22
(

1− 1

m

)
Γ
(
m−1

2

)
2Γ
(
m+1

2

) = ‖∇f(x)‖22
(

1− 1

m

)
Γ
(
m−1

2

)
2m−1

2
Γ
(
m−1

2

) =

=
1

m
‖∇f(x)‖22

Lemma B.11. Let f ∈ C1,1
L (‖ · ‖2). Then, for any x, y ∈ Rm,

E‖gτ (x, δ)‖22 ≤ m2τ2L2 + 4m‖∇f(x)‖22 +
8δ2m2

τ2
(B.2)

− E〈gτ (x, δ), x− y〉 ≤ −〈∇fτ (x), x− y〉+
δm

τ
‖x− y‖2. (B.3)

Proof. Using (5.1) we obtain
(f̃(x+ τξ, δ)− f̃(x, δ))2 =

(f(x+ τξ)− f(x)− τ〈∇f(x), ξ〉+ τ〈∇f(x), ξ〉+ δ̃(x+ τξ)− δ̃(x))2 ≤

2(f(x+ τξ)− f(x)− τ〈∇f(x), ξ〉+ τ〈∇f(x), ξ〉)2 + 2(δ̃(x+ τξ)− δ̃(x))2 ≤

4

(
τ2

2
L‖ξ‖2

)2

+ 4τ2(〈∇f(x), ξ〉)2 + 8δ2 = τ4L2‖ξ‖4 + 4τ2(〈∇f(x), ξ〉)2 + 8δ2

Using (B.1), we get

Eξ‖gτ (x, δ)‖22 ≤
m2

τ2Vs

∫
S

(
τ4L2‖ξ‖4 + 4τ2(〈∇f(x), ξ〉)2 + 8δ2) ‖ξ‖22dσ(ξ) =

= m2τ2L2 + 4m‖∇f(x)‖22 +
8δ2m2

τ2
.

Using the equality Eξgτ (x) = ∇fτ (x), we have

− Eξ〈gτ (x, δ), x− y〉 = − m

τVs

∫
S

(fδ(x+ τξ)− fδ(x))〈ξ, x− y〉dσ(ξ) =

= − m

τVs

∫
S

(f(x+ τξ)− f(x))〈ξ, x− y〉dσ(ξ)−

− m

τVs

∫
S

(δ̃(x+ τξ)− δ̃(x))〈ξ, x− y〉dσ(ξ) ≤ −〈∇fτ (x), x− y〉+
δm

τ
‖x− y‖.
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Let us denote ψ0 = f(x0), and ψk = EΞk−1f(xk), k ≥ 1.

We say that the smooth function is µ-strongly convex (or strongly convex with parameter µ ≥ 0) if and only if
for any x, y ∈ Rm it holds that

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖2. (B.4)

Theorem 1 (extended) Let f ∈ C1,1
L (‖ · ‖2) and convex. Assume that x∗ ∈ intX and the sequence xk be

generated by Algorithm 1 with h = 1
8mL

. Then for any M ≥ 0, we have

EUM−1f(x̂M )− f∗ ≤ 8mLD2

M + 1
+
τ2L(m+ 8)

8
+
δmD

4τ
+
δ2m

Lτ2
,

where f∗ is the solution of the problem minx∈X f(x). If, moreover, f is strongly convex with constant µ, then

ψM − f∗ ≤
1

2
L

(
δτ +

(
1− µ

16mL

)M
(D2 − δτ )

)
, (B.5)

where δτ = τ2L(m+8)
4µ

+ 4mδD
µτ

+ 2mδ2

µτ2L
.

Proof. We extend the proof in [16] for the case of constrained optimization, randomization on a sphere (instead
of randomization based on normal distribution) and for the case when one can calculate the function value only
with some error of unknown nature.

Consider the point xk, k ≥ 0 generated by the method on the k-th iteration. Denote rk = ‖xk − x∗‖2. Note
that rk ≤ D. We have:

r2
k+1 = ‖xk+1 − x∗‖22 ≤ ‖xk − x∗ − hgτ (xk, δ)‖22 =

= ‖xk − x∗‖22 − 2h〈gτ (xk, δ), xk − x∗〉+ h2‖gτ (xk, δ)‖22.

Taking the expectation with respect to ξk we get

Eξkr
2
k+1

(B.2),(B.3)
≤ r2

k − 2h〈∇fτ (xk), xk − x∗〉+
2δmh

τ
rk+

+ h2

(
m2τ2L2 + 4m‖∇f(xk)‖22 +

8δ2m2

τ2

)
≤

≤ r2
k − 2h(f(xk)− fτ (x∗)) +

δmhD

4τ
+

+ h2

(
m2τ2L2 + 8mL(f(xk)− f∗) +

8δ2m2

τ2

)
≤

≤ r2
k − 2h(1− 4hmL)(f(xk)− f∗) +

δmhD

4τ
+

+m2h2τ2L2 + hLτ2 +
8δ2m2h2

τ2
≤

≤ r2
k +

Dδ

4τL
− f(xk)− f∗

8mL
+
τ2(m+ 8)

64m
+

δ2

8τ2L2
. (B.6)

Taking expectation with respect to Uk−1 and defining ρk+1
def
= EUkr

2
k+1 we obtain

ρk+1 ≤ ρk −
ψk − f∗

8mL
+
τ2(m+ 8)

64m
+

Dδ

4τL
+

δ2

8τ2L2
.

Summing up these inequalities from k = 0 to k = M and dividing by M + 1 we obtain (5.2)

Estimate 5.2 also holds for ψ̂M
def
= EUM−1f(x̂M ), where x̂M = arg minx{f(x) : x ∈ {x0, . . . , xM}}.

Now assume that the function f(x) is strongly convex. From (B.6) we get

Eξkr
2
k+1

(B.4)
≤
(

1− µ

16mL

)
r2
k +

Dδ

4τL
+
τ2(m+ 8)

64m
+

δ2

8τ2L2

Taking expectation with respect to Uk−1 we obtain

ρk+1 ≤
(

1− µ

16mL

)
ρk +

Rδ

τL
+
τ2(m+ 8)

64m
+

δ2

8τ2L2

and

ρk+1 − δτ ≤
(

1− µ

16mL

)
(ρk − δτ ) ≤

≤
(

1− µ

16mL

)k+1

(ρ0 − δτ ).

Using the fact that ρ0 ≤ D2 and ψk − f∗ ≤ 1
2
Lρk we obtain (B.5).
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C Missed proofs for Section 6

Let us define for any x̄ ∈ E , g ∈ E∗, γ > 0

xX(x̄, g, γ) = arg min
x∈X

{
〈g, x〉+

1

γ
V (x, x̄) + h(x)

}
, (C.1)

gX(x̄, g, γ) =
1

γ
(x̄− xX(x̄, g, γ)). (C.2)

We assume that the set X is simple in a sense that the vector xX(x̄, g, γ) can be calculated explicitly or very
efficiently for any x̄ ∈ X , g ∈ E∗, γ.

We will need the following two results obtained in [7].
Lemma C.12. Let xX(x̄, g, γ) be defined in (C.1) and gX(x̄, g, γ) be defined in (C.2). Then, for any x̄ ∈ X ,
g ∈ E∗ and γ > 0, it holds

〈g, gX(x̄, g, γ)〉 ≥ ‖gX(x̄, g, γ)‖2 +
1

γ
(h(xX(x̄, g, γ))− h(x̄)). (C.3)

Lemma C.13. Let gX(x̄, g, γ) be defined in (C.2). Then, for any g1, g2 ∈ E∗, it holds

‖gX(x̄, g1, γ)− gX(x̄, g2, γ)‖ ≤ ‖g1 − g2‖∗ (C.4)

Proof of Theorem 3. First of all let us show that the procedure of search of point wk satisfying (6.3), (6.4) is
finite. It follows from the fact that for Mk ≥ L the following inequality follows from (6.2):

f̃(wk, δ)−
ε

16Mk

(6.2)
≤ f(wk)

(6.2)
≤ f̃(xk, δ) + 〈g̃(xk, δ), wk − xk〉+

L

2
‖wk − xk‖2 +

ε

16Mk

which is (6.4).

Let us now obtain the rate of convergence. Using definition of xk+1 and (6.4) we obtain for any k = 0, . . . ,M

f(xk+1)− ε

16Mk
= f(wk)− ε

16Mk

(6.2)
≤ f̃(wk, δ)

(6.4)
≤ f̃(xk, δ)+

+ 〈g̃(xk, δ), xk+1 − xk〉+
Mk

2
‖xk+1 − xk‖2 +

ε

8Mk

(C.2),(6.3)
=

= f̃(xk, δ)−
1

Mk

〈
g̃(xk, δ), gX

(
xk, g̃(xk, δ),

1

Mk

)〉
+

1

2Mk

∥∥∥∥gX (xk, g̃(xk, δ),
1

Mk

)∥∥∥∥2

+
ε

8Mk

(6.2),(C.3)
≤

≤ f(xk) +
ε

16Mk
−

[
1

Mk

∥∥∥∥gX (xk, g̃(xk, δ),
1

Mk

)∥∥∥∥2

+ h(xk+1)− h(xk)

]
+

+
1

2Mk

∥∥∥∥gX (xk, g̃(xk, δ),
1

Mk

)∥∥∥∥2

+
ε

8Mk
.

This leads to

ψ(xk+1) ≤ ψ(xk)− 1

2Mk

∥∥∥∥gX (xk, g̃(xk, δ),
1

Mk

)∥∥∥∥2

+
ε

4Mk
.

for all k = 0, . . . ,M .

Summing up these inequalities for k = 0, . . . , N we get∥∥∥∥gX (xk̂, g̃k̂, 1

Mk̂

)∥∥∥∥2 N∑
k=0

1

2Mk
≤

N∑
k=0

1

2Mk

∥∥∥∥gX (xk, g̃k, 1

Mk

)∥∥∥∥2

≤

≤ ψ(x0)− ψ(xN+1) +
ε

4

N∑
k=0

1

Mk

Hence using the fact that Mk ≤ 2L for all k ≥ 0 (which easily follows from the first argument of the proof) and
that for all x ∈ X ψ(x) ≥ ψ∗ > −∞, we obtain∥∥∥∥gX (xk̂, g̃k̂, 1

Mk̂

)∥∥∥∥2

≤ 1∑N
k=0

1
2Mk

(
ψ(x0)− ψ∗ +

ε

4

N∑
k=0

1

Mk

)
Mk≤2L

≤

4L(ψ(x0)− ψ∗)
N + 1

+
ε

2
,
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which is (6.5).

The estimate for the number of checks of Inequality 6.4 is proved in the same way as in [26].

D Table of notations

26



Q Set of queries.
Vq Set of browsing graph vertices for query q ∈ Q.
pq |Vq|
p maxq∈Q pq
sq maxi∈Vq

|{j : i→ j ∈ Eq}| – maximum number of neighbours in the graph
s maxq∈Q sq
V jq Set of nodes annotated with label `+ 1− j.
Eq Set of browsing graph edges for query q ∈ Q.

Uq ⊂ Vq Seed set for query q ∈ Q.
nq |Uq|
n maxq∈Q nq

Vq
i ∈ Rm1

+ Vector of node’s features for q ∈ Q, i ∈ Vq .
Eqij ∈ Rm2

+ Vector of edges’s features for q ∈ Q, i→ j ∈ Eq .
ϕ := (ϕ1, ϕ2)T Vector of all parameters of the ranking algorithm.

m Total number of parameters, m = m1 +m2.
π0
q (ϕ) Vector of restart probabilities for query q ∈ Q.
Pq(ϕ) Matrix of transition probabilities for query q ∈ Q.
pi(ϕ) i-th column of the matrix PTq (ϕ).
πq(ϕ) Vector of page ranks given by solution of (2.3).

π̃q(ϕ,N) Approximation for the vector πq(ϕ), obtained by Method (4.1).
πk Intermediate iteration in Method (4.1).
N Number of steps in Method (4.1).

dπq(ϕ)
dϕT ∈ Rpq×m Matrix of derivative of πq(ϕ) w.r.t. ϕ.

Π̃q(ϕ,N2) Approximation for the matrix dπq(ϕ)
dϕT , obtained by Method (4.4), (4.5).

Π0 α
dπ0

q(ϕ)

dϕT + (1− α)
∑pq
i=1

dpi(ϕ)
dϕT [π̃q(ϕ,N1)]i.

Πk Intermediate iteration in Method (4.4), (4.5).
N1 Number of steps in Method (4.1) for approximation of matrix dπq(ϕ)

dϕT .
N2 Number of steps in Method (4.4), (4.5).

Aq ∈ Rrq×pq Matrix, representing assessor’s view of the relevance of pages to the query q ∈ Q.
rq

∑
1≤j<l≤` |V jq ||V lq |.

r maxq∈Q rq .
α ∈ (0, 1) Restart probability in the random walk on the browsing graph.

R Radius of the feasible set for the variable φ.
ϕ̂ Center of the feasible set for the variable φ.
Φ {ϕ ∈ Rm : ‖ϕ− ϕ̂‖2 ≤ R} – feasible set for the variable φ in the learning problem.

f(ϕ) The objective, which is minimized in the learning problem.
f̃(·, δ1) Algorithmic approximation of f(·) with error δ1.
δ1 Error of the algorithmic approximation for f(·).

g̃(·, δ2) Algorithmic approximation of∇f(·) with error δ2.
δ2 Error of the algorithmic approximation for∇f(·).

gτ (·, δ) Biased gradient-free oracle in Random Gradient-Free Method.
E , E∗ Finite-dimensional real vector space, its dual.
〈g, x〉 Value of linear function g ∈ E∗ at x ∈ E .

‖ · ‖, ‖ · ‖∗ Norm on E , its dual.
L Lipschitz constant of gradient of f(·) or inexact oracle parameter in (6.2).
δ Parameter of inexact oracle in (6.2).
τ Smoothing parameter in Random Gradient-Free Method.
ξ Random vector used in Random Gradient-Free Method.
h Stepsize in Random Gradient-Free Method.
ε Error of the solution of the learning problem.
M Number of steps on the upper level of Random Gradient-Free Method.
d(x) Prox-function used in gradient method.
V (x, z) Bregman distance used in gradient method.
Mk Appoximation for "Lipschitz constant" in gradient method at iteration k.
L0 Initial guess for "Lipschitz constant" in gradient method at iteration k.
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