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Abstract

In this paper, we consider a non-convex loss-minimization problem of learning Su-
pervised PageRank models, which can account for some properties not considered
by classical approaches such as the classical PageRank model. We propose gradient-
based and random gradient-free methods to solve this problem. Our algorithms
are based on the concept of an inexact oracle and unlike the state state-of-the-art
gradient-based method we manage to provide theoretically the convergence rate
guarantees for both of them. In particular, under the assumption of local convexity
of the loss function, our random gradient-free algorithm guarantees decrease of the
loss function value expectation. At the same time, we theoretically justify that with-
out convexity assumption for the loss function our gradient-based algorithm allows
to find a point where the stationary condition is fulfilled with a given accuracy. For
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both proposed optimization algorithms, we find the settings of hyperparameters
which give the lowest complexity (i.e., the number of arithmetic operations needed
to achieve the given accuracy of the solution of the loss-minimization problem).
The resulting estimates of the complexity are also provided. Finally, we apply
proposed optimization algorithms to the web page ranking problem and compare
proposed and state-of-the-art algorithms in terms of the considered loss function.

1 INTRODUCTION

The most acknowledged methods of measuring importance of nodes in graphs are based on random
walk models. Particularly, PageRank [18], HITS [[11]], and their variants [8} 9, [19] are originally
based on a discrete-time Markov random walk on a link graph. According to the PageRank algorithm,
the score of a node equals to its probability in the stationary distribution of a Markov process,
which models a random walk on the graph. Despite undeniable advantages of PageRank and
its mentioned modifications, these algorithms miss important aspects of the graph that are not
described by its structure. In contrast, a number of approaches allows to account for different
properties of nodes and edges between them by encoding them in restart and transition probabilities
(see [13, 14116, 110,12, 20, 21]]). These properties may include, e.g., the statistics about users’ interactions
with the nodes (in web graphs [[12] or graphs of social networks [2]), types of edges (such as URL
redirecting in web graphs [20]) or histories of nodes’ and edges’ changes [22]]. Particularly, the
transition probabilities in BrowseRank algorithm [[12] are proportional to weights of edges which are
equal to numbers of users’ transitions.

In the general ranking framework called Supervised PageRank [21]], weights of nodes and edges in a
graph are linear combinations of their features with coefficients as the model parameters. The existing
optimization method [21] of learning these parameters and the optimizations methods proposed
in the presented paper have two levels. On the lower level, the following problem is solved: to
estimate the value of the loss function (in the case of zero-order oracle) and its derivatives (in the
case of first-order oracle) for a given parameter vector. On the upper level, the estimations obtained
on the lower level of the optimization methods (which we also call inexact oracle information) are
used for tuning the parameters by an iterative algorithm. Following [6], the authors of Supervised
PageRank consider a non-convex loss-minimization problem for learning the parameters and solve
it by a two-level gradient-based method. On the lower level of this algorithm, an estimation of the
stationary distribution of the considered Markov random walk is obtained by classical power method
and estimations of derivatives w.r.t. the parameters of the random walk are obtained by power method
introduced in [23} [24]. On the upper level, the obtained gradient of the stationary distribution is
exploited by the gradient descent algorithm. As both power methods give imprecise values of the
stationary distribution and its derivatives, there was no proof of the convergence of the state-of-the-art
gradient-based method to a local optimum (for locally convex loss functions) or to the stationary
point (for not locally convex loss functions).

The considered constrained non-convex loss-minimization problem from [21]] can not be solved by
existing optimization methods which require exact values of the objective function such as [16]
and [[7]] due to presence of constraints for parameter vector and the impossibility to calculate exact
value of the loss function and its gradient. Moreover, standard global optimization methods can not be
applied to solve it, because they need access to some stochastic approximation for the loss-function
value which in expectation coincides with the true value of the loss-function.

In our paper, we propose two two-level methods to solve the loss-minimization problem from [21]].
On the lower level of these methods, we use the linearly convergent method from [[17]] to calculate
an approximation to the stationary distribution of Markov random walk. We analyze other methods
from [5]] and show that the chosen method is the most suitable since it allows to approximate the value
of the loss function with any given accuracy and has lowest complexity estimation among others.

Upper level of the first method is gradient-based. The main obstacle which we have overcome is
that the state-of-the-art methods for constrained non-convex optimization assume that the gradient
is known exactly, which is not the case in our problem. We develop a gradient method for general
constrained non-convex optimization problems with inexact oracle, estimate its convergence rate to
the stationary point of the problem. One of the advantages of our method is that it does not require to
know the Lipschitz-constant of the gradient of the goal function, which is usually used to define the



stepsize of a gradient algorithm. In order to calculate approximation of the gradient which is used in
the upper-level method, we generalize linearly convergent method from [17]] (and use it as part of the
lower-level method). We prove that it has a linear rate of convergence as well.

Upper level of our second method is random gradient-free. Like for the gradient-based method, we
encounter the problem that the existing gradient-free optimization methods [7} [16] require exact
values of the objective function. Our contribution to the gradient-free methods framework consists
in adapting the approach of [16] to the case of constrained optimization problems when the value
of the function is calculated with some known accuracy. We prove a convergence theorem for this
method and exploit it on the upper level of the two-level algorithm for solving the problem of learning
Supervised PageRank.

Another contribution consists in investigating both for the gradient and gradient-free methods the
trade-off between the accuracy of the lower-level algorithm, which is controlled by the number of
iterations of method in [17]] and its generalization (for derivatives estimation), and the computational
complexity of the two-level algorithm as a whole. Finally, we estimate the complexity of the whole
two-level algorithms for solving the loss-minimization problem with a given accuracy.

In the experiments, we apply our algorithms to learning Supervised PageRank on real data (we
consider the problem of web pages’ ranking). We show that both two-level methods outperform
the state-of-the-art gradient-based method from [21]] in terms of the considered loss function. Sum-
ming up, unlike the state-of-the-art method our algorithms have theoretically proven estimates of
convergence rate and outperform it in the ranking quality (as we prove experimentally). The main
advantages of the first gradient-based algorithm are the following. There is no need to assume that
the function is locally convex in order to guarantee that it converges to the stationary point. This
algorithm has smaller number of input parameters than gradient-free, because it does not need the
Lipschitz constant of the gradient of the loss function. The main advantage of the second gradient-free
algorithm is that it avoids calculating the derivative for each element of a large matrix.

The remainder of the paper is organized as follows. In Section[2] we describe the random walk model.
In Section 3] we define the loss-minimization problem and discuss its properties. In Section[d] we
state two technical lemmas about the numbers of iterations of Nesterov—Nemirovski method (and
its generalization) needed to achieve any given accuracy of the loss function (and its gradient). In
Section [5] and Section [6] we describe the framework of random gradient-free and gradient-based
optimization methods respectively, generalize them to the case when the objective function values and
gradients are inaccurate and propose two-level algorithms for the stated loss-minimization problem.
Proofs of all our results can be found in Appendix. The experimental results are reported in Section[7]
In Section@ we summarize the outcomes of our study, discuss its benefits and directions of future
work.

2 MODEL DESCRIPTION

LetT" = (V, E) be a directed graph. As in [21]], we suppose that for any i € V and any i — j € E,
a vector of node’s features V; € R and a vector of edge’s features E;; € R’ are given. Let
p1 € R™, ¢y € R™2 be two vectors of parameters. We denote m = my + ma, p = |V,
© = (p1, <p2)T. Let us describe the random walk on the graph I', which was considered in [21].
A surfer starts a random walk from a random page ¢ € U (U is some subset in V' called seed set,
|U| = n). We assume that ; and node features are chosen in such way that ), (@1, Vy) is
non-zero. The initial probability of being at vertex ¢ € V' is called the restart probability and equals

0o = (p1, Vi)
O e Vi

and [7%(¢)]; = 0 fori € V \ U. At each step, the surfer (with a current position i € V) either
chooses with probability a € (0, 1) (originally [I8], « = 0.15), which is called the damping factor,
to go to any vertex from V in accordance with the distribution 7° () (makes a restart) or chooses to
traverse an outgoing edge (makes a transition) with probability 1 — a.. We assume that 5 and edges
features are chosen in such way that > ;.. ., (@2, E;;) is non-zero for all ¢ with non-zero outdegree.
For ¢ with non-zero outdegree, the probability

[P(p)]ij =

telU 2.1

(o2, Bij)

S o9, Eg) 22
> risi(p2, Ear) (2.2)



of traversing an edge ¢ — j € E is called the transition probability. If an outdegree of ¢ equals
0, then we set [P(p)];; = [7%(p)]; for all j € V (the surfer with current position i makes a
restart with probability 1). Finally, by Equations [2.1]and [2.2]the total probability of choosing vertex
j € V conditioned by the surfer being at vertex i equals a[r°(¢)]; + (1 — «)[P()];,;. Denote by
() € RP the stationary distribution of the described Markov process. It can be found as a solution
of the system of equations

7= an’(p) + (1 — )P (o) (2.3)

In this paper, we learn the ranking algorithm, which orders the vertices 4 by their probabilities [7]; in
the stationary distribution 7.

3 LOSS-MINIMIZATION PROBLEM STATEMENT

Let Q be a set of queries and, for any ¢ € @, a set of nodes V, which are relevant to g be given.
We are also provided with a ranking algorithm which assigns nodes ranking scores [m,];, i € V,
mq = mq(¢), as its output. For example, in web search, the score [m,]; may repesent relevance of the
page ¢ w.r.t. the query ¢g. Our goal is to find the parameter vector ¢ which minimizes the discrepancy
of the ranking scores from the ground truth scoring defined by assessors. For each ¢ € @, there is a
set of nodes in V; manually judged and grouped by relevance labels 1, . . ., £. We denote qu the set of

nodes annotated with label £ + 1 — j (i.e., Vq1 is the set of all nodes with the highest relevance score).
According to previous studies [12, 21} 22]], we consider the square loss function and minimize

Q|
f(g) = Tclm S I(Agm(9)) I3 G.1)

as a function of ¢ over some set of feasible values ®, where vector 24 has components [x]; =
max{x;, 0}, the matrices A, € R"*P4¢ ¢ € () represent assessor’s view of the relevance of pages to

the query ¢, 74 equals D, ;< [V7[|V}]. We denote r = max,eq 4. By definition each row of

matrix A, corresponds to some pair of pages i; € V:]j ,1g € Vql, where j < [, and the ¢;-th element
of this row is equal to —1, i2-th element is equal to 1, and all other elements are equal to 0.

We consider the ranking algorithm based on scores (2.3) in Markov random walk on a graph
ry= (Vq, Eq). We assume that feature vectors Vg, 1€V, Efj, t — j € By, depend on g as well.
For example, vertices in V, may represent web pages which were visited by users after submitting
a query ¢ and features may reflect different properties of query—page pair. For fixed ¢ € @, we
consider all the objects related to the graph I'; introduced in the previous section: U, := U, 7r2 =70,
P, := P, py := p, ng := n, mg := m. This allows ranking model to capture common (“static”)
dependencies, which do vary between different queries. In this way, the ranking scores depend on
query via the “dynamic” (query-dependent) features, but the parameters of the model « and ¢ are
not query-dependent. We also denote p = maxyeg pg» ¥ = MaXgeQ Ng, S = MaXqeQ S¢, Where
sq = max;ey, [{j : i = j € E,}|. In order to guarantee that the probabilities in (2.1]) and (2.2)) are
non-negative and that they do not blow up due to zero value of the denominator, we need appropriately
choose the set ® of possible values of parameters . Thus we choose some ¢ and R > 0 such that the
set @ defined as ® = {p € R™ : || — $||2 < R} lies in the set of vectors with positive components

R7? ﬂ The loss-minimization problem which we solve in this paper is as follows

gleigf(w)@z {epeR™ |l — @l < R} (3.2)

dmg ()

From (2.3), we obtain the following equation for p, x m matrix doT which is the derivative of

stationary distribution m4(¢) with respect to ¢

s drn? Da , -
ddzo(f) =a dfp(f) +(1-a) Z dzgf) [mq(@)]i + (1 — )P () ddfo(f), (3.3)

' As probablities [ (¢)]i, i € Vg, [Py ()], i — i € Fy, are scale-invariant (1) (\p) = 19 (¢), P;(\p) =

P,()), in our experiments, we consider the set ® = { € R™ : || — em||2 < 0.99} , where e, € R™ is the
vector of all ones, that has large intersection with the simplex {¢ € R, : ||¢||1 = 1}



where p; () is the i-th column of the matrix P, (¢). Then the gradient of the function f(¢) is easy
to derive:

Q| dﬂ' 90 T
1) |Q|Z( ; )AqT(Aqﬂq(w)h. (3.4)

4 NUMERICAL CALCULATION OF THE VALUE AND THE
GRADIENT OF f(y)

One of the main difficulties in solving Problem [3.2]is that calculation of the value of the function
f () requires to calculate |Q| vectors 7, () which solve 2.3). In our setting, this vector has huge
dimension p, and hence it is computationally very expensive to find it exactly. Moreover, in order to
calculate V f () one needs to calculate the derivative for each of these huge-dimensional vectors
which is also computationally very expensive to be done exactly. At the same time our ultimate goal is
to provide methods for solving Problem [3.2 with estimated rate of convergence and complexity. Due
to the expensiveness of calculating exact values of f () and V f () we have to use the framework
of optimization methods with inexact oracle which requires to control the accuracy of the oracle,
otherwise the convergence is not guaranteed. This means that we need to be able to calculate an
approximation to the function f(y) value (inexact zero-order oracle) with a given accuracy for
gradient-free methods and approximation to the pair (f(¢), V f(¢)) (inexact first-order oracle) with
a given accuracy for gradient methods Hence we need some numerical scheme which allows to
q (89 )

calculate approximation for 7, () and < for every ¢ € @ with a given accuracy.

Motivated by the last requirement we have analysed state-of-the-art methods for finding the solution of
Equation[2.3]in huge dimension summarized in the review [5] and power method, used in [18] 2} 21]].
Only four methods allow to make the difference ||7,(¢) — 74|, where 7, is the approximation, small
for some norm || - || which is crucial to estimate the error in the approximation of the function f ()
value. These methods are: Markov Chain Monte Carlo (MCMC), Spillman’s, Nesterov-Nemirovski’s
(NN) [17] and power method. Spillman’s algoritm and power method converge in infinity norm
which is usually p, times larger than 1-norm. MCMC converges in 2-norm which is usually /pg
times larger than 1-norm. Also MCMC is randomized and converges only in average which makes it
hard to control the accuracy of the approximation 7,. Unlike the other three, NN is deterministic and
converges in 1-norm which gives minimum ,/p, times better approximation. At the same time, to
the best of our knowledge, NN method is the only method that admits a generalization which, as we

d‘J(“") with any given accuracy.

prove in this paper, calculates the derivative

The method [17] for approximation of 7 () for any fixed ¢ € Q) constructs a sequence 7y, and the
output 74 (¢, N) (for some fixed non-negative integer V) by the following rule

N
mo =mo(p), Tt = P (@), Fole N) = T gyt N+1Z —a)fme. @)

Lemma 1. Assume that for some 61 > 0 Method{d.1\with N = [l In g——‘ — 1 is used to calculate
the vector 7w, (¢, N) for every q € Q. Then

QI
Flp,01) = |Q|ZII aa(0, N)) 113 4.2)

satisfies
1F(p,81) = f(p)] < 61 (4.3)

Moreover, the calculation of f(p,81) requires not more than |Q|(3mps + 3psN + 6r) a.o. and not
more than 3ps memory items.

The proof of Lemma |l|can be found in Appendix A.1.



Our generalization of the method [[17] for calculation of ‘Z(“O) for any ¢ € @ is the following.

Choose some non-negative integer N7 and calculate 7, (¢, N 1) using @.T). Calculate a sequence ITj,

d 0 Pq d ;
M, = o) 1-a)Y Z;f ) [Folos NOLiy  Tigr = P ()0, “.4)
=1

The output is (for some fixed non-negative integer N5)

Ny
~ 1
Iy (p, N2) = T (—ayeit Z(l — ). 4.5)
k=0

In what follows, we use the following norm on the space of matrices A € R™*"2: ||Al|; =
Max;=1,._.n> Y i1 |aijl-

Lemma 2. Let 3\ be a number (explicitly computable, see Appendix A.2 Equation such that

forall p € ®
Pq
+(1-a) Z
1 =1

with N1 = [é In %] — 1 is used for every q € Q to calculate the vector

7q(, N1) and Method with Ny = [é In ?—61:—‘ — 1 is used for every q € Q to calculate the
matrix 1, (0, Na) @3). Then the vector

dmy ()
deT

dpi ()
deoT

‘ < Bi. (4.6)
1

Assume that Method

QI T
oenta) = QI Z< (i N2 ) AZ (AqTig (9, N1))+ (4.7)

satisfies
lG(p,02) = V() o < 2. “s)

Moreover the calculation of §(p, d2) requires not more than |Q|(10mps + 3psNy + 3mpsNay + 7r)
a.o. and not more than 4ps + 4mp + r memory items.

The proof of Lemma 2] can be found in Appendix A.2.

S RANDOM GRADIENT-FREE OPTIMIZATION METHODS

In this section, we first describe general framework of random gradient-free methods with inexact
oracle and then apply it for Problem [3.2] Lemma/[I]allows to control the accuracy of the inexact
zero-order oracle and hence apply random gradient-free methods with inexact oracle.

5.1 GENERAL FRAMEWORK

Below we extend the framework of random gradient-free methods [1} [16} 7] for the situation of
presence of uniformly bounded error of unknown nature in the value of an objective function in
general optimization problem. Unlike [[16], we consider a constrained optimization problem and a
randomization on a Euclidean sphere which seems to give better large deviations bounds and doesn’t
need the assumption that the objective function can be calculated at any point of R™.

Let £ be a m-dimensional vector space. In this subsection, we consider a general function f(-) :
€ — R and denote its argument by x or y to avoid confusion with other sections. We denote the
value of linear function g € £* at z € £ by (g, z). We choose some norm || - || in £ and say that

Fech(l- 1 ift

L
(@) = fy) = (Vi@ z -yl < Sllz -yl Vryel. (5.1

The problem of our interest is to find minge x f(x), where f € Cil(H -]]), X is a closed convex
set and there exists a number D € (0, +00) such that diamX := max, yex ||z — y|| < D. Also



we assume that the inexact zero-order oracle for f(z) returns a value f(z,8) = f(x) + (), where
d(z) is the error satisfying for some ¢ > 0 (which is known) |§(z)| < ¢ for all z € X. Let
x* € argminge x f(z). Denote f* = mingecx f(z).

Unlike [16]], we define the biased gradient-free oracle g, (x,8) = 2(f(x +7€,0) — f(x, 8))E, where
¢ is a random vector uniformly distributed over the unit sphere S = {t € R™ : ||¢|| = 1}, T isa
smoothing parameter.

3

Algorithm|1|below is the variation of the projected gradient descent method. Here ITx (x) denotes
the Euclidean projection of a point  onto the set X.

Algorithm 1 Gradient-type method

Input: Point xg € X, stepsize h > 0, number of steps M.
Set k£ = 0.
repeat
Generate &, and calculate corresponding g, (z, d).
Calculate xp 1 = Hx (g — hg-(xk,0)).
Setk=Fk+1.
until & > M
Output: The point yp; = argmin, {f(z) : x € {zo,..., T }}-

Next theorem gives the convergence rate of Algorithm|I} Denote by = = (o, . . ., &) the history of
realizations of the vector £ generated on each iteration of the algorithm.

Theorem 1. Let f € C}'(|| - ||2) and convex. Assume that ©* € intX, and the sequence xy, is
generated by Algorithm|l|\with h = Sm%. Then for any M > 0, we have

8mLD?* 72L(m+8) 6émD §*m
= — f* < . °
E~M—1f(yM) f = M+1 + S + Ar + = (5.2)
The full proof of the theorem is in Appendix B.

It is easy to see that to make the right hand side of (5.2) less than a desired accuracy ¢ it is sufficient
to choose

2 3
M= {W—‘ T = Ly 5 < e2v2 , (5.3)
€ L(m +38) 8mD+/L(m + 8)

5.2 SOLVING THE LEARNING PROBLEM

In this subsection, we apply the results of the previous subsection to solve Problem [3.2] in the
following way. Note that we can not directly apply the results of [[16] due to presence of constraints
and inexactness of the oracle. We assume that the set ® is a small vicinity of some local minimum
©* and the function f(¢) is convex in this vicinity (generally speaking, the function defined in (3:1)
is nonconvex). We choose the desired accuracy ¢ for approximation of the optimal value f* in
this problem. This accuracy in accordance with (5.3)) gives us the number of steps of Algorithm [T}
the value of the parameter 7, the value of the required accuracy ¢ of the inexact zero-order oracle.
Knowing the value ¢, using Lemma [T] we choose the number of steps N of Method 4.1 and calculate
an approximation f (¢, d) for the function f(y) value with accuracy 6. Then we use the inexact

zero-order oracle f(y, d) to make a step of Algorithm Theorem and the fact that the feasible set
® is a Euclidean ball makes it natural to choose || - ||2-norm in the space R™ of parameter . It is
easy to see that in this norm diam® < 2R. Algorithm [2]is a formal record of these ideas. To the best
of our knowledge, this is the first time when the idea of random gradient-free optimization methods
is combined with some efficient method for huge-scale optimization using the concept of an inexact
zero-order oracle.

The most computationally hard on each iteration of the main cycle of this method are calculations of
flor + 7€k, 0), f(pk,d). Using Lemma we obtain that each iteration of Algorithmneeds not



Algorithm 2 Gradient-free method for Problem
Input: Point pg € ®, L — Lipschitz constant for the function f(¢) on ®, accuracy € > 0.

_ LR?| s e3v3 [
Define M = [128m L2 |, 5= 2 7=\ T
Set k = 0.
repeat

Generate random vector ¢y, uniformly distributed over a unit Euclidean sphere S in R™.
Calculate f(pr + 7€, 9), f(@k, 6) using Lemmawith 4 = 0.

Calculate g (¢r,0) = Z(f(pr + 7, 6) — f(Pr,6))Ek-

Calculate ¢ 11 = Ilg (@k - ﬁgr(@kﬂs))-
Setk =k + 1.
until £k > M

Output: The point ¢p; = argming{f(¢) : ¢ € {0, ..., om}}

more than

£3/2,/2

a.0. So, we obtain the following result, which gives the complexity of Algorithm [2]

3
2|Q| <3mps + Py
[

128mrRy/L(m +8) 6r>

Theorem 2. Assume that the set ® in (3.2)) is chosen in a way such that f(p) is convex on ® and some
* € argmingea f(¢) belongs also to int®. Then the mean total number of arithmetic operations
of the Algorithm for the accuracy ¢ (i.e. for the inequality Ez,, | f(pn) — f(p*) < e to hold) is

not more than
LR? 1. 128mrR+/L 8
768mps|Q)| m4 = In =2 (m +8) +6r|.
I3 53/2\/§

6 GRADIENT-BASED OPTIMIZATION METHODS

In this section, we first develop a general framework of gradient methods with inexact oracle for
non-convex problems from rather general class and then apply it for the particular Problem [3.2]
Lemma|T|and Lemma 2] allow to control the accuracy of the inexact first-order oracle and hence apply
proposed framework.

6.1 GENERAL FRAMEWORK

In this subsection, we generalize the approach in [7] for constrained non-convex optimization
problems. Our main contribution consists in developing this framework for an inexact first-order
oracle and unknown "Lipschitz constant" of this oracle.

Let £ be a finite-dimensional real vector space and £* be its dual. We denote the value of linear

function g € £* atx € E by (g, ). Let || - || be some norm on &, || - ||« be its dual. Our problem of
interest in this subsection is a composite optimization problem of the form
min{y(z) := f(z) + h(z)}, (6.1)

where X C & is a closed convex set, h(x) is a simple convex function, e.g. ||z||;. We assume that
f(z) is a general function endowed with an inexact first-order oracle in the following sense. There
exists a number L € (0, +00) such that for any 6 > 0 and any « € X one can calculate f(z,d) € R
and g(x,d) € £* satisfying

[f(y) = (f(@,6) = (g(x,0),y — x))| < gllx —yl*+a. (6.2)

for all y € X. The constant L can be considered as "Lipschitz constant" because for the exact first-

order oracle for a function f € C;"'(|| - ||) Inequality |6.2|holds with § = 0. This is a generalization
of the concept of (d, L)-oracle considered in [25]] for convex problems.



We choose a prox-function d(x) which is continuously differentiable and 1-strongly convex on X
with respect to || - ||. This means that for any z,y € X d(y) — d(z) — (Vd(z),y — z) > ||y — z||%.
We define also the corresponding Bregman distance V (x, z) = d(z) — d(z) — (Vd(2),x — 2).

Algorithm 3 Adaptive projected gradient algorithm

Input: Point o € X, number Ly > 0.
Setk =0, z = +o0.

repeat
Set M, = Ly, ﬂag =0.
repeat
Set§ = 16Mk
Calculate f(zy,d) and §(x, ).
Find

wy, = arg ;rgg{(ﬁ(xk, 0),x) + MV (x,zr) + h(z)} (6.3)

Calculate f(wy, 0).
If the inequality

- - M,
f(wg,0) < f(zk, ) + (G(wk, 6), w, — k) + TkHwk —zi* + (6.4)

_c
8 My,
holds, set flag = 1. Otherwise set My, = 2Mj.
until flag = 1
Set Tj1 = W, L1 = 2.
If HMk( Tp — $k+1)|| < z, setz = ||Mk( T — J}kJrl)”, K=k.
Setk =Fk+1.
until z < ¢
Output: The point T 4.

Theorem 3. Assume that f(x) is endowed with the inexact first-order oracle in a sense | and
that there exists a number ¢* > —oo such that Y(x) > * for all x € X. Then after M iterations of
Algorithm3)it holds that

4L —*
Mk (zx — 2x41)]” < % + % (6.5)

Moreover, the total number of checks oflnequality is not more than M + log, %

The full proof of the theorem is in Appendix C.

It is easy to show that when | Mg (zx — zx41)||> < ¢ for small ¢, then for all z € X it holds that
(Vi(xgs1) + Vh(zki1),x — Trx41) > —cy/e, where ¢ > 0 is a constant, Vh(zx4+1) is some
subgradient of h(z) at z i 1 1. This means that at the point x ;1 the necessary condition of a local
minimum is fulfilled with a good accuracy, i.e. zx 1 is a good approximation of a stationary point.

6.2 SOLVING THE LEARNING PROBLEM

In this subsection, we return to Problem [3.2]and apply the results of the previous subsection. Note that
we can not directly apply the results of [7]] due inexactness of the oracle. For this problem, A(-) = 0.
It is easy to show that in 1-norm diam® < 2R+/m. For any 6 > 0, Lemmawith 01 = é allows us

to obtain f (¢, d1) such that Inequality |4.3/holds and Lemmawith 02 = 17 \/» allows us to obtain

G(p, 62) such that Inequalityholds Similar to [25], since f € C}' (|| - [|2), these two inequalities

lead to Inequallty.for f(,61) in the role of f(z,6), §(, d2) in the role of §(x,d) and || - || in
the role of || - ||.

We choose the desired accuracy ¢ for approximating the stationary point of Problem This
accuracy gives the required accuracy J of the inexact first- order oracle for f() on each step of the
inner cycle of the Algorithm! Knowing the value §; = 5 and using Lemma , we choose the
number of steps N of Algorit m 1 and thus approximate f (¢) with the required accuracy d; by



f (e, 81). Knowing the value d; = ﬁ and using Lemma , we choose the number of steps Ny of

Method[4.1]and the number of steps N of Method [4.4] [4.5]and obtain the approximation (¢, d2) of

V f () with the required accuracy d2. Then we use the inexact first-order oracle (f (¢, d1), §(¢, d2))
to perform a step of Algorithm

Since @ is the Euclidean ball, it is natural to set € = R™ and || - || = || - ||2, choose the prox-function

d(¢) = 3l¢||3. Then the Bregman distance is V (¢, w) = ([ — w|3.

Algorithm E] is a formal record of the above ideas. To the best of our knowledge, this is the first

time when the idea of gradient optimization methods is combined with some efficient method for
huge-scale optimization using the concept of an inexact first-order oracle.

Algorithm 4 Adaptive gradient method for Problem 3.2

Input: Point g € ®, number Ly > 0, accuracy € > 0.
Setk =0, z = +o0.

repeat
Set My = Ly, flag = 0.
repeat
Set 6y = 32?\/[,; 02 = 64M;R\/E'
Calculate f(p,d1) using Lemmaand (g, 02) using Lemma

Find v
. - k

wg = arg min {(g(@kﬂsz), e ‘Png}
ped 2

Calculate f(wy, d1) using Lemma
If the inequality

fwi, 61) < fpr, 01) + (G(pk: 02), wi — 1) + %Hwk — i3 + 8%
k
holds, set flag = 1. Otherwise set My = 2Mj.
until flag = 1
Set pr+1 = W, Lk+1 = %, .
If || My (o — ori1)lly < 2 setz = || My (or — @ria)llo K = k.
Setk=Fk+1.
until z < ¢
Output: The point @g ;1.

The most computationally consuming operations of the inner cycle of Algorithm A are calculations
of f(vk,01), f(wk,d1) and g(pk, d2). Using Lemma |1|and Lemma [2| we obtain that each inner
iteration of Algorithm 4] needs not more than

6mps|Q)| In 1024817 RL+/m
o

Q|+ e

a.0. Using Theorem[3] we obtain the following result, which gives the complexity of Algorithm 4]

Theorem 4. The total number of arithmetic operations in AlgorithmH|for the accuracy € (i.e. for the
inequality | Mk (pr — (,QK+1)||§ < ¢ to hold) is not more than

(Wf(io)f) +1log, ’iL) , <7TQ| N 6mz;s\@| . 102461TRL\/M> .
0

(0%

7 EXPERIMENTAL RESULTS

We apply different learning techniques, our gradient-free and gradient-based methods and state-of-
the-art gradient-based method, to the web page ranking problem and compare their performances.
In the next section, we describe the graph and the dataset, which we exploit in our experiments. In
Section[7.2] we describe the results of the experiments.

10



7.1 DATA

In our experiments, we consider the user web browsing graph I', = (V,, E,), ¢ € Q (which was first
considered in [[12]]). We choose the user browsing graph instead of a link graph with the purpose to
make the model query-dependent. In this graph, the set of vertices consists of all the distinct elements
from all the sessions which are started from q. The set of directed edges E, represents all the ordered

pairs of neighboring elements (7,7) from such sessions. We add a page i in the seed set U, if and
only if there is a session which is started from ¢ and contains ¢ as its first element.

All experiments are performed with pages and links crawled by a popular commercial search engine.
We randomly choose the set of queries () the user sessions start from, which contains 600 queries.
There are ~ 11.7K vertices and ~ 7.5K edges in graphs I'y, ¢ € @, in total. For each query, a set of
pages was judged by professional assessors hired by the search engine. Our data contains ~ 1.7K
judged query—document pairs. The relevance score is selected from among 5 labels. We divide our
data into two parts. On the first part Q1 (50% of the set of queries Q) we train the parameters and on
the second part (2 we test the algorithms. To define weights of nodes and edges we consider a set
of my = 26 query—document features. For any ¢ € Q and i € V,, the vector V contains values of
all these features for query—document pair (g, ). The vector of ms = 52 features Egi for an edge

i€ E, is obtained simply by concatenation of the feature vectors of pages 7 and i.

To study a dependency between the efficiency of the algorithms and the sizes of the graphs, we sort
the sets Q1, (2 in ascending order of sizes of the respective graphs. Sets Q?, ?, Qf— contain first (in
terms of these order) 100, 200, 300 elements respectively for j € {1, 2}.

7.2 PERFORMANCES OF THE OPTIMIZATION ALGORITHMS

We find the optimal values of the parameters ¢ by all the considered methods (our gradient-free
method GFN (Algorithm [2)), the gradient-based method GBN (Algorithm [)), the state-of-the-art
gradient-method GBP), which solve Problem 3.1}

The sets of hyperparameters which are exploited by the optimization methods (and not tuned
by them) are the following: the Lipschitz constant L = 10~* in GFN (and Ly = 10~% in
GBN), the accuracy ¢ = 107% (in both GBN and GFN), the radius R = 0.99 (in both GBN
and GFN). On all sets of queries, we compare final values of the loss function for GBN when
Lo € {107%,1073,1072,10~%, 1}. The differences are less than 10~7. We choose L in GFN to be
equal to Lo. On Figure[2] we show how the choice of L influences the output of the gradient-free
algorithm. Moreover, we evaluate both our gradient-based and gradient-free algorithms for different
values of the accuracies. The outputs of the algorithms differ insufficiently on all test sets Q5,
i € {1,2,3}, when e < 107%. On the lower level of the state-of-the-art gradient-based algorithm,
the stochastic matrix and its derivative are raised to the powers [V; and N» respectively. We choose
N; = Ny = 100, since the outputs of the algorithm differ insufficiently on all test sets, when
N; > 100, N2 > 100. We evaluate GBP for different values of the step size (50, 100, 200, 500). We
stop the GBP algorithms when the differences between the values of the loss function on the next
step and the current step are less than —10~> on the test sets. On Figure we give the outputs of the
optimization algorithms on each iteration of the upper levels of the learning processes on the test sets.

In Table[T} we present the performances of the optimization algorithms in terms of the loss function
f (B1). We also compare the algorithms with the untuned Supervised PageRank (¢ = g = e,,).

GFN significantly outperforms the state-of-the-art algorithms on all test sets. GBN significantly
outperforms the state-of-the-art algorithm on @} (we obtain the p-values of the paired ¢-tests for
all the above differences on the test sets of queries, all these values are less than 0.005). However,
GBN requires less iterations of the upper level (until it stops) than GBP for step sizes 50 and 100 on
Q3, Q3.

Finally, we show that Nesterov—Nemirovski method converges to the stationary distribution faster
than the power method. On Figure 2] we demonstrate the dependencies of the value of the loss
function on Q1 for both methods of computing the untuned Supervised PageRank (¢ = g = €,,).

11



Test set, size = 100

— GFNM
— GBNM

GBPM, s.size=50
— GBPM, s.5ize=100
GBPM, s.size=200
GBPM, s.size=500

0.0036

0.0034

0.0032}

loss value

0.0030F 1

0.0028]
0 5 10 15 0 55 % = o
0.0036 Test set, size = 200
— GFNM
0.0035 — GBNM

GBPM, s.size=50
— GBPM, s.5ize=100
GBPM, s.size=200
GBPM, s.size=500

0.0034

0.0033+

loss value

0.0032}
0.0031}
0.00305 5 10 15 20 25 30 35 40
0.00330 Test set, size = 300

— GFNM
— GBNM

GBPM, s.size=50
— GBPM, s.5ize=100
GBPM, s.size=200
GBPM, s.size=500

0.00325}

0.00320+:

0.00315}

0.00310

loss value

0.00305+

0.00300+

0.00205 A

0-00290; 10 20 30 20 50
iteration
Figure 1: Values of the loss function on each iteration of the optimization algorithms on the test sets.

8 DISCUSSIONS AND CONCLUSIONS

Let us note that Theorem [I] allows to estimate the probability of large deviations using the ob-
tained mean rate of convergence for Algorithm [I] (and hence Algorithm [2) in the following way.
If f(x) is p-strongly convex, then we prove (see Appendix) a geometric mean rate of conver-

gence: Eg,, ,f(zp)— f* <O (m% In (L—Dz) ) Using Markov’s inequality, we obtain that after

g

O (mﬁ In (LD : )) iterations the inequality f(zps) — f* < € holds with a probability greater than

EOC
1 — o, where o € (0, 1) is a desired confidence level. If the function f(z) is convex, but not strongly
convex, then we can introduce the regularization with the parameter ;1 = &/D? minimizing the
function f(z) + 4|l — &3 (2 is some point in the set X), which is strongly convex. This will give

us that after O (mLTD2 In (%)) iterations the inequlity f(zas) — f* < £ holds with a probability
greater than 1 — o.
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loss value

Qs Q3 Q3
Meth. loss steps loss steps loss steps
PR .00357 0 .00354 0 .0033 0
GBN | .00279 12 .00305 12 .00295 12
GFN [ .00274 | 10° | .00297 | 10° | .00292 | 10°
GBP | .00282 16 .00307 | 31 .00295 40
50s.
GBP | .00282 8 .00307 16 .00295 20
100s.
GBP | .00283 4 .00308 7 .00295 9
200s.
GBP | .00283 2 .00308 2 .00295 3
500s.

Table 1: Comparison of the algorithms on the test sets.

rain set, size = 100, pagerank approximation

0.01
0.016 — Power 0.0050 Train set, size = 100, GFNM

— Nesterov Nemirovski — L=0.000001
0.014f '

— L=0.00001 l’
0.012f — L=0.0001
0.0100 L=0.001
0.008} NWMMW
0.006} i
0.004 i " .

0 5 10 15 20 0 100 200 300 400 500 600 700 800

approximation order iteration

Figure 2: Comparison of convergence rates of the power method and the method of Nesterov and Nemirovski
(on the left) & loss function values on each iteration of GFN with different values of the parameter L on the train
set Q1

We consider a problem of learning parameters of Supervised PageRank models, which are based
on calculating the stationary distributions of the Markov random walks with transition probabilities
depending on the parameters. Due to the impossibility of exact calculating derivatives of the stationary
distributions w.r.t. its parameters, we propose two two-level loss-minimization methods with inexact
oracle to solve it instead of the previous gradient-based approach. For both proposed optimization
algorithms, we find the settings of hyperparameters which give the lowest complexity (i.e., the number
of arithmetic operations needed to achieve the given accuracy of the solution of the loss-minimization
problem).

We apply our algorithm to the web page ranking problem by considering a dicrete-time Markov
random walk on the user browsing graph. Our experiments show that our gradient-free method
outperforms the state-of-the-art gradient-based method. For one of the considered test sets, our
gradient-based method outperforms the state-of-the-art as well. For other test sets, the differences
in the values of the loss function are insignificant. Moreover, we prove that under the assumption
of local convexity of the loss function, our random gradient-free algorithm guarantees decrease of
the loss function value expectation. At the same time, we theoretically justify that without convexity
assumption for the loss function our gradient-based algorithm allows to find a point where the
stationary condition is fulfilled with a given accuracy.

In future, it would be interesting to apply our algorithms to other ranking problems.

Acknowledgments The research by P. Dvurechensky and A. Gasnikov presented in Section[5]of this paper was
conducted in IITP RAS and supported by the Russian Science Foundation grant (project 14-50-00150), the
research presented in Section |§| was supported by RFBR.
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Missed proofs for Section [

Proof of Lemmalll

Let for any x € R? ||z||1 = >_7_, |z¢| be its I-norm, ||z||2 = /> _F_, |xi|? be its standard Euclidean norm

and ||z||cc = max;=1,...p |z;| be its max-norm.
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First in Lemma [A7T] we estimate the complexity of Method ff.T]in terms of the number of iterations and number
of arythmetic operations which are required to approximate the solution of Equation (Z.3) with a given accuracy.
Then we prove technical Lemma which is used in the proof of Lemmal[A3] which tells how the error of the
approximate solution Equation affects the error in the funcation f(y) value. Finally we combine Lemma

[ATT]and Lemmal[A3]to prove Lemmal[T]
Lemma A.1. Let us fix some q € Q. Let 73 () be defined in (1), matrices P, () be defined in 22). Assume
that Methodd 1l with

N = P In 11 —1

« Al
is used to calculate the approximation 74 (¢, N ) to the ranking vector 74() which is the solution of Equation
Then the vector Tq(, N) satisfies

17q(ps N) — mq(@)ll1 < Ay (A.T)
and its calculation requires not more than
3mpqesq + 3pgsqN

a.o. and not more than

2pqSq
memory amount additionally to the memory which is needed to store all the data about features and matrices
Ag,bg, g € Q.

Proof. As it is shown in [17] the vector 74 (p, V) satisfies
17a(0, N) = mg(0) 11 < 2(1 — )V (A2)

Since for any a € (0, 1] it holds that & < In ﬁ we have from the lemma assumption that

1.2 _ g
N+1>—-ln— > 1
+ _anA1_lnﬁ

This gives us that 2(1 — o)™™' < A; which in combination with (A2) gives [A-1).

Let us estimate the number of a.0 and the memory amount used for calculations. We will go through Method@
step by step and estimate from above the number of a.o. for each step. Since we need to estimate from above the
total number of a.o. used for the whole algorithm we will update this upper bound (and denote it by TAO) by
adding on each step the obtained upper bound of a.o. number for this step. On each step we also estimate from
above (and denote this estimate by MM) maximum memory amount which was used by Method@before the
end of this step. Finally, at the end of each step we estimate from above by UM the memory amount which is
still occupied besides the step is finished.

1. First iteration of this method requires to calculate 7 = 7r2. The variable 7 will store current (in terms
of steps in k) iterate 7;, which potentially has p, non-zero elements. In accordance to its definition
(1) one has for all i € U,

<§01 ) V;Z >

Zjqu <§01, V?)

(a) We calculate (p1, V) for all ¢ € U, and store the result. This requires 2m1nq a.0. and not
more than py memory items since |Uq| = ngq < pq and V? € R™ forall ¢ € U,.

(b) We calculate

) =

1 . . .
—=—— 4 Which requires n, a.0. and 2 memory items.
Zjqu<<P1»qu> q q Ty

(p1,VY)
Zjqu (1 »V?>
So after this stage MM = pg + 2, UM = pg, TAO = 2ming + 2ng.
2. We need to calculate elements of matrix Py (¢). In accordance to (2.2)) one has
o <3027 Eg;)
> i (e2, EY)
This means that one needs to calculate p, vectors like 7r2 on the previous step but each with not more
than sq non-zero elements and dimension of @2 equal to m2. Thus we need pq(2masq + 254) a.o.
and not more than p,s, + 2 memory items additionally to p, memory items already used. At the

end of this stage we have TAO = 2ming + 2nq + pq(2masq + 2s4), MM = pg + 2 + pgsq and
UM = pq + pqsq since we store 7 and P, (¢) in memory.

(c) We calculate for all ¢ € Uy. This needs nq a.0. and no additional memory.

[Py(0)]is

3. We set 7”151\’ = 772 (this variable will store current approximation of ﬁév which potentially has pq
non-zero elements). This requires n4 a.0. and py memory items. Also we set a = (1 — ). At the end
of this step we have TAO = 2ming + 2nq +pq(2masq +2sq) +ng+ 1, MM = pg+ 2+ pgsq + g
and UM = py + pgsq + pg + 1.
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4. For every step from 1 to N
(a) Wesetm = PqT (¢)m. This requires not more than 2p,sq a.0. since the number of non-zero
elements in the matrix PqT (¢) is not more than pys, and we need to multiply each element by

some element of 7 and add it to the sum. Also we need p, memory items to store 1.
(b) We set ﬁé\] = frflv + am which requires 2p4 a.o.
() Weseta = (1 — a)a.
At the end of this step we have. TAO = 2ming + 2nq + pq(2masq + 2s¢) + ng + 1+ N(2pgsq +
2pq + 1), MM = pq + 2 + pgSq + Pg + pg and UM = pq + pgsq +pg + 1+ pg

5. Set#) = ﬁﬁf;’. This takes 3 + p, a.o.

So at the end we get TAO = 2ming + 2nq + pq(2masq +2sq) +ng+ 1+ N(2pgsq + 2pg + 1) +pg + 3 <
3mpqsq + 3pgsgN, MM = pg + 2 + pgsq + pq + pg < 2pgsq and UM = pg.

Remark 1. Note that we also can store in the memory all the calculated quantities (p1, V1) for all i € Uy,
(2, BY) foralli,j =1,...,pgst.i— j € Ey Zjqu (1, V), > (p2, EY) for the case if we need
them later. This requires not more than ng + pqsq + 1 4+ pq memory.

Lemma A.2. Let q inQ. Assume that w1,m2 € Sp, (1) = {m € R} : >0 [x]; = 1}. Assume also that
inequality |1 — w2 ||y < Ay holds for some v € {1,2,00}. Then

I (Agmi)+[l2 = I(Agm2)+ [l2] < 2A1y/7g, (A3)

[(Agm)+ = (Agm2)+[loc < 241, (A4)

1(Ag71)+[l2 < v/Ta; (A.5)

[(Agm1)+loc < 1. (A.6)

Proof. Note that for any y € {1, 2, oo} from the inequality |71 —m2 ||, < Ay it follows that |[71]; —[m2]s| < Ay
forall? € 1,...,pq. Using Lipschitz continuity with constant 1 of the 2-norm we get

I (Agm1)+]l2 = I(Agm2)+ 2] < [[(Agmi)+ — (Agma)+ |2 (A7)

Let us fix arbitrary ¢ € 1,. .., rq. By definition the i-th row of the matrix A, contains one 1 and one -1 and all

other elements in the row are equal to zero. Let k : [Aq]ix = 1, j : [Aq]i; = —1. Using Lipschitz continuity

with constant 1 of the function (-)+ we obtain
[(Agm1)+)i = [(Agm2)+]i| < |[mi]e = [m]s — [mo]k + [m2];| < 240

Since i € 1,...,rq was chosen arbitrary this inequality holds for all 7 € 1,..., 74 and using (A.7) we obtain
(A3). Similarly one obtains (A.4).
Now let us fix some ¢ € 1,...,74 and again let k : [Aqlix = 1, 7 : [Aqli; = —1. Then |[(Aqm1)+]i] =

|([m1]x — [m1];)+| Since m1 € Sy, (1) it holds that [m1] — [m1]; € [—1,1]. Hence |([m1]x — [m1];)+] < 1
Now (A3) and (A.6) become obvious.

Lemma A.3. Assume that vectors Tq € Sp,(1),q € Q satisfy the following inequalities
7g — mq(P)lly <A1, VgeQ,

for some y € {1,2,00}. Then
QI

flg) = ﬁ S (AgFa)+ I3 (A8)

satisfies | (@) — f()| < 4rAy, where f(i) is defined in (31).

Proof. For fixed ¢ € QQ we have
1(AqTa)+112 — | (Agme())+1I3] =
= I(Aq7q)+ll2 = 1(Aqmq (@) +l2] - (I(AaTa)+ll2 + [(AgTa(0))+]2)
S 4A17"q S 4A17‘.

Using (3-1)) and (A-8) we obtain the statement of the lemma.

The proof ot Lemma Inequality follows from Lemma and Lemma with Ay = % and
g = Tq(p, N) forall g € Q.

&3 A3
<

Let us now estimate the the number of arithmetic operations and memory amount used by the method for
calculation of f (¢, 1) @2).

We use the same notations TAO, MM, UM as in the proof of Lemma@
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1. We reserve variable a to store current (in terms of steps in g) sum of summands in #.2)), variable b
to store next summand in this sum and vector 7 to store the approximation for 74 (¢, N) for current
¢ € Q.SoTAO =0, MM = UM = 2 + p,.

2. Forevery q € () repeat.

2.1. Setm = 74(¢, N). According to Lemma[A.T|we obtain TAO = 3mpqgsq + 3pgsqN, MM =
2pqSq + pq + 2, UM = pq + 2.
2.2. Calculate u = (Aq7q(®, N))+. This requires additionally 274 a.0. and 74 memory items.
2.3. Setb = ||u||3. This requires additionally 2r4 a.o.
2.4. Seta = a + b. This requires additionally 1 a.o.
3. Seta = ﬁa. This requires additionally 1 a.o.
4. Atthe end we have TAO = 3 (3mpqsq +3pgsqN +4rq +1) +1 < |Q[(3mps + 3psN +6r),
MM = maxgeq(2pgsq + pq) +2 < 3ps, UM = 1.

A.2  The proof of Lemmal|2]

We use the following norms on the space of matrices A € R™1*™2
n1
|Alx = max{||Az||: : x € R"?,||z|s =1} = max Z |aijl, (A9)
Jj=1,...,n2 P

where the 1-norm of the vector z € R"? is ||z |1 = > 12, |@il.
no
| Allse = max{ || Azl : @ € R, alloo = 1} = _max > layl,
R

where the co-norm of the vector € R"? is ||2]loc = maxi—1,...,n, |Zi|. Note that both matrix norms possess
submultiplicative property

[AB[lv < [[Al1][Bll1,  [|ABI[x < [|Alloc | Bllo (A.10)
for any pair of compatible matrices A, B.

Let us denote

dr(¢) o~ dpi ()
0/ N\ _ q i .
My(¢) = a +(1—a); dpr (@)l (A.11)
Lemma Ad. Let us fix some ¢ € Q. Let II)(p) be defined in (AI1), 7d(¢) be defined in @1), pi(p)”,
i €1,...,pq be the i-th row of the matrix Py(p) defined in Z.2). Let us denote

voYvioE- Y B
1€V, LEN, (i)

where Ny(i) ={j € Vg :i — j € Eq}.

Then for the chosen restart probabilities 2.1), transition probabilities 2.2) and set ® = {¢p € R™ : |[p—@|]2 <

R} in (B2) the following inequality holds.

0 dﬂ'o(‘P)
LG

Pq

—&-(1—04)2

1 i=1

dpi ()
deT

<P Vped, (A.12)

1

where

b1, V4 s

hr=2a __max
((¢1,Va) — R||Va||,)? d€Luwimr ™

+2(1-a) [E7), (A13)

7

and, p1 € R™ — first m1 components of the vector ¢, 92 € R™?2 — second ma components of the vector ¢.

Proof. First inequality follows from the definition of Hg(go) (ATI), triangle inequality for matrix norm and
inequalities |[mq(®)]i| < 1,4 =1,...,p, which hold since () € Sp, (1).

Let us now estimate || 222 || . Note that ¢ — ( )", From @) we know that 479) _ 0. First
el ¢ = (o1,02)" iy =0
()

we estimate the absolute value of the element in the i-th row and j-th column of the matrix aoT We use
1
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that ¢ > 0 for all ¢ € ® and that for all i € U, vectors V are non-negative and have at least one positive
component.

d [mq ()],

—_

¢1, VY
v, - —en Vi vy

e Piew eV (S e Vi) L&,
1
= N1, VO [VI]. = (o1, VI [VI].| <
oy (e VIV = e VI V| <

< 1
= (g1, Va) — R||Va|,)?

{{o, v VI + (e, VO VY], ) Ve e

Here we used the fact that

min{pr, V) = min {{p1, V) : o1 = @113 + llpz — 213 < R*} = (1, V*) — RV,

Then the 1-norm of the j-th column of the matrlx

>

i€U,

) satisfies for all ped

d [”2(90)]1 2

diel; |7 (1, Va) — R|V|l,)
(@1, V) + R ||V, V). .
(@1, V) = Rfval,)* " 7

2 <901a Vq> [Vq]j <

<2

Here we used the fact that

I;lgg(@an} = max { (o1, V) : [lo1 — @113 + o2 — @23 < R*} = (@1, V) + RV ,.

Now we have for all ¢ € @

drd(9) || &
|2 2 e, >

dip i€Uq
In the same manner we obtain the following estimate for all ¢ € ®

do™ |} T ((¢2,ET) — R|[EY,)? I€L-m2

d [mq(0)],
dlpr];

LV + RV,
((@1,\"1) — R |W<1||2)2 GE€I,...om1

v,

<

[E7, -

Finally we have that for all o € ®

p1, V) + R|[V?
0, O o POTVERIV
(g1, V) — R|[Va],)? d€bm

Z (g2, Ef) + R|E]], m [EY].
(@2, EY) — RIEL|,)* &bmoma 7
This finishes the proof.

Let us fix arbitrary ¢ € ) and assume that we have some approximation 7, € S . (1) to the vector 74 (). We
consider generalized Method [f.4} 43| parametrized by the approximation 7,

5 s drg (¢) = dpi() -
Io(7q) = dZDT +(1-w Z AT [qli (A.14)
=1
and }
Mo (7tg) = o(7g), M1 (7q) = Py (9)Ik(fy).- (A.15)
The output is (for some fixed non-negative integer N2)
1 aE
~ - _ _ k ~
Hq(gﬁ, N277Tq) = W kZ:O(]. Oé) Hk(ﬂ'q). (A.16)
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Lemma A.5. Let us fix some q € Q. Let To(7,) be defined in (B13), where 5 () is defined in @-1), pi(¢)”,
i €1,...,pqis the i-th row of the matrix Py () defined in @2), 74 € Sp,(1). Let the sequence I1x (), k > 0
be defined in (AI3). Then for the chosen restart probabilities 2.1), transition probabilities 2.2) and set ® for
all k > 0 it holds that

Mk (7g)[1 < B1, Ve €D, (A17)

k
’ [P @) M)
Here T13 () is defined in (A1), f1 is defined in (A13).
Proof. Similarly as it was done in Lemmaone can prove that ||TIo(74)||1 < S1. Note that all elements of
the matrix P, (¢) are non-negative for all ¢ € ®. Also the matrix P,(¢) is row-stochastic: Py(¢)ep, = €p, .

where e, € RP¢ is the vector of all ones. Hence maximum 1-norm of the column of PqT (¢) is equal to 1 and
| P ()]l = 1. Using the submultiplicative property (A.10) of the matrix I-norm we obtain by induction that

<Bi, VYeed. (A.18)
1

My Ga)lls = T (TRl "2 1P (@)l e (Rl < B

Inequality [A-T8]is proved in the same way using the Lemma[A-4]as the induction basis.
Lemma A.6. Let the assumptions of Lemma@hold. Then for any N > 1

HI:LI(QO>N7 ﬁ"])Hl S %7 VSO S (ba (Alg)

where 114 (p, N, 7y) is defined in (A16), B1 is defined in (A.13).

Proof. Using the triangle inequality for the matrix 1-norm we obtain
N

1

T ey 20— @ Te(®)

k=0

<

1

11y (0, N, 7)1 B

N
1 ~ B
Aoy 21— MG S

k=0
Lemma A.7. Let us fix some q € Q. Let I19(¢p) be defined in (A1) and To(74) be defined in (A14), where

70 () is defined in @), pi(p), i € 1,...,pq is the i-th row of the matrix Py(p) defined in Z.2). Assume
that the vector Ty € Sy, (1) satisfies

7g — mq ()1 < Ax. (A.20)
Then for the chosen restart prbabilities €.1)), transition probabilities 2.2) and set ® it holds that.
Io(7) — IY(¢) |1 < BrA1 Vg € &, (A21)

where (1 is defined in (AI3).

Proof.
Pq

> L () - o))

i=1
- @@
<Sl-a)) [Tali = [ma(P)]sl < Bl
i=1 1
Lemma A.8. Let us fix some ¢ € Q. Let T1,(¢p, N, 7,) be cdefined in (A16) and %(Tw) be given in (33),

where w3 () is defined in @2.0), pi(e)T, i € 1,...,pq is the i-th row of the matrix P,() defined in 2Z2).
Assume that the vector @ € Sy, (1) in (AJ4) satisfies |7 — wq(¢)|l1 < Ai. Then for the chosen restart
prbabilities @), transition probabilities 2.2)) and set ®, for all N > 1 it holds that

_ B

1 «

[Tl (7q) — () 1 ERED (1 — ) <

1

Pq

dpi(p)

deT

= .\ dmg(p)
HQ(<p5 N7 TrQ) - qu,DT
where (31 is defined in (AI3).

Proof. Using (A-2) as the induction basis and making the same arguments as in the proof of the Lemma[AZJ)
we obtain for every k > 0

s () = [P @' (0) || = [P () () = 1P ()1 1130)) |

P, |1 Fo) = [P (@I (0)||, < Brde.

+ 2%1(1 —a)" vped, (A.22)

<|

19



Equation[3:3|can be rewritten in the following way

dm 1 > k
d;(f) = [I* (1—a)P; (¢) } =Y (-0 [PT )} 12(). (A.23)
k=0
Using this equality and the previous inequality we obtain
S - @) Mm-S 0 - arimry) - Y- 00 [P o) <
k 7Tq dC,DT k 7Tq q 80 q SO =
k=0 1 k=0 k=0 1
- A
<30 -0 | Mw) - [PIp)] M) < 220 (A24)
k=0 1
On the other hand
(o, N, 71q) Z 1-w) Tl =
k=0 1
1 al >
WZ( Q) T (7g) = (1= o)k (7o) || =
k=0 k=0 1
N oo
(1—a)™ _
wz(l— (R — D (1= ) TIi(7,) &2
k=0 k=N+1 1
N oo
Bi(1—a)V+t k e 261 N+1
S ar - A D (-t =R
k=0 k=N+1

This inequality together with (A24) gives (A.22)) by the triangle inequality.

Lemma A.9. Assume that for every g € Q the approximation 7t4() to the ranking vector, satisfying ||7q(p) —
7q(2)|l1 < Ay, is available. Assume that for every q € Q the approximation 114(p) to the full derivative of
ranking vector dq<<p as solution of (B3), satisfying

~ dm
|t - L2 < s
1
is available. Let us define

Q

ERS il L AT (A A25

= g1 2 ([a(9) " AT (Aea(0))- (A.25)
g=1

Then
(A.26)

|V50) = Vi(o)||_ < 2000 +aras max (el

where ¥V f (i) is the gradient (34) of the function f(v) B-I).

Proof. Let us fix any g € ). Then we have

(1) 47 (e~ (582) aTtamon-| <
< ()" 45 Aot = () A5 (Ao O;+
# (0" AT Aamatons — (540 aramons | 2
< ([, 144l 1 (Aama(e))+ = (Aaa()+ ]l

21 4+ Ao - 1.

; ﬁqw)fdgq(T)H gl NAgma@) e T o),

Here we used that A; € R"?*P4 and its elements are either O or 1 and the fact that v, < r for all ¢ € Q, and
that for any matrix M € R™*"2 | M7 ||oc = || M]1.
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Using this inequality and definitions (34), (A:23) we obtain (A.26).

Proof of Lemma
Let us first prove Inequality According to Lemma calculated vector 74 (¢, N1) satisfies
- ad
oo, M) = ma(@)ln < 5 Va € Q. (A27)

This together with Lemma with 7, (2, N1) in the role of 7, for all ¢ € Q gives since I, (¢, N2) =
HQ((pv NQaﬁQ(GD7N1))

ado
dmy () < P 136:r 4 %(1 —ayNatig %2 P pr ady _ b2
deT ||, «a Q@ 121" a 461r  3r

This inequality together with (A:27), Lemmal[A.6| with 74 (, N1) in the role of 7, for all ¢ € Q and Lemma
With 7q(, N1) in the role of 74() and I1,4(¢, N2) in the role of I14 () for all ¢ € Q gives

~ (52 Ot(Sz 51
-V < — + — = 09.
||g(¢752) f(#)”oo — 2T3r 4r 12617. o 52

[t -

Let us now estimate number of a.0. and memory which is needed to calculate §(p, d2). We use the same
notations TAO, MM, UM as in the proof of Lemma[A-T]

1. We reserve vector g1 € R™ to store current (in terms of steps in ¢) approximation of (¢, d2) and
g2 € R™ to store next summand in the sum @7). So TAO = 0, MM = UM = 2m.

2. Forevery q € ( repeat.

2.1. Setm = (i, N1). Also save in memory (1, V) forall j € Uy ; (p2, Ef)) forall i € V,
lii—1; Z]eU (p1, Vi) and 3, (2, Ef) forall i € V; and the matrix Py (). All this
data was calculated during the calculation of 74 (¢, N1), see the proof of Lemma- IA.1] According
to Lemma[A-T]and memory used to save the listed objects we obtain TAO = 3mpgsq+3pgsq N1,
MM = 2m + 2pgsq + ng + PgSq + 1 + pg < 2m + 4pgsq, UM = 2m + pq + ng + pasq +
1+ pg + pgsq < 2m =+ 3pgsq.

2.2. Now we need to calculate TT,(p, N2). We reserve variables Gy, G1,Ga € RP4*™ to store
respectively sum in @) , Iy, 41 for current k € 1,..., No. Hence TAO = 3mpgsq +
3pqsqN1, MM = 2m + 4pysq + 3mpg, UM = 2m + 3pgsq + 3mpy.

~ TrU
2.2.1. First iteration of this method requires to calculate IIp = « d d;(;o) + (1 -

a) fql dm 99) [7q(p, N1)]i.

) (¢)

2.2.1.1. We first calculate G1 = « qoT

iGUq,l:L...,ml

. In accordance to its definition 2.I)) one has for all

] [ v ot q
{ dy L a Z:J'GUQO'DMV;?> ) (Z eU(p<9017V >) ]%;qv

l

a[rrg]i o o _ e —
and [ To ]l =0forl =mi+1,...,m. Weseta = ev, o1V and b =

a v = Zjqu V?. This requires 2 + ming a.0. and 2 + m; memory

Ejg[jq (Lpl,V?> ’

. . dn9(p) .
items. Now the calculation of all non-zero elements of « dquT takes 4minq a.0. since

for fixed 7,1 we need 4 a.o. We obtain TAO = 3mpgsq + 3pgSqN1 + dming + 2,
MM = 2m + 4pqsq + 3mpg +m1 + 2, UM = 2m + 3pysq + 3mpq.
2.2.1.2. Now we calculate TTo. For every i = 1, ..., p, the matrix (1 — ) dp‘(“’) [7q(p, N1)]i €

(Tv) with 0bv1ous modifications

RPa*™ is calculated in the same way as the matrix ol
dpi(e) _
dgoT

de

due to = 0 and number of non-zero elements in vector p;(¢) is not more than

Sq. We aléo use additional a.o. number and memory amount to calculate and save
(1 — a)[7rq(p, N1)]i. We save the result for current ¢ in Go. So for fixed ¢ we need
additionally 3 + 5masg a.0 and 3 + mo memory items. Also on every step we set
G1 = G1 + G2 which requires not more than mas, a.o. since at every step GG2 has not
more than mga s, non-zero elements. We set Gy = G1. Note that G always has a block
of (pg — ng) X ma zero elements and hence has not more than mapg + ming non-zero
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elements. At the end we obtain TAO = 3mpgsq + 3pgSqN1 + dming + 2 + pq(3 +
B5masq + masq) + mapg + ming, MM = 2m +4pysq +3mpg +mi1 +2+me +3 <
3m + 4pgsq + 3mpg + 5, UM = 2m + pysq + 3mpg + pgq (since we need to store in
memory only g1, g2, Gt, G1, G2, PqT(gp),ﬂ).

222. Seta=(1—a).

2.2.3. For every step k from 1 to N2

2.2.3.1. Weset G2 = PqT (¢)G1. In this pperation potentially each of p,sq elements of matrix
PqT (¢) needs to be multiplied my m elements of matrix G; and this multiplication is
coupled with one addition. So in total we need 2mpgs4 a.o.

2.2.3.2. Weset Gy = G + aG1. This requires 2ming + 2meopy a.o.

2.23.3. Weseta = (1 — a)a.

2.2.3.4. In total every step requires not more than 2mpysq + 2ming + 2mapq + 1 a.o.

2.2.4. At the end o this stage we have. TAO = 3mpqsq + 3pgsqN1 + 5ming + 2 + pe(3 +
5masq + masq) + mapg + ming + N2(2mpgsq + 2ming + 2maepg + 1), MM =
3m + 4pysq + 3mpg + 5, UM = 2m + mp, + pg (since we need to store in memory only
91,92, Gt, ).

2.25. SetGy = 1,(1&77&)(162. This takes 3 + mapg + ming a.o.

2.2.6. Atthe end o this stage we have. TAO = 3mpgsq+3pgSqN1+5ming+2+pq(3+5masqe+
MaSq) + mapg + ming + N2(2mpgsq + 2ming + 2meopq + 1) + 3 + mapy + ming,
MM = 3m + 4pysq + 3mpg + 5, UM = 2m + mp, + pq (since we need to store in
memory only g1, g2, G, ).

2.3. Calculate u = (Aq7q(®, N1))+. This requires additionally 2r4 a.0. and rq memory.
2.4. Calculate m = Aun. This requires additionally 4r4 a.o.

2.5. Calculate go = G?W. This requires additionally 2ming + 2mapqg a.o.

2.6. Set g1 = g1 + g2. This requires additionally m a.o.

2.7. Atthe end we have TAO = 3mpgsq+3pgSqN1+5ming+2+pqe(3+5masq+masq)+mape+
ming+Na2(2mpgsq+2ming+2mapg+1)+3+mapg+ming+7rq+2ming+2mepg+m,
MM = 3m + 4pysq + 3mpg + 5 + r4, UM = 2m (since we need to store in memory only
91, 92)-

3. Setg1 = ﬁ g1. This requires additionally m + 1 a.o.

4. Atthe end we have TAO = 7 (3mpg8q + 3pg8qN1 + 5ming +2 +pq(3 + 5masq + masq) +

mapg + ming + Na(2mpgsq + 2ming + 2mapg + 1) + 3 + mapg + ming + 6r¢ + 2ming +
2mapg+m)+m+1 < |Q|(10mps+3psNi+3mpsN2 +7r), MM = 3m+5+maxgeq(4pqsq +
3mpq + rq) < 4ps + dmp + r, UM = m (since we need to store in memory only g1).

B Missed proofs for Section 5]

Consider smoothed counterpart of the function f(z):

£r@) =B+ 70) = 2 [ a0,

where ( is uniformly distributed over unit ball B = {t € R™ : ||¢||2 < 1} random vector, V3 is the volume of
the unit ball B, 7 > 0 is a smoothing parameter. This type of smoothing is well known.

It is easy to show that

e If f is convex, then f is also convex
o It f € O (Il |l2). then fr € CL (|| - |12)-

o If f € CL(|| - |l2), then f(z) < fr(z) < f(x) + L2 forallz € R™.
The random gradient-free oracle is usually defined as follows
gr(@) = Z(f(a+78) ~ F@)E,
where ¢ is uniformly distributed vector over the unit sphere S = {¢ € R™ : ||¢||2 = 1}. It can be shown that

Eg,(z) = V f-(z). Since we can use only inexact zeroth-order oracle we also define the counterpart of the
above random gradient-free oracle which can be really computed:

9 (2,8) = Z(f(x +7¢,6) - f(a,9)).
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The idea is to use gradient-type method with oracle g-(x, §) instead of the real gradient in order to minimize
f-(x). Since fr(z) is uniformly close to f(x) we can obtain a good approximation to the minimum value of

f ().
We will need the following lemma.
Lemma B.10. Let £ be random vector uniformly distributed over the unit sphere S € R™. Then

Ee(V/(2),€)* = VI (@), B.1)

Proof. We have E¢((V f(z),£))? = #(1) [s((Vf(2),£))*do(€), where Sy, (r) is the volume of the unit

sphere which is the border of the ball in R™ with radius 7, o (£) is unnormalized spherical measure. Note that
Sm(r) = Spm(1)r™ L. Let ¢ be the angle between V f(z) and &. Then

1 2 1 T 2 2 . .
5o (@070 = 52 [ 195 @) cos” 5,1 (sin oo =
S

m*l(l) 2 ‘/7r 2 om—2
= —F——|Vf(x cos” psin d
SoD) IV f(2)ll2 ; @ pdp
First changing the variable using equation = = cos ¢, and then ¢ = 2%, we obtain

T 1 1
/ C082 @Sil’l7n72 QDdQO — / CL‘2(1 _ x?)(7n73)/2dm _ / t1/2(1 _ t)(7n73)/2dt _
0 —1 0

(3 m=1) _ VAT (2
"\ ) Ty
where I'(+) is the Gamma-function and B is the Beta-function. Also we have
Smoa(1) _m—1T("3?)
Sm(1)  my/m I (2H)

Finally using the relation I'(m + 1) = mI'(
2 9 1 T ('m;l) B 9 1 >
B9, 0 = V1@ (1 1) gram) = 19/ @B (1- 1) gampian

m), we obtain

1
= LIVS@)IE
Lemma B.11. Let f € C1'(|| - ||2). Then, for any x,y € R™,
862 2
Ellgr (, )|} < m*rL? + 4m||V f(2) 13 + = (B.2)
om
—E(gr(2,0),2 —y) < ~(Vfr(),z —y) + —lz —y]]2. (B.3)

Proof. Using (5.1)) we obtain
(e +7€.0) = f(x,8)) =
(@ +7€) = f(@) = 7(V(2).6) + T{VF(2).6) +5(x + 7€) = 3(x))” <
2f (@ +78) = f(a) = T(VF(2).6) +7(V(2), )" + 26z + 7€) — 5(2))’
1 (TLIER) + 47 (V). ) + 88 = P Le] + 47291 (0), 6)° + 55°
Using (B-1), we get
Bellor (@03 < gz [ (PRI +47 (0 F(@),0)° + 58 [€ldoc) =

85
221 |V @) + S

Using the equality E¢ g, (z) = V f-(z), we have
~ Belgr(@.8).0 = 1) =~ [ (fsla+7€) = fo@)) €.~ 1)do(6) =

=~ [+ 70— f@)en — (o)~

T |6+ 79 = 5@ = 1)dole) < ~(V (@) =) + e =l
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Let us denote 1o = f(xo), and ¢, = E=, | f(zr), k > 1.

We say that the smooth function is p-strongly convex (or strongly convex with parameter ; > 0) if and only if
for any x,y € R™ it holds that

F@) 2 f) + (Vf(y)a =)+ Sl — g (B.4)
Theorem 1 (extended) Let f € C1'(|| - ||2) and convex. Assume that x* € intX and the sequence x), be
generated by Algorithmwith h = ﬁ. Then for any M > 0, we have
. . _8mLD?  7*L(m+8) dmD &*m
_ < i
B o f(@a) = " < = o+ 8 Tt T
where f* is the solution of the problem mingc x f(x). If, moreover, f is strongly convex with constant p, then
. 1 1% Mo
—fr<=L(s, (1— ) D2 -5, B.5
o= <31 (504 (1- ) 0 - 6) ®5)

2 2
T2 L(m+8) 4méD 2mé
+ nT +

_ (
where 6, = i ST

Proof. We extend the proof in [16] for the case of constrained optimization, randomization on a sphere (instead
of randomization based on normal distribution) and for the case when one can calculate the function value only
with some error of unknown nature.

Consider the point x, k > 0 generated by the method on the k-th iteration. Denote 7 = ||z — z*||2. Note
that r;, < D. We have:

Ter1 = |Teg1 — 273 < |Jzx — 2 — hgr (zx,0)||3 =
= [lzx — 2"[|3 — 2h{gr (xk, 0), 2k — ") + h°|lgr (xk, 6)|3.

Taking the expectation with respect to £ we get

E2,83) . 26mh
Egkri+1 < ri-— 20V fr(z), x — ™) + m

852m2)

T2

T+

<

iy (m%w + 4m |V () |[3 +

dmhD
4T

< i = 2h(f(xx) — f-(z")) + +

2, 2
1 (mert 2 smi (g - 1)+ 200 ) <

.
.. SmhD
<2 2h(1 — dhmL)(f(zx) — ) + TZT +
2 2712
+m2hLR 4RI 4 R
.
D§  f(zp)— f* 7T (m+8) 52
R A : )
St T smL T 6dm 87212 (B.6)

Taking expectation with respect to Uy, —1 and defining pr+1 def Eu,, i 41 We obtain
< o — f* T3(m +8) D6 52

PEFL=PE T TR G64m | 4TL ' 872L2
Summing up these inequalities from & = 0 to kK = M and dividing by M + 1 we obtain (5.2)

Estimatealso holds for ¥ 2 Eu,, o f(&n), where Za = argming { f(z) : « € {zo,...,zm}}.
Now assume that the function f(x) is strongly convex. From (B.6) we get

B3 Dé  T*(m+8 52
]Egkr;%+1 < (1— K )7",3—&-—4— ( )

16mL 4L 64m + 8722
Taking expectation with respect to {;,_1 we obtain
I RS  71*(m+8) 52
<(1- 7) 0
Phtt = ( 6mz) LT T eam L

and

Prt1 — 07 < (1 - ﬁ) (pe — 67) <

<(1- ) om0

Using the fact that po < D and ¢ — f* < 1 Lpj, we obtain (B23).
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C Missed proofs for Section [6]
Let us define foranyz € £,g € £, v >0

x(Z,g,7) = arg mln {(g, x) + %V(x,i) + h(x)} , (C.1)

~ 1, -
gx(m,g,’y) = ;(x_wX(l':gv’Y))- (C2)
We assume that the set X is simple in a sense that the vector z x (T, g, y) can be calculated explicitly or very
efficiently forany z € X, g € €%, v

We will need the following two results obtained in [7].

Lemma C.12. Let xx (Z, g,v) be defined in (C1) and gx (T, g,) be defined in (C2). Then, for any T € X,
g € E* and~ > 0, it holds

(9,9% (@ 9,7)) = lgx (@, 9, VI + %(h(xx@,g,w)) — h(z). (C3)

Lemma C.13. Let gx (%, g,) be defined in (C.2). Then, for any g1, g2 € E*, it holds
lgx (2, 91,7) — 9x (2, 92,V < llgr — g2l (C4)

Proof of Theorem 3] First of all let us show that the procedure of search of point wy, satisfying (6.3), (6-4) is
finite. It follows from the fact that for My, > L the following inequality follows from (6.2):

. @ L €
flwg, 8) flax, s + gk, 0), wn — zx) + G llwn —wll + o7
which is (6.4).
Let us now obtain the rate of convergence. Using definition of zx41 and (6.4) we obtain forany k = 0,..., M
f(@rg1) — 16M = f(wk) — W f w, 8 f (wk, 6
- M, € :
+{G(xk, 6), Trt1 — Tx) + THMH —a? + SM; €163
- 1/ _ 1 1 _ 1L\|P, « @&
= - — — — <
Flannd) = 3 (o805 (om0 ) )+ e [ox (swodton ) g )| + 1 %

€ 1 1\
< [ g _— _
< Jn) + o [Mk‘gx(xk,gm,a), )|+ ) e |+
1 1 2 €
— g 0), — .
+ o ng(ﬂﬁk,g(lﬂm ), k) +
This leads to
wlownn) < wian) - 2 ox (o0 a0, )| + =
k+1) < *) 9, 9x | Tk, 9(Tk, M, 0
forallk=0,..., M
Summing up these inequalities for £ = 0, ..., N we get
1 2 N N 1 2
9x (gyvgﬂi) gx (kaa/mi) =
o (o205 z <> A
X
< p(wo) — Y(xn+1) 1;

Hence using the fact that M}, < 2L for all £k > 0 (which easily follows from the first argument of the proof) and
that for all z € X () > ™ > —oo, we obtain

i > Mk<2L

k=0

- 1 1
ng (:E,;vgfgaﬁfc) < m (d’(
4L(Y(z0) —¥") | €
N+1 2’

2

»Mm

m
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which is (6.3).

The estimate for the number of checks of Inequality [6.4]is proved in the same way as in [26].

D Table of notations
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Q Set of queries.
Vy Set of browsing graph vertices for query g € ).
Dq V4
D maxgeqQ Pq
Sq max;ev, [{j : 4 = j € F,}| — maximum number of neighbours in the graph
s maXgeq Sq
Vi Set of nodes annotated with label £ 4+ 1 — j.
b, Set of browsing graph edges for query ¢ € Q.
U, CV, Seed set for query ¢ € Q).
Nq Uq
n maXqeQ Ng
V7Te R Vector of node’s features for ¢ € Q, ¢ € V.
Egj e RY? Vector of edges’s features for ¢ € ), 7 — j € E,.
0= (p1,p2)T Vector of all parameters of the ranking algorithm.
m Total number of parameters, m = mj + mo.
T () Vector of restart probabilities for query ¢ € Q.
P,(¢) Matrix of transition probabilities for query ¢ € Q).
pi(p) i-th column of the matrix P, ().
7q(p) Vector of page ranks given by solution of .
7q(p, N) Approximation for the vector 7, (), obtained by Method (..
Tk Intermediate iteration in Method (4.1J).
N Number of steps in Method (4. 1)).
7‘1230(;0) € RPaxm Matrix of derivative of m,(¢) w.r.t. ¢.
I, (p, No) Approximation for the matrix dgfa(f) , obtained by Method (#.4), @.3).
9
I, a2 1 (1-a) T, B [ (o, Ny
11, Intermediate iteration in Method (4.4), @.3).
Ny Number of steps in Method for approximation of matrix dg"T(T‘p).
Ny Number of steps in Method @.4), @.3).
Ay € RMa*Pa Matrix, representing assessor’s view of the relevance of pages to the query ¢ € Q.
T'q Zl<j<l<l|‘/:j7”v:11|'
r maXqeQ Tq-
a € (0,1) Restart probability in the random walk on the browsing graph.
R Radius of the feasible set for the variable ¢.
%) Center of the feasible set for the variable ¢.
o {p €R™: o — ¢|l2 < R} —feasible set for the variable ¢ in the learning problem.
Ji) The objective, which is minimized in the learning problem.
f(,61) Algorithmic approximation of f(-) with error ;.
01 Error of the algorithmic approximation for f(-).
g(-,02) Algorithmic approximation of V f(-) with error 0.
02 Error of the algorithmic approximation for V f(-).
g-(+,0) Biased gradient-free oracle in Random Gradient-Free Method.
E,EF Finite-dimensional real vector space, its dual.
(g,x) Value of linear function g € £* atx € £.
-0 T« Norm on &, its dual.
L Lipschitz constant of gradient of f(-) or inexact oracle parameter in (6.2).
) Parameter of inexact oracle in (6.2)).
T Smoothing parameter in Random Gradient-Free Method.
& Random vector used in Random Gradient-Free Method.
h Stepsize in Random Gradient-Free Method.
€ Error of the solution of the learning problem.
M Number of steps on the upper level of Random Gradient-Free Method.
d(x) Prox-function used in gradient method.
Vi, z) Bregman distance used in gradient method.
M;, Appoximation for "Lipschitz constant” in gradient method at iteration k.
Ly Initial guess for "Lipschitz constant” in gradient method at iteration k.
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