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Abstract

In distributed, or privacy-preserving learning, we are often given a set of probabilis-
tic models estimated from different local repositories, and asked to combine them
into a single model that gives efficient statistical estimation. A simple method is to
linearly average the parameters of the local models, which, however, tends to be
degenerate or not applicable on non-convex models, or models with different param-
eter dimensions. One more practical strategy is to generate bootstrap samples from
the local models, and then learn a joint model based on the combined bootstrap
set. Unfortunately, the bootstrap procedure introduces additional noise and can
significantly deteriorate the performance. In this work, we propose two variance
reduction methods to correct the bootstrap noise, including a weighted M-estimator
that is both statistically efficient and practically powerful. Both theoretical and
empirical analysis is provided to demonstrate our methods.

1 Introduction

Modern data science applications increasingly involve learning complex probabilistic models over
massive datasets. In many cases, the datasets are distributed into multiple machines at different
locations, between which communication is expensive or restricted; this can be either because the
data volume is too large to store or process in a single machine, or due to privacy constraints as
these in healthcare or financial systems. There has been a recent growing interest in developing
communication-efficient algorithms for probabilistic learning with distributed datasets; see e.g., Boyd
et al. (2011); Zhang et al. (2012); Dekel et al. (2012); Liu and Ihler (2014); Rosenblatt and Nadler
(2014) and reference therein.

This work focuses on a one-shot approach for distributed learning, in which we first learn a set
of local models from local machines, and then combine them in a fusion center to form a single
model that integrates all the information in the local models. This approach is highly efficient in
both computation and communication costs, but casts a challenge in designing statistically efficient
combination strategies. Many studies have been focused on a simple linear averaging method that
linearly averages the parameters of the local models (e.g., Zhang et al., 2012, 2013; Rosenblatt
and Nadler, 2014); although nearly optimal asymptotic error rates can be achieved, this simple
method tends to degenerate in practical scenarios for models with non-convex log-likelihood or
non-identifiable parameters (such as latent variable models, and neural models), and is not applicable
at all for models with non-additive parameters (e.g., when the parameters have discrete or categorical
values, or the parameter dimensions of the local models are different).

A better strategy that overcomes all these practical limitations of linear averaging is the KL-averaging
method (Liu and Ihler, 2014; Merugu and Ghosh, 2003), which finds a model that minimizes the
sum of Kullback-Leibler (KL) divergence to all the local models. In this way, we directly combine
the models, instead of the parameters. The exact KL-averaging is not computationally tractable
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because of the intractability of calculating KL divergence; a practical approach is to draw (bootstrap)
samples from the given local models, and then learn a combined model based on all the bootstrap
data. Unfortunately, the bootstrap noise can easily dominate in this approach and we need a very large
bootstrap sample size to obtain accurate results. In Section 3, we show that the MSE of the estimator
obtained from the naive way is O(N−1 + (dn)−1), where N is the total size of the observed data,
and n is bootstrap sample size of each local model and d is the number of machines. This means that
to ensure a MSE of O(N−1), which is guaranteed by the centralized method and the simple linear
averaging, we need dn & N ; this is unsatisfying since N is usually very large by assumption.

In this work, we use variance reduction techniques to cancel out the bootstrap noise and get better
KL-averaging estimates. The difficulty of this task is first illustrated using a relatively straightforward
control variates method, which unfortunately suffers some of the practical drawback of the linear
averaging method due to the use of a linear correction term. We then propose a better method based
on a weighted M-estimator, which inherits all the practical advantages of KL-averaging. On the
theoretical part, we show that our methods give a MSE of O(N−1 + (dn2)−1), which significantly
improves over the original bootstrap estimator. Empirical studies are provided to verify our theoretical
results and demonstrate the practical advantages of our methods.

This paper is organized as follows. Section 2 introduces the background, and Section 3 introduces
our methods and analyze their theoretical properties. We present numerical results in Section 4 and
conclude the paper in Section 5. Detailed proofs can be found in the appendix.

2 Background and Problem Setting

Suppose we have a dataset X = {xj , j = 1, 2, ..., N} of size N , i.i.d. drawn from a probabilistic
model p(x|θ∗) within a parametric family P = {p(x|θ) : θ ∈ Θ}; here θ∗ is the unknown true
parameter that we want to estimate based on X . In the distributed setting, the dataset X is partitioned
into d disjoint subsets, X =

⋃d
k=1X

k, where Xk denotes the k-th subset which we assume is stored
in a local machine. For simplicity, we assume all the subsets have the same data size (N/d).

The traditional maximum likelihood estimator (MLE) provides a natural way for estimating the true
parameter θ∗ based on the whole dataset X ,

Global MLE: θ̂mle = arg max
θ∈Θ

d∑
k=1

N/d∑
j=1

log p(xkj | θ), where Xk = {xkj }. (1)

However, directly calculating the global MLE is challenging due to the distributed partition of the
dataset. Although distributed optimization algorithms exist (e.g., Boyd et al., 2011; Shamir et al.,
2014), they require iterative communication between the local machines and a fusion center, which
can be very time consuming in distributed settings, for which the number of communication rounds
forms the main bottleneck (regardless of the amount of information communicated at each round).

We instead consider a simpler one-shot approach that first learns a set of local models based on each
subset, and then send them to a fusion center in which they are combined into a global model that
captures all the information. We assume each of the local models is estimated using a MLE based on
subset Xk from the k-th machine:

Local MLE: θ̂k = arg max
θ∈Θ

N/d∑
j=1

log p(xkj | θ), where k ∈ [d] = {1, 2, · · · , d}. (2)

The major problem is how to combine these local models into a global model. The simplest way is to
linearly average all local MLE parameters:

Linear Average: θ̂linear =
1

d

d∑
k=1

θ̂k.

Comprehensive theoretical analysis has been done for θ̂linear (e.g., Zhang et al., 2012; Rosenblatt and
Nadler, 2014), which show that it has an asymptotic MSE of E||θ̂linear − θ∗||2 = O(N−1). In fact,
it is equivalent to the global MLE θ̂mle up to the first order O(N−1), and several improvements have
been developed to improve the second order term (e.g., Zhang et al., 2012; Huang and Huo, 2015).
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Unfortunately, the linear averaging method can easily break down in practice, or is even not applicable
when the underlying model is complex. For example, it may work poorly when the likelihood has
multiple modes, or when there exist non-identifiable parameters for which different parameter values
correspond to a same model (also known as the label-switching problem); models of this kind include
latent variable models and neural networks, and appear widely in machine learning. In addition, the
linear averaging method is obviously not applicable when the local models have different numbers of
parameters (e.g., Gaussian mixtures with unknown numbers of components), or when the parameters
are simply not additive (such as parameters with discrete or categorical values). Further discussions
on the practical limitations of the linear averaging method can be found in Liu and Ihler (2014).

All these problems of linear averaging can be well addressed by a KL-averaging method which
averages the model (instead of the parameters) by finding a geometric center of the local models
in terms of KL divergence (Merugu and Ghosh, 2003; Liu and Ihler, 2014). Specifically, it finds a
model p(x | θ∗KL) where θ∗KL is obtained by θ∗KL = arg minθ

∑d
k=1 KL(p(x|θ̂k) || p(x|θ)), which

is equivalent to,

Exact KL Estimator: θ∗KL = arg max
θ∈Θ

{
η(θ) ≡

d∑
k=1

∫
p(x | θ̂k) log p(x | θ)dx

}
. (3)

Liu and Ihler (2014) studied the theoretical properties of the KL-averaging method, and showed
that it exactly recovers the global MLE, that is, θ∗KL = θ̂mle, when the distribution family is a full
exponential family, and achieves an optimal asymptotic error rate (up to the second order) among all
the possible combination methods of {θ̂k}.
Despite the attractive properties, the exact KL-averaging is not computationally tractable except for
very simple models. Liu and Ihler (2014) suggested a naive bootstrap method for approximation: it
draws parametric bootstrap sample {x̃kj }nj=1 from each local model p(x|θ̂k), k ∈ [d] and use it to
approximate each integral in (3). The optimization in (3) then reduces to a tractable one,

KL-Naive Estimator: θ̂KL = arg max
θ∈Θ

{
η̂(θ) ≡ 1

n

d∑
k=1

n∑
j=1

log p(x̃kj | θ)

}
. (4)

Intuitively, we can treat each X̃k = {x̃kj }nj=1 as an approximation of the original subset Xk =

{xkj }
N/d
j=1 , and hence can be used to approximate the global MLE in (1).

Unfortunately, as we show in the sequel, the accuracy of θ̂KL critically depends on the bootstrap
sample size n, and one would need n to be nearly as large as the original data size N/d to make θ̂KL

achieve the baseline asymptotic rate O(N−1) that the simple linear averaging achieves; this is highly
undesirably since N is often assumed to be large in distributed learning settings.

3 Main Results

We propose two variance reduction techniques for improving the KL-averaging estimates and discuss
their theoretical and practical properties. We start with a concrete analysis on the KL-naive estimator
θ̂KL, which was missing in Liu and Ihler (2014).

Assumption 1. 1. log p(x | θ), ∂ log p(x|θ)
∂θ , and ∂2 log p(x|θ)

∂θ∂θ> are continuous for ∀x ∈ X and

∀θ ∈ Θ; 2. ∂2 log p(x|θ)

∂θ∂θ> is positive definite and C1 ≤ ‖∂
2 log p(x|θ)

∂θ∂θ> ‖ ≤ C2 in a neighbor of θ∗ for
∀x ∈ X , and C1, C2 are some positive constans.

Theorem 2. Under Assumption 1, θ̂KL is a consistent estimator of θ∗KL as n→∞, and

E(θ̂KL − θ∗KL) = o(
1

dn
), E‖θ̂KL − θ∗KL‖2 = O(

1

dn
),

where d is the number of machines and n is the bootstrap sample size for each local model p(x | θ̂k).

The proof is in Appendix A. Because the MSE between the exact KL estimator θ∗KL and the true
parameter θ∗ is O(N−1) as shown in Liu and Ihler (2014), the MSE between θ̂KL and the true
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parameter θ∗ is

E‖θ̂KL − θ∗‖2 ≈ E‖θ̂KL − θ∗KL‖2 + E‖θ∗KL − θ
∗‖2 = O(N−1 + (dn)−1). (5)

To make the MSE between θ̂KL and θ∗ equal O(N−1), as what is achieved by the simple linear
averaging, we need draw dn & N bootstrap data points in total, which is undesirable since N is often
assumed to be very large by the assumption of distributed learning setting (one exception is when the
data is distributed due to privacy constraint, in which case N may be relatively small).

Therefore, it is a critical task to develop more accurate methods that can reduce the noise introduced
by the bootstrap process. In the sequel, we introduce two variance reduction techniques to achieve
this goal. One is based a (linear) control variates method that improves θ̂KL using a linear correction
term, and another is a multiplicative control variates method that modifies the M-estimator in (4) by
assigning each bootstrap data point with a positive weight to cancel the noise. We show that both
method achieves a higher O(N−1 + (dn2)−1) rate under mild assumptions, while the second method
has more attractive practical advantages.

3.1 Control Variates Estimator

The control variates method is a technique for variance reduction on Monte Carlo estimation (e.g.,
Wilson, 1984). It introduces a set of correlated auxiliary random variables with known expectations
or asymptotics (referred as the control variates), to balance the variation of the original estimator. In
our case, since each bootstrapped subsample X̃k = {x̃kj }nj=1 is know to be drawn from the local
model p(x | θ̂k), we can construct a control variate by re-estimating the local model based on X̃k:

Bootstrapped Local MLE: θ̃k = arg max
θ∈Θ

n∑
j=1

log p(x̃kj | θ), for k ∈ [d], (6)

where θ̃k is known to converge to θ̂k asymptotically. This allows us to define the following control
variates estimator:

KL-Control Estimator: θ̂KL−C = θ̂KL +

d∑
k=1

Bk(θ̃k − θ̂k), (7)

where Bk is a matrix chosen to minimize the asymptotic variance of θ̂KL−C ; our derivation shows
that the asymptotically optimal Bk has a form of

Bk = −(

d∑
k=1

I(θ̂k))−1I(θ̂k), k ∈ [d], (8)

where I(θ̂k) is the empirical Fisher information matrix of the local model p(x | θ̂k). Note that this
differentiates our method from the typical control variates methods where Bk is instead estimated
using empirical covariance between the control variates and the original estimator (in our case, we
can not directly estimate the covariance because θ̂KL and θ̃k are not averages of i.i.d. samples).The
procedure of our method is summarized in Algorithm 1. Note that the form of (7) shares some
similarity with the one-step estimator in Huang and Huo (2015), but Huang and Huo (2015) focuses
on improving the linear averaging estimator, and is different from our setting.

We analyze the asymptotic property of the estimator θ̂KL−C , and summarize it as follows.

Theorem 3. Under Assumption (1), θ̂KL−C is a consistent estimator of θ∗KL as n → ∞, and its
asymptotic MSE is guaranteed to be smaller than the KL-naive estimator θ̂KL, that is,

nE‖θ̂KL−C − θ∗KL‖2 < nE‖θ̂KL − θ∗KL‖2, as n→∞.

In addition, whenN > n×d, the θ̂KL−C has “zero-variance” in that E‖θ̂KL−θ∗KL‖2 = O((dn2)−1).
Further, in terms of estimating the true parameter, we have

E‖θ̂KL−C − θ∗‖2 = O(N−1 + (dn2)−1). (9)
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Algorithm 1 KL-Control Variates Method for Combining Local Models

1: Input: Local model parameters {θ̂k}dk=1.
2: Generate bootstrap data {x̃kj }nj=1 from each p(x|θ̂k), for k ∈ [d].
3: Calculate the KL-Naive estimator, θ̂KL = arg maxθ∈Θ

∑d
k=1

1
n

∑n
j=1 log p(x̃kj |θ).

4: Re-estimate the local parameters θ̃k via (6) based on the bootstrapped data subset {x̃kj }nj=1, for
k ∈ [d].

5: Estimate the empirical Fisher information matrix I(θ̂k) = 1
n

∑n
j=1

∂log p(x̃k
j |θ̂k)

∂θ

∂log p(x̃k
j |θ̂k)

∂θ

>
,

for k ∈ [d].
6: Ouput: The parameter θ̂KL−C of the combined model is given by (7) and (8).

The proof is in Appendix B. From (9), we can see that the MSE between θ̂KL−C and θ∗ reduces to
O(N−1) as long as n & (N/d)1/2, which is a significant improvement over the KL-naive method
which requires n & N/d. When the goal is to achieve an O(ε) MSE, we would just need to take
n & 1/(dε)1/2 when N > 1/ε, that is, n does not need to increase with N when N is very large.

Meanwhile, because θ̂KL−C requires a linear combination of θ̂k, θ̃k and θ̂KL, it carries the practical
drawbacks of the linear averaging estimator as we discuss in Section 2. This motivates us to develop
another KL-weighted method shown in the next section, which achieves the same asymptotical
efficiency as θ̂KL−C , while still inherits all the practical advantages of KL-averaging.

3.2 KL-Weighted Estimator

Our KL-weighted estimator is based on directly modifying the M-estimator for θ̂KL in (4), by
assigning each bootstrap data point x̃kj a positive weight according to the probability ratio p(x̃kj |
θ̂k)/p(x̃kj | θ̃k) of the actual local model p(x|θ̂k) and the re-estimated model p(x|θ̃k) in (6). Here
the probability ratio acts like a multiplicative control variate (Nelson, 1987), which has the advantage
of being positive and applicable to non-identifiable, non-additive parameters. Our estimator is defined
as

KL-Weighted Estimator: θ̂KL−W = arg max
θ∈Θ

{
η̃(θ) ≡

d∑
k=1

1

n

n∑
j=1

p(x̃kj |θ̂k)

p(x̃kj |θ̃k)
log p(x̃kj |θ)

}
.

(10)
We first show that this weighted estimator η̃(θ) gives a more accurate estimation of η(θ) in (3) than
the straightforward estimator η̂(θ) defined in (4) for any θ ∈ Θ.

Lemma 4. As n→∞, η̃(θ) is a more accurate estimator of η(θ) than η̂(θ), in that

nVar(η̃(θ)) ≤ nVar(η̂(θ)), as n→∞, for any θ ∈ Θ. (11)

This estimator is motivated by Henmi et al. (2007) in which the same idea is applied to reduce the
asymptotic variance in importance sampling. Similar result is also found in Hirano et al. (2003), in
which it is shown that a similar weighted estimator with estimated propensity score is more efficient
than the estimator using true propensity score in estimating the average treatment effects. Although
being a very powerful tool, results of this type seem to be not widely known in machine learning,
except several applications in semi-supervised learning (Sokolovska et al., 2008; Kawakita and
Kanamori, 2013), and off-policy learning (Li et al., 2015).

We go a step further to analyze the asymptotic property of our weighted M-estimator θ̂KL−W that
maximizes η̃(θ). It is natural to expect that the asymptotic variance of θ̂KL−W is smaller than that of
θ̂KL based on maximizing η̂(θ); this is shown in the following theorem.

Theorem 5. Under Assumption 1, θ̂KL−W is a consistent estimator of θ∗KL as n→∞, and has a
better asymptotic variance than θ̂KL, that is,

nE‖θ̂KL−W − θ∗KL‖2 ≤ nE‖θ̂KL − θ∗KL‖2, when n→∞.
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Algorithm 2 KL-Weighted Method for Combining Local Models

1: Input: Local MLEs {θ̂k}dk=1.
2: Generate bootstrap sample {x̃kj }nj=1 from each p(x|θ̂k), for k ∈ [d].

3: Re-estimate the local model parameter θ̃k in (6) based on bootstrap subsample {x̃kj }nj=1, for
each k ∈ [d].

4: Output: The parameter θ̂KL−W of the combined model is given by (10).

When N > n × d, we have E‖θ̂KL−W − θ∗KL‖2 = O((dn2)−1) as n → ∞. Further, its MSE for
estimating the true parameter θ∗ is

E‖θ̂KL−W − θ∗‖2 = O(N−1 + (dn2)−1). (12)

The proof is in Appendix C. This result is parallel to Theorem 3 for the linear control variates
estimator θ̂KL−C . Similarly, it reduces to an O(N−1) rate once we take n & (N/d)1/2.

Meanwhile, unlike the linear control variates estimator, θ̂KL−W inherits all the practical advantages of
KL-averaging: it can be applied whenever the KL-naive estimator can be applied, including for models
with non-identifiable parameters, or with different numbers of parameters. The implementation of
θ̂KL−W is also much more convenient (see Algorithm 2), since it does not need to calculate the
Fisher information matrix as required by Algorithm 1.

4 Empirical Experiments

We study the empirical performance of our methods on both simulated and real world datasets. We
first numerically verify the convergence rates predicted by our theoretical results using simulated
data, and then demonstrate the effectiveness of our methods in a challenging setting when the number
of parameters of the local models are different as decided by Bayesian information criterion (BIC).
Finally, we conclude our experiments by testing our methods on a set of real world datasets.

The models we tested include probabilistic principal components analysis (PPCA), mixture of
PPCA and Gaussian Mixtures Models (GMM). GMM is given by p(x | θ) =

∑m
s=1 αsN (µs,Σs)

where θ = (αs,µs,Σs). PPCA model is defined with the help of a hidden variable t, p(x | θ) =∫
p(x | t; θ)p(t | θ)dt, where p(x | t; θ) = N (x; µ + W t, σ2), and p(t | θ) = N (t; 0, I) and

θ = {µ, W, σ2}. The mixture of PPCA is p(x | θ) =
∑m
s=1 αsps(x | θs), where θ = {αs,θs}ms=1

and each ps(x | θs) is a PPCA model.

Because all these models are latent variable models with unidentifiable parameters, the direct linear
averaging method are not applicable. For GMM, it is still possible to use a matched linear averaging
which matches the mixture components of the different local models by minimizing a symmetric KL
divergence; the same idea can be used on our linear control variates method to make it applicable to
GMM. On the other hand, because the parameters of PPCA-based models are unidentifiable up to
arbitrary orthonormal transforms, linear averaging and linear control variates can no longer be applied
easily. We use expectation maximization (EM) to learn the parameters in all these three models.

4.1 Numerical Verification of the Convergence Rates

We start with verifying the convergence rates in (5), (9) and (12) of MSE E||θ̂−θ∗||2 of the different
estimators for estimating the true parameters. Because there is also an non-identifiability problem in
calculating the MSE, we again use the symmetric KL divergence to match the mixture components,
and evaluate the MSE on WW> to avoid the non-identifiability w.r.t. orthonormal transforms. To
verify the convergence rates w.r.t. n, we fix d and let the total dataset N be very large so that N−1 is
negligible. Figure 1 shows the results when we vary n, where we can see that the MSE of KL-naive
θ̂KL is O(n−1) while that of KL-control θ̂KL−C and KL-weighted θ̂KL−W are O(n−2); both are
consistent with our results in (5), (9) and (12).

In Figure 2(a), we increase the number d of local machines, while using a fix n and a very large
N , and find that both θ̂KL and θ̂KL−W scales as O(d−1) as expected. Note that since the total
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observation data size N is fixed, the number of data in each local machine is (N/d) and it decreases
as we increase d. It is interesting to see that the performance of the KL-based methods actually
increases with more partitions; this is, of course, with a cost of increasing the total bootstrap sample
size dn as d increases. Figure 2(b) considers a different setting, in which we increase d when fixing
the total observation data size N , and the total bootstrap sample size ntot = n× d. According to (5)
and (12), the MSEs of θ̂KL and θ̂KL−W should be about O(n−1

tot) and O(dn−2
tot) respectively when

N is very large, and this is consistent with the results in Figure 2(b). It is interesting to note that
the MSE of θ̂KL is independent with d while that of θ̂KL−W increases linearly with d. This is not
conflict with the fact that θ̂KL−W is better than θ̂KL, since we always have d ≤ ntot.

Figure 2(c) shows the result when we set n = (N/d)α and vary α, where we find that θ̂KL−W
quickly converges to the global MLE as α increases, while the KL-naive estimator θ̂KL converges
significantly slower. Figure 2(d) demonstrates the case when we increase N while fix d and n, where
we see our KL-weighted estimator θ̂KL−W matches closely with N , except when N is very large in
which case the O((dn2)−1) term starts to dominate, while KL-naive is much worse. We also find the
linear averaging estimator performs poorly, and does not scale with O(N−1) as the theoretical rate
claims; this is due to unidentifiable orthonormal transform in the PPCA model that we test on.

100 1000
Bootstrap Size (n)

-4

-3

-2

-1

0

Lo
g 

M
S

E

100 1000
Bootstrap Size (n)

-3

-2

-1

0

1

Lo
g 

M
S

E

100 1000
Bootstrap Size (n)

-5

-4

-3

-2

-1

Lo
g 

M
S

E

KL-Naive
KL-Control
KL-Weighted

(a) PPCA (b) Mixture of PPCA (c) GMM

Figure 1: Results on different models with simulated data when we change the bootstrap sample size
n, with fixed d = 10 and N = 6× 107. The dimensions of the PPCA models in (a)-(b) are 5, and
that of GMM in (c) is 3. The numbers of mixture components in (b)-(c) are 3. Linear averaging and
KL-Control are not applicable for the PPCA-based models, and are not shown in (a) and (b).
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Figure 2: Further experiments on PPCA with simulated data. (a) varying n with fixed N = 5× 107.
(b) varying d with N = 5× 107, ntot = n× d = 3× 105. (c) varying α with n = (Nd )α, N = 107

and d. (d) varying N with n = 103 and d = 20. The dimension of data x is 5 and the dimension of
latent variables t is 4.

4.2 Gaussian Mixture with Unknown Number of Components

We further apply our methods to a more challenging setting for distributed learning of GMM when
the number of mixture components is unknown. In this case, we first learn each local model with EM
and decide its number of components using BIC selection. Both linear averaging and KL-control
θ̂KL−C are not applicable in this setting, and and we only test KL-naive θ̂KL and KL-weighted
θ̂KL−W . Since the MSE is also not computable due to the different dimensions, we evaluate θ̂KL

and θ̂KL−W using the log-likelihood on a hold-out testing dataset as shown in Figure 3. We can
see that θ̂KL−W generally outperforms θ̂KL as we expect, and the relative improvement increases
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significantly as the dimension of the observation data x increases. This suggests that our variance
reduction technique works very efficiently in high dimension problems.
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Figure 3: GMM with the number of mixture components estimated by BIC. We set n = 600 and
the true number of mixtures to be 10 in all the cases. (a)-(b) vary the total data size N when the
dimension of x is 3 and 80, respectively. (c) varies the dimension of the data with fixed N = 105.
The y-axis is the testing log likelihood compared with that of global MLE.

4.3 Results on Real World Datasets

Finally, we apply our methods to several real world datasets, including the SensIT Vehicle dataset on
which mixture of PPCA is tested, and the Covertype and Epsilon datasets on which GMM is tested.
From Figure 4, we can see that our KL-Weight and KL-Control (when it is applicable) again perform
the best. The (matched) linear averaging performs poorly on GMM (Figure 4(b)-(c)), while is not
applicable on mixture of PPCA.
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Figure 4: Testing log likelihood (compared with that of global MLE) on real world datasets. (a)
Learning Mixture of PPCA on SensIT Vehicle. (b)-(c) Learning GMM on Covertype and Epsilon.
The number of local machines is 10 in all the cases, and the number of mixture components are
taken to be the number of labels in the datasets. The dimension of latent variables in (a) is 90. For
Epsilon, a PCA is first applied and the top 100 principal components are chosen. Linear-matched and
KL-Control are not applicable on Mixture of PPCA and are not shown on (a).

5 Conclusion and Discussion

We propose two variance reduction techniques for distributed learning of complex probabilistic
models, including a KL-weighted estimator that is both statistically efficient and widely applicable
for even challenging practical scenarios. Both theoretical and empirical analysis is provided to
demonstrate our methods. Future directions include extending our methods to discriminant learning
tasks, as well as the more challenging deep generative networks on which the exact MLE is not
computable tractable, and surrogate likelihood methods with stochastic gradient descent are need.
We note that the same KL-averaging problem also appears in the “knowledge distillation" problem
in Bayesian deep neural networks (Korattikara et al., 2015), and it seems that our technique can be
applied straightforwardly.
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