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Abstract

Given iid observations from an unknown absolute continuous distribution defined
on some domain Ω, we propose a nonparametric method to learn a piecewise
constant function to approximate the underlying probability density function. Our
density estimate is a piecewise constant function defined on a binary partition of
Ω. The key ingredient of the algorithm is to use discrepancy, a concept originates
from Quasi Monte Carlo analysis, to control the partition process. The resulting
algorithm is simple, efficient, and has a provable convergence rate. We empirically
demonstrate its efficiency as a density estimation method. We also show how it can
be utilized to find good initializations for k-means.

1 Introduction

Density estimation is one of the fundamental problems in statistics. Once an explicit estimate of the
density function is constructed, various kinds of statistical inference tasks follow naturally. Given iid
observations, our goal in this paper is to construct an estimate of their common density function via a
nonparametric domain partition approach.

As pointed out in [1], for density estimation, the bias due to the limited approximation power of a
parametric family will become dominant in the over all error as the sample size grows. Hence it is
necessary to adopt a nonparametric approach to handle this bias. The kernel density estimation [2]
is a popular nonparametric density estimation method. Although in theory it can achieve optimal
convergence rate when the kernel and the bandwidth are appropriately chosen, its result can be
sensitive to the choice of bandwidth, especially in high dimension. In practice, kernel density
estimation is typically not applicable to problems of dimension higher than 6.

Another widely used nonparametric density estimation method in low dimension is the histogram. But
similarly with kernel density estimation, it can not be scaled easily to higher dimensions. Motivated
by the usefulness of histogram and the need for a method to handle higher dimensional cases, we
propose a novel nonparametric density estimation method which learns a piecewise constant density
function defined on a binary partition of domain Ω.

A key ingredient for any partition based method is the decision for stopping. Based on the observation
that for any piecewise constant density, the distribution conditioned on each sub-region is uniform,
we propose to use star discrepancy, which originates from analysis of Quasi-Monte Carlo methods,
to formally measure the degree of uniformity. We will see in section 4 that this allows our density
estimator to have near optimal convergence rate.

In summary, we highlight our contribution as follows:

• To the best of our knowledge, our method is the first density estimation method that utilizes
Quasi-Monte Carlo technique in density estimation.
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• We provide an error analysis on binary partition based density estimation method. We
establish an O(n−

1
2 ) error bound for the density estimator. The result is optimal in the sense

that essentially all Monte Carlo methods have the same convergence rate. Our simulation
results support the tightness of this bound.

• One of the advantage of our method over existing ones is its efficiency. We demonstrate in
section 5 that our method has comparable accuracy with other methods in terms of Hellinger
distance while achieving an approximately 102-fold speed up.

• Our method is a general data exploration tool and is readily applicable to many important
learning tasks. Specifically, we demonstrate in section 5.3 how it can be used to find good
initializations for k-means.

2 Related work
Existing domain partition based density estimators can be divided into two categories: the first
category belongs to the Bayesian nonparametric framework. Optional Pólya Tree (OPT) [3] is a
class of nonparametric conjugate priors on the set of piecewise constant density functions defined on
some partition of Ω. Bayesian Sequential Partitioning (BSP) [1] is introduced as a computationally
more attractive alternative to OPT. Inferences for both methods are performed by sampling from the
posterior distribution of density functions. Our improvement over these two methods is two-fold.
First, we no longer restrict the binary partition to be always at the middle. By introducing a new
statistic called the “gap”, we allow the partitions to be adaptive to the data. Second, our method
does not stem from a Bayesian origin and proceeds in a top down, greedy fashion. This makes our
method computationally much more attractive than OPT and BSP, whose inference can be quite
computationally intensive.

The second category is tree based density estimators [4] [5]. As an example, Density Estimation
Trees [5] is generalization of classification trees and regression trees for the task of density estimation.
Its tree based origin has led to a loss minimization perspective: the learning of the tree is done by
minimizing the integrated squared error. However, the true loss function can only be approximated by
a surrogate and the optimization problem is difficult to solve. The objective of our method is much
simpler and leads to an intuitive and efficient algorithm.

3 Main algorithm
3.1 Notations and definitions
In this paper we consider the problem of estimating a joint density function f from a given set of
observations. Without loss of generality, we assume the data domain Ω = [0, 1]d, a hyper-rectangle
in Rd. We use the short hand notation [a, b] =

∏d
j=1[aj , bj ] to denote a hyper-rectangle in Rd, where

a = (a1, · · · , ad), b = (b1, · · · , bd) ∈ [0, 1]d. Each (aj , bj) pair specifies the lower and upper bound
of the hyper-rectangle along dimension j.

We restrict our attention to the class of piecewise constant functions after balancing the trade-off
between simplicity and representational power: Ideally, we would like the function class to have
concise representation while at the same time allowing for efficient evaluation. On the other hand,
we would like to be able to approximate any continuous density function arbitrarily well (at least as
the sample size goes to infinity). This trade-off has led us to choose the set of piecewise constant
functions supported on binary partitions: First, we only need 2d + 1 floating point numbers to
uniquely define a sub-rectangle (2d for its location and 1 for its density value). Second, it is well
known that the set of positive, integrable, piesewise constant functions is dense in Lp for p ∈ [1,∞).

The binary partition we consider can be defined in the following recursive way: starting with
P0 = Ω. Suppose we have a binary partition Pt = {Ω(1), · · · ,Ω(t)} at level t, where ∪ti=1Ω(i) = Ω,
Ω(i) ∩Ω(j) = ∅, i 6= j, a level t+ 1 partition Pt+1 is obtained by dividing one sub-rectangle Ω(i) in
Pt along one of its coordinates, parallel to one of the dimension. See Figure 1 for an illustration.

3.2 Adaptive partition and discrepancy control
The above recursive build up has two key steps. The first is to decide whether to further split a sub-
rectangle. One helpful intuition is that for piecewise constant densities, the distribution conditioned
on each sub-rectangle is uniform. Therefore the partition should stop when the points inside a sub-
rectangle are approximatly uniformly scattered. In other words, we stop the partition when further
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Figure 1: Left: a sequence of binary partition and the corresponding tree representation; if we encode
partitioning information (e.g., the location where the split occurs) in the nodes, there is a one to one
mapping between the tree representations and the partitions. Right: the gaps with m = 3, we split
the rectangle at location D, which corresponds to the largest gap (Assuming it does not satisfy (2),
see the text for more details)

.

partitioning does not reveal much additional information about the underlying density landscape. We
propose to use star discrepancy, which is a concept originates from the analysis of Quasi-Monte Carlo
methods, to formally measure the degree of uniformity of points in a sub-rectangle. Star discrepancy
is defined as:

Definition 1. Given n points Xn = {x1, ..., xn} in [0, 1]d. The star discrepancy D∗(Xn) is defined
as:

D∗(Xn) = sup
a∈[0,1]d

∣∣∣ 1
n

n∑
i=1

1{xi ∈ [0, a)} −
d∏

j=1

aj

∣∣∣ (1)

The supremum is taken over all d-dimensional sub-rectangles [0, a). Given star discrepancy D∗(Xn),
we have the following error bound for Monte Carlo integration (See [6] for a proof):

Theorem 2. (Koksma-Hlawka inequality) Let Xn = {x1, x2, ..., xn} be a set of points in [0, 1]d with
discrepancy D∗(Xn); Let f be a function on [0, 1]d of bounded variation V(f). Then,∣∣∣ ∫

[0,1]d
f(x)dx− 1

n

n∑
i=1

f(xi)
∣∣∣ ≤ V(f)D∗(Xn)

where V(f) is the total variation in the sense of Hardy and Krause (See [7] for its precise definition).

The above theorem implies if the star discrepancy D∗(Xn) is under control, the empirical distribution
will be a good approximation to the true distribution. Therefore, we may decide to keep partitioning
a sub-rectangle until its discrepancy is lower than some threshold. We shall see in section 4 that this
provably guarantees our density estimate is a good approximation to the true density function.

Another important ingredient of all partition based methods is the choice of splitting point. In order
to find a good location to split for [a, b] =

∏d
j=1[aj , bj ], we divide jth dimension into m equal-sized

bins: [aj , aj + (bj − aj)/m], ..., [aj + (bj − aj)(m− 2)/m, aj + (bj − aj)(m− 1)/m] and keep
track of the gaps at aj + (bj − aj)/m, ..., aj + (bj − aj)(m− 1)/m, where the gap gjk is defined as
|(1/n)

∑n
i=1 1(xij < aj + (bj − aj)k/m)− k/m| for k = 1, ..., (m− 1), there are total (m− 1)d

gaps recorded (Figure 1). Here m is a hyper-parameter chosen by the user. [a, b] is split into two
sub-rectangles along the dimension and location corresponding to maximum gap (Figure 1). The
pseudocode for the complete algorithm is given in Algorithm 1. We refer to this algorithm as DSP in
the sequel. One distinct feature of DSP is it only requires the user to specify two parameters: m, θ,
where m is the number of bins along each dimension; θ is the parameter for discrepancy control (See
theorem 2 for more details). In some applications, the user may prefer putting an upper bound on
the number of total partitions. In that case, there is typically no need to specify θ. Choices for these
parameters are discussed in Section 5.

The resulting density estimates p̂ is a piecewise constant function defined on a binary partition
of Ω: p̂(x) =

∑L
i=1 d(ri)1{x ∈ ri} where 1 is the indicator function; L is the total number of

sub-rectangles in the final partition; {ri, d(ri)}Li=1 are the sub-rectangle and density pairs. We
demonstrate in section 5 how p̂(x) can be leveraged to find good initializations for k-means. In the
following section, we establish a convergence result of our density estimator.

3



Algorithm 1 Density Estimation via Discrepancy Based Sequential Partition (DSP)
Input: XN ,m, θ
Output: A piecewise constant function Pr(·) defined on a binary partitionR
Let Pr(r) denote the probability mass of region r ⊂ Ω; let XN (r) denote the points in XN that lie
within r, where r ⊂ Ω. ni denotes the size of set X(i).
1: procedure DSP(XN ,m, θ)
2: B = {[0, 1]d}, Pr([0, 1]d) = 1
3: while true do
4: R′ = ∅
5: for each ri = [a(i), b(i)] inR do
6: Calculate gaps {gjk}j=1,...,d,k=1,...,m−1

7: Scale X(ri) = {xil}
ni
l=1 to X̃(i) = {x̃il = (

xil,1
−a

(i)
1

b
(i)
1

, ...,
xil,d

−a
(i)
d

b
(i)
d

)}ni
l=1

8: if X(ri) 6= ∅ and D∗(X̃(i)) > θ
√
N/ni then . Condition (2) in Theorem 4

9: Split ri into ri1 = [a(i1), b(i1)] and ri2 = [a(i2), b(i2)] along the max gap (Figure 1).

10: Pr(ri1 ) = Pr(ri)
|P (ri1 )|

ni
, Pr(ri2 ) = Pr(ri)− Pr(ri1 )

11: R′ = R′ ∪ {ri1 , ri2}
12: elseR′ = R′ ∪ {ri}
13: ifR′ 6= R thenR = R′
14: else returnR,Pr(·)

4 Theoretical results
Before we establish our main theorem, we need the following lemma:1

Lemma 3. Let D∗n = inf{x1,...,xn}∈[0,1]d D
∗(x1, ..., xn), then we have

D∗n ≤ c
√
d

n

for all n, d ∈ R+, where c is some positive constant.

We now state our main theorem:
Theorem 4. Let f be a function defined on Ω = [0, 1]d with bounded variation. Let XN =
{x1, ..., xN ∈ Ω} and {[a(i), b(i)], i = 1, · · · , L} be a level L binary partition of Ω. Further denote
by X(i) = {xj = (xj1, ..., xjd), xj ∈ [a(i), b(i)] and } ∩XN , i.e. the part of XN in sub-rectangle i.
ni = |X(i)|. Suppose in each sub-rectangle [a(i), b(i)], X(i) satisfies

D∗(X̃(i)) ≤ α(i)D∗ni
(2)

where X̃(i) = {x̃j = (
xj1−a(i)1

b
(i)
1

, ...,
xjd−a(i)d

b
(i)
d

), xj ∈ X(i)} , α(i) =
√

N
nid

θ
c for some positive

constant θ, D∗ni
is defined as in lemma 3. Then∣∣∣ ∫

[0,1]d
f(x)p̂(x)dx− 1

N

N∑
i=1

f(xi)
∣∣∣ ≤ θ√

N
V(f) (3)

where p̂(x) is a piecewise constant density estimator given by

p̂(x) =

L∑
i=1

di1{x ∈ [a(i), b(i)]}

with di = (
∏d
j=1(b

(i)
j − a

(i)
j ))−1ni/N , i.e., the empirical density.

In the above theorem, α(i) controls the relative uniformity of the points and is adaptive to X(i). It
imposes more restrictive constraints on regions containing larget proportion of the sample (ni/N ).
Although our density estimate is not the only estimator which satisfies (3), (for example, both the
empirical distribution in the asymptotic limit and kernel density estimator with sufficiently small
bandwidth meet the criterion), one advantage of our density estimator is that it provides a very concise

1The proof for Lemma 3 can be found in [8]. Theorem 4 and Corollary 5 are proved in the supplementary
material.
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summary of the data while at the same time capturing the landscape of the underlying distribution. In
addition, the piecewise constant function does not suffer from having too many “local bumps”, which
is a common problem for kernel density estimator. Moreover, under certain regularity conditions
(e.g. bounded second moments), the convergence rate of Monte Carlo methods for 1

N

∑N
i=1 f(xi) to∫

[0,1]d
f(x)p(x)dx is of order O(N−

1
2 ). Our density estimate is optimal in the sense that it achieves

the same rate of convergence. Given theorem 4, we have the following convergence result:

Corollary 5. Let p̂(x) be the estimated density function as in theorem 4. For any hyper-rectangle
A = [a, b] ⊂ [0, 1]d, let P̂ (A) =

∫
A
p̂(x)dx and P (A) =

∫
A
p(x)dx, then

sup
A⊂[0,1]d

|P̂ (A)− P (A)| → 0

at the order O(n−
1
2 ).

Remark 4.1. It is worth pointing out that the total variation distance between two probability
measures P̂ and P is defined as δ(P̂ , P ) = supA∈B |P̂ (A)−P (A)|, where B is the Borel σ-algebra
of [0, 1]d. In contrast, Corollary 5 restricts A to be hyper-rectangles.

5 Experimental results
5.1 Implementation details
In some applications, we find it helpful to first estimate the marginal densities for each component
variables x.j (j = 1, ..., d), then make a copula transformation z.j= F̂j(x.j), where F̂j is the estimated
cdf of x.j . After such a transformation, we can take the domain to be [0, 1]d. Also we find this can
save the number of partition needed by DSP. Unless otherwise stated, we use copula transform in our
experiments whenever the dimension exceeds 3.

We make the following observations to improve the efficiency of DSP: 1) First observe that
maxj=1,...,dD

∗({xij}ni=1) ≤ D∗({xi}ni=1). Let x(i)j be the ith smallest element in {xij}ni=1,
then D∗({xij}ni=1) = 1

2n + maxi |x(i)j − 2i−1
2n | [9], which has complexity O(n log n). Hence

maxj=1,...,dD
∗({xij}ni=1) can be used to compare against θ

√
L/n first before calculating

D∗({xi}ni=1); 2) θ
√
N/n is large when n is small, but D∗({xi}ni=1) is bounded above by 1; 3)

θ
√
N/n is tiny when n is large and D∗({xi}ni=1) is bounded below by cd log(d−1)/2 n−1 with some

constant cd depending on d [10]; thus we can keep splitting without checking (2) when θ
√
N/n ≤ ε,

where ε is a small positive constant (say 0.001) specified by the user. This strategy has proved to be
effective in decreasing the runtime significantly at the cost of introducing a few more sub-rectangles.

Another approximation works well in practice is by replacing star discrepancy with computationally
attractive L2 star discrepancy, i.e., D(2)(Xn) = (

∫
[0,1]d

| 1n
∑n
i=1 1xi∈[0,a) −

∏d
i=1 ai|2da)

1
2 ; in fact,

several statistics to test uniformity hypothesis based on D(2) are proposed in [11]; however, the
theoretical guarantee in Theorem 4 no longer holds. By Warnock’s formula [9],

[D(2)(Xn)]
2 =

1

3d
− 21−d

n

n∑
i=1

d∏
j=1

(1− x2ij) +
1

n2

n∑
i,l=1

d∏
j=1

min{1− xij , 1− xlj}

D(2) can be computed in O(n logd−1 n) by K. Frank and S. Heinrich’s algorithm [9]. At each scan of
R in Algorithm 1, the total complexity is at most

∑L
i=1O(ni logd−1 ni) ≤

∑L
i=1O(ni logd−1N) ≤

O(N logd−1N).

There are no closed form formulas for calculating D∗(Xn) and D∗n except for low dimensions. If
we replace α(i) in (2) and apply Lemma 3, what we are actually trying to do is to control D∗(X̃(i))

by θ
√
N/ni. There are many existing work on ways to approximate D∗(Xn). In particular, a new

randomized algorithm based on threshold accepting is developed in [12]. Comprehensive numerical
tests indicate that it improves upon other algorithms, especially in when 20 ≤ d ≤ 50. We used
this algorithm in our experiments. The interested readers are referred to the original paper for more
details.
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5.2 DSP as a density estimate
1) To demonstrate the method and visualize the results, we apply it on several 2-dimensional data sets
simulated from 3 distributions with different geometry:

1. Gaussian: x ∼ N (µ,Σ)1{x ∈ [0, 1]2}, with µ = (.5, .5)T , Σ = [0.08, 0.02; 0.02, 0.02]

2. Mixture of Gaussians: x ∼ 1
2

∑2
i=1N (µi,Σi)1{x ∈ [0, 1]2} with µ1 = (.50, .25)T , and

µ2 = (.50, .75)T ,Σ1 = Σ2 = [0.04, 0.01; 0.01, 0.01];
3. Mixture of Betas: x ∼ 1

3 (beta(2, 5)beta(5, 2) + beta(4, 2)beta(2, 4) + beta(1, 3)beta(3, 1));

where N (µ,Σ) denotes multivariate Gaussian distribution and beta(α, β) denotes beta distribution.
We simulated 105 points for each distribution. See the first row of Figure 2 for visualizations of the
estimated densities. The figure shows DSP accurately estimates the true density landscape in these
three toy examples.
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Figure 2: First row: estimated densities for 3 simulated 2D datasets. The modes are marked with
stars. The corresponding contours of true densities are embedded for comparison. Second row:
simulation of 2, 5 and 10 dimensional cases (from left to right) with reference functions f1, f2, f3.
x-axis: sample size n. y-axis: error between the true integral and the estimated integral. The vertical
bars are standard error bars obtained from 10 replications. See section 5.2 2) for more details.

2) To evaluate the theoretical bound (3), we choose the following three 3 reference functions with
dimension d = 2, 5 and 10 respectively: f1(x) =

∑n
i=1

∑d
j=1 x

1
2
ij , f2(x) =

∑n
i=1

∑d
j=1 xij ,

f3(x) = (
∑n
i=1

∑d
j=1 x

1
2
ij)

2. We generate n ∈ {102, 103, 104, 105, 106} samples from p(x) =

1
2

(∏d
j=1 beta(xj , 15, 5) +

∏d
j=1 beta(xj , 5, 15)

)
, where beta(·, α, β) is the density function of beta

distribution.

The error |
∫

[0,1]d
fk(x)p(x)dx −

∫
[0,1]d

fk(x)p̂(x)dx| is bounded by |
∫

[0,1]d
fk(x)p(x)dx −

1
n

∑n
j=1 fk(xj)| + |

∫
[0,1]d

fk(x)p̂(x)dx − 1
n

∑n
j=1 fk(xj)| where p̂(x) is the estimated density;

For almost all Monte Carlo methods, the first term is of order O(n−
1
2 ). The second term is controlled

by (3). Thus in total the error is of order O(n−
1
2 ). We have plot the error against the sample size

on log-log scale for each dimension in the second row of Figure 2. The linear trends in the plots
corroborate the bound in (3).

3) To show the efficiency and scalability of DSP, we compare it with KDE, OPT and BSP in terms
of estimation error and running time. We simulate samples from x ∼ (

∑4
i=1 πiN (µi,Σi))1{x ∈

[0, 1]d}with d = {2, 3, · · · , 6} andN = {103, 104, 105} respectively. The estimation error measured
in terms of Hellinger Distance is summarized in Table 1. We setm = 10, θ = 0.01 in our experiments.
We found the resulting Hellinger distance to be quite robust as m ranges from 3 to 20 (equally
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spaced). The supplementary material includes the exact details about the parameters of the simulating
distributions, estimation of Hellinger distance and other implementation details for the algorithms.
The table shows DSP achieves comparable accuracy with the best of the other three methods. As
mentioned at the beginning of this paper, one major advantage of DSP’s is its speed. Table 2 shows
our method achieves a significant speed up over all other three algorithms.

Table 1: Error in Hellinger Distance between the true density and KDE, OPT, BSP, our method
for each (d, n) pair. The numbers in parentheses are standard errors from 20 replicas. The best of the
four method is highlighted in bold. Note that the simulations, being based on mixtures of Gaussians,
is unfavorable for methods based on domain partitions.

Hellinger Distance (n = 103) Hellinger Distance (n = 104) Hellinger Distance (n = 105)
d KDE OPT BSP DSP KDE OPT BSP DSP KDE OPT BSP DSP
2 0.2331 0.2147 0.2533 0.2634 0.1104 0.0957 0.1222 0.0803 0.0305 0.0376 0.0345 0.0312

(0.0421) (0.0172) (0.0163) (0.0207) (0.0102) (0.0036) (0.0043) (0.0013) (0.0021) (0.0021) (0.0025) (0.0027)
3 0.2893 0.3279 0.2983 0.3072 0.2003 0.1722 0.1717 0.1721 0.1466 0.1117 0.1323 0.1020

(0.0227) (0.0128) (0.0133) (0.0265) (0.0199) (0.0028) (0.0083) (0.0073) (0.0047) (0.0008) (0.0009) (0.004)
4 0.3913 0.3839 0.3872 0.3895 0.2466 0.2726 0.2882 0.2955 0.1900 0.1880 0.2100 0.1827

(0.0325) (0.0136) (0.0117) (0.0191) (0.0113) (0.0031) (0.0047) (0.0065) (0.0057) (0.0006) (0.0006) (0.0059)
5 0.4522 0.4748 0.4435 0.4307 0.3599 0.3562 0.3987 0.3563 0.2817 0.2822 0.2916 0.2910

(0.0317) (0.009) (0.0167) (0.0302) (0.0199) (0.0025) (0.0022) (0.0031) (0.0088) (0.0005) (0.0003) (0.0002)
6 0.5511 0.5508 0.5515 0.5527 0.4833 0.4015 0.4093 0.3911 0.3697 0.3409 0.3693 0.3701

(0.0318) (0.0307) (0.0354) (0.0381) (0.0255) (0.0023) (0.0046) (0.0037) (0.0122) (0.0005) (0.0004) (0.0002)

Table 2: Average CPU time in seconds of KDE, OPT, BSP and our method for each (d, n) pair.
The numbers in parentheses are standard errors from 20 replicas. The speed-up is the fold speed-up
computed as the ratio between the minimum run time of the other three methods and the run time of
DSP. All methods are implemented in C++. See the supplementary material for more details.

Running time (n = 103) Running time (n = 104) Running time (n = 105)
d KDE OPT BSP DSP speed-up KDE OPT BSP DSP speed-up KDE OPT BSP DSP speed-up

2 2.445 9.484 0.833 0.020 41 21.903 31.561 1.445 0.033 43 230.179 44.561 7.750 0.242 33
(0.191) (0.029) (0.006) (0.002) (1.905) (0.079) (0.014) (0.002) (130.572) (0.639) (0.178) (0.015)

3 2.655 25.073 1.054 0.019 55 26.964 36.683 2.819 0.044 64 278.075 56.329 21.104 0.378 55
(0.085) (0.056) (0.010) (0.002) (1.089) (0.076) 0.036) (0.001) (10.576) (0.911) (0.576) (0.011)

4 3.540 32.112 1.314 0.019 69 37.141 39.219 5.861 0.049 119 347.501 67.366 53.620 0.485 108
(0.116) (0.072) (0.014) (0.002) (2.244) (0.221) (0.076) (0.002) (14.676) (3.018) (2.917) (0.018)

5 4.107 37.599 1.713 0.020 85 45.580 44.520 12.220 0.078 157 412.828 77.776 115.869 0.706 110
(0.110) (0.088) (0.019) (0.002) (2.124) (0.587) (0.154) (0.002) (16.252) (2.215) (6.872) (0.051)

6 4.986 41.565 2.749 0.020 137 53.291 43.032 21.696 0.127 170 519.298 81.023 218.999 0.896 90
(0.214) (0.147) (0.024) (0.001) (2.767) (0.413) (0.213) (0.004) (29.276) (3.703) (6.046) (0.071)

5.3 DSP-kmeans
In addition to being a competitive density estimator, we demonstrate in this section how DSP can be
used to get good initializations for k-means. The resulting algorithm is referred to as DSP-kmeans.

Recall that given a fixed number of clusters K, the goal of k-means is to minimize the following
objective function:

JK
∆
=

K∑
k=1

∑
i∈Ck

‖xi −mk‖22 (4)

where Ck denote the set of points in cluster k; {mk}Kk=1 denote the cluster means. The original
k-means algorithms proceeds by alternating between assigning points to centers and recomputing
the means. As a result, the final clustering is usually only a local optima and can be sensitive to the
initializations. Finding a good initialization has attracted a lot of attention over the past decade and
now there is a descent number existing methods, each with their own perspectives. Below we review
a few representative types.

One type of methods look for good initial centers sequentially. The idea is once the first center is
picked, the second should be far away from the one that is already chosen. A similar argument applies
to the rest of the centers. [13] [14] fall under this category. Several studies [15] [16] borrow ideas
from hierarchical agglomerative clustering (HAC) to look for good initializations. In our experiments
we used the algorithm described in [15]. One essential ingredient of this type of algorithms is the inter
cluster distance, which could be problem dependent. Last but not least, there is a class of methods
that attempt to utilize the relationship between PCA and k-means. [17] proposes a PCA-guided
search for initial centers. [18] combines the relationship between PCA and k-means to look for
good initialization. The general idea is to recursively splitting a cluster according the first principal
component. We refer to this algorithm as PCA-REC.

7



DSP-kmeans is different from previous methods in that it tackles the initialization problem from
a density estimation point of view. The idea behind DSP-kmeans is that cluster centers should be
close to the modes of underlying probability density function. If a density estimator can accurately
locate the modes of the underlying true density function, it should also be able to find good cluster
centers. Due to its concise representation, DSP can be used for finding initializations for k-means
in the following way: Suppose we are trying to cluster a dataset Y with K clusters. We first apply
DSP on Y to find a partition with K non-empty sub-rectangles, i.e. sub-rectangles that have at least
one point from Y . The output of DSP will be K sub-rectangles. Denote the set of indices for the
points in sub-rectangle j by Sj , j = 1, . . . ,K, let Ij = 1

|Sj |
∑
i∈Sj

Yi, i.e. Ij is the sample average
of points fall into sub-rectangle j. We then use {I1, · · · , IK} to initialize k-means. We also explored
the following two-phase procedure: first over partition the space to build a more accurate density
estimate. Points in different sub-rectangles are considered to be in different clusters. Then we merge
the sub-rectangles hierarchically based on some measure of between cluster distance. We have found
this to be helpful when the number of clusters K is relatively small. For completeness, we have
included the details of this two-phase DSP-kmeans in the supplementary material.

We test DSP-kmeans on 4 real world datasets of various number of data points and dimensions. Two
of them are taken from the UCI machine learning repository [19]; the stem cell data set is taken from
the FlowCAP challenges [20]; the mouse bone marrow data set is a recently published single-cell
dataset measured using mass cytometry [21]. We use random initialization as the base case and
compare it with DSP-kmeans, k-means++, PCA-REC and HAC. The numbers in Table 3 are the
improvements in k-means objective function of a method over random initialization. The result
shows when the number of clusters is relatively large DSP-kmeans achieves lower objective value
in these four datasets. Although in theory almost all density estimator could be used to find good

Table 3: Comparison of different initialization methods. The number for method j is relative
to random initialization: JK,j−JK,0

JK,0
, where JK,j is the k-means objective value of method j at

convergence. Here we use 0 as index for random initialization. Negative number means the method
perform worse than random initialization.

Improvement over random init. Improvement over random init.
Road network k k-means++ PCA-REC HAC DSP-kmeans Mouse bone marrow k k-means++ PCA-REC HAC DSP-kmeans
n 4.3e+04 4 0.0 -0.02 0.01 0.0 n 8.7e+04 4 1.51 0.03 1.25 0.4
d 3 10 0.0 -0.12 0.25 0.08 d 39 10 0.45 0.24 0.77 0.83

20 0.43 -0.46 1.68 2.04 20 0.63 -1.2 0.68 0.79
40 11.7 -2.52 2.27 13.62 40 1.99 -3.56 2.06 2.55
60 19.78 -3.45 18.69 20.91 60 2.48 -5.25 2.57 2.65

Stem cell k k-means++ PCA-REC HAC DSP-kmeans US census k k-means++ PCA-REC HAC DSP-kmeans
n 9.9e+03 4 3.45 -2.1 3.67 3.96 n 2.4e+06 4 47.44 -2.33 46.72 40.44
d 6 10 3.82 -4.2 3.79 3.6 d 68 10 40.52 -1.9 41.48 39.52

20 9.96 -3.59 9.91 9.39 20 32.63 -1.97 29.49 32.55
40 9.95 -6.39 10.11 12.49 40 32.66 -5.15 33.41 34.61
60 6.12 -7.29 8.19 13.7 60 21.7 -1.19 16.28 21.68

initializations. Based on the comparison of Hellinger distance in Table 1, we would expect them to
have similar performances. However, for OPT and BSP, their runtime would be a major bottleneck for
their applicability The situation for KDE is slightly more complicated: not only it is computationally
quite intensive, its output can not be represented as concisely as partition based methods. Here we
see that the efficiency of DSP makes it possible to utilize it for other machine learning tasks.

6 Conclusion
In this paper we propose a novel density estimation method based on ideas from Quasi-Monte Carlo
analysis. We prove it achieves a O(n−

1
2 ) error rate. By comparing it with other density estimation

methods, we show DSP has comparable performance in terms of Hellinger distance while achieving
a significant speed-up. We also show how DSP can be used to find good initializations for k-means.
Due to space limitation, we were unable to include other interesting applications including mode
seeking, data visualization via level set tree and data compression [22].
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