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Abstract

The success of kernel methods has initiated the design of novel positive semidef-
inite functions, in particular for structured data. A leading design paradigm for
this is the convolution kernel, which decomposes structured objects into their parts
and sums over all pairs of parts. Assignment kernels, in contrast, are obtained
from an optimal bijection between parts, which can provide a more valid notion
of similarity. In general however, optimal assignments yield indefinite functions,
which complicates their use in kernel methods. We characterize a class of base
kernels used to compare parts that guarantees positive semidefinite optimal assign-
ment kernels. These base kernels give rise to hierarchies from which the optimal
assignment kernels are computed in linear time by histogram intersection. We
apply these results by developing the Weisfeiler-Lehman optimal assignment kernel
for graphs. It provides high classification accuracy on widely-used benchmark data
sets improving over the original Weisfeiler-Lehman kernel.

1 Introduction

The various existing kernel methods can conveniently be applied to any type of data, for which a
kernel is available that adequately measures the similarity between any two data objects. This includes
structured data like images [2, 5, 11], 3d shapes [1], chemical compounds [8] and proteins [4], which
are often represented by graphs. Most kernels for structured data decompose both objects and add up
the pairwise similarities between their parts following the seminal concept of convolution kernels
proposed by Haussler [12]. In fact, many graph kernels can be seen as instances of convolution
kernels under different decompositions [23].
A fundamentally different approach with good prospects is to assign the parts of one objects to the
parts of the other, such that the total similarity between the assigned parts is maximum possible.
Finding such a bijection is known as assignment problem and well-studied in combinatorial optimiza-
tion [6]. This approach has been successfully applied to graph comparison, e.g., in general graph
matching [9, 17] as well as in kernel-based classification [8, 18, 1]. In contrast to convolution kernels,
assignments establish structural correspondences and thereby alleviate the problem of diagonal
dominance at the same time. However, the similarities derived in this way are not necessarily positive
semidefinite (p.s.d.) [22, 23] and hence do not give rise to valid kernels, severely limiting their use in
kernel methods.
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Our goal in this paper is to consider a particular class of base kernels which give rise to valid
assignment kernels. In the following we use the term valid to mean a kernel which is symmetric and
positive semidefinite. We formalize the considered problem: Let [X ]n denote the set of all n-element
subsets of a set X and B(X,Y ) the set of all bijections between X,Y in [X ]n for n ∈ N. We study
the optimal assignment kernel Kk

B on [X ]n defined as

Kk
B(X,Y ) = max

B∈B(X,Y )
W (B), where W (B) =

∑

(x,y)∈B
k(x, y) (1)

and k is a base kernel on X . For clarity of presentation we assume n to be fixed. In order to apply the
kernel to sets of different cardinality, we may fill up the smaller set by new objects z with k(z, x) = 0
for all x ∈ X without changing the result.

Related work. Correspondence problems have been extensively studied in object recognition,
where objects are represented by sets of features often called bag of words. Grauman and Darrell
proposed the pyramid match kernel that seeks to approximate correspondences between points in
Rd by employing a space-partitioning tree structure and counting how often points fall into the
same bin [11]. An adaptive partitioning with non-uniformly shaped bins was used to improve the
approximation quality in high dimensions [10].
For non-vectorial data, Fröhlich et al. [8] proposed kernels for graphs derived from an optimal assign-
ment between their vertices and applied the approach to molecular graphs. However, it was shown
that the resulting similarity measure is not necessarily a valid kernel [22]. Therefore, Vishwanathan et
al. [23] proposed a theoretically well-founded variation of the kernel, which essentially replaces the
max-function in Eq. (1) by a soft-max function. Besides introducing an additional parameter, which
must be chosen carefully to avoid numerical difficulties, the approach requires the evaluation of a
sum over all possible assignments instead of finding a single optimal one. This leads to an increase in
running time from cubic to factorial, which is infeasible in practice. Pachauri et al. [16] considered
the problem of finding optimal assignments between multiple sets. The problem is equivalent to
finding a permutation of the elements of every set, such that assigning the i-th elements to each other
yields an optimal result. Solving this problem allows the derivation of valid kernels between pairs
of sets with a fixed ordering. This approach was referred to as transitive assignment kernel in [18]
and employed for graph classification. However, this does not only lead to non-optimal assignments
between individual pairs of graphs, but also suffers from high computational costs. Johansson and
Dubhashi [14] derived kernels from optimal assignments by first sampling a fixed set of so-called
landmarks. Each data point is then represented by a feature vector, where each component is the
optimal assignment similarity to a landmark.
Various general approaches to cope with indefinite kernels have been proposed, in particular, for
support vector machines [see 15, and references therein]. Such approaches should principally be used
in applications, where similarities cannot be expressed by positive semidefinite kernels.

Our contribution. We study optimal assignment kernels in more detail and investigate which base
kernels lead to valid optimal assignment kernels. We characterize a specific class of kernels we
refer to as strong and show that strong kernels are equivalent to kernels obtained from a hierarchical
partition of the domain of the kernel. We show that for strong base kernels the optimal assignment (i)
yields a valid kernel; and (ii) can be computed in linear time given the associated hierarchy. While the
computation reduces to histogram intersection similar to the pyramid match kernel [11], our approach
is in no way restricted to specific objects like points in Rd. We demonstrate the versatility of our
results by deriving novel graph kernels based on optimal assignments, which are shown to improve
over their convolution-based counterparts. In particular, we propose the Weisfeiler-Lehman optimal
assignment kernel, which performs favourable compared to state-of-the-art graph kernels on a wide
range of data sets.

2 Preliminaries

Before continuing with our contribution, we begin by introducing some key notation for kernels
and trees which will be used later. A (valid) kernel on a set X is a function k : X × X → R such
that there is a real Hilbert space H and a mapping φ : X → H such that k(x, y) = 〈φ(x), φ(y)〉
for all x, y in X , where 〈·, ·〉 denotes the inner product of H. We call φ a feature map, and H a
feature space. Equivalently, a function k : X × X → R is a kernel if and only if for every subset
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{x1, . . . , xn} ⊆ X the n× n matrix defined by [m]i,j = k(xi, xj) is p.s.d. The Dirac kernel kδ is
defined by kδ(x, y) = 1, if x = y and 0 otherwise.
We consider simple undirected graphs G = (V,E), where V (G) = V is the set of vertices and
E(G) = E the set of edges. An edge {u, v} is for short denoted by uv or vu, where both refer to the
same edge. A graph with a unique path between any two vertices is a tree. A rooted tree is a tree
T with a distinguished vertex r ∈ V (T ) called root. The vertex following v on the path to the root
r is called parent of v and denoted by p(v), where p(r) = r. The vertices on this path are called
ancestors of v and the depth of v is the number of edges on the path. The lowest common ancestor
LCA(u, v) of two vertices u and v in a rooted tree is the unique vertex with maximum depth that is
an ancestor of both u and v.

3 Strong kernels and hierarchies

In this section we introduce a restricted class of kernels that will later turn out to lead to valid optimal
assignment kernels when employed as base kernel. We provide two different characterizations of
this class, one in terms of an inequality constraint on the kernel values, and the other by means of a
hierarchy defined on the domain of the kernel. The latter will provide the basis for our algorithm to
compute valid optimal assignment kernels efficiently.
We first consider similarity functions fulfilling the requirement that for any two objects there is no
third object that is more similar to each of them than the two to each other. We will see later in
Section 3.1 that every such function indeed is p.s.d. and hence a valid kernel.
Definition 1 (Strong Kernel). A function k : X × X → R≥0 is called strong kernel if k(x, y) ≥
min{k(x, z), k(z, y)} for all x, y, z ∈ X .

Note that a strong kernel requires that every object is most similar to itself, i.e., k(x, x) ≥ k(x, y) for
all x, y ∈ X .
In the following we introduce a restricted class of kernels that is derived from a hierarchy on the set
X . As we will see later in Theorem 1 this class of kernels is equivalent to strong kernels according to
Definition 1. Such hierarchies can be systematically constructed on sets of arbitrary objects in order
to derive strong kernels. We commence by fixing the concept of a hierarchy formally. Let T be a
rooted tree such that the leaves of T are the elements of X . Each inner vertex v in T corresponds to a
subset of X comprising all leaves of the subtree rooted at v. Therefore the tree T defines a family of
nested subsets of X . Let w : V (T )→ R≥0 be a weight function such that w(v) ≥ w(p(v)) for all v
in T . We refer to the tuple (T,w) as a hierarchy.
Definition 2 (Hierarchy-induced Kernel). Let H = (T,w) be a hierarchy on X , then the function
defined as k(x, y) = w(LCA(x, y)) for all x, y in X is the kernel on X induced by H .

We show that Definitions 1 and 2 characterize the same class of kernels.
Lemma 1. Every kernel on X that is induced by a hierarchy on X is strong.

Proof. Assume there is a hierarchy (T,w) that induces a kernel k that is not strong. Then there are
x, y, z ∈ X with k(x, y) < min{k(x, z), k(z, y)} and three vertices a = LCA(x, z), b = LCA(z, y)
and c = LCA(x, y) withw(c) < w(a) andw(c) < w(b). The unique path from x to the root contains
a and the path from y to the root contains b, both paths contain c. Since weights decrease along
paths, the assumption implies that a, b, c are pairwise distinct and c is an ancestor of a and b. Thus,
there must be a path from z via a to c and another path from z via b to c. Hence, T is not a tree,
contradicting the assumption.

We show constructively that the converse holds as well.
Lemma 2. For every strong kernel k on X there is a hierarchy on X that induces k.

Proof (Sketch). We incrementally construct a hierarchy on X that induces k by successive insertion
of elements from X . In each step the hierarchy induces k restricted to the inserted elements and
eventually induces k after insertion of all elements. Initially, we start with a hierarchy containing
just one element x ∈ X with w(x) = k(x, x). The key to all following steps is that there is a
unique way to extend the hierarchy: Let Xi ⊆ X be the first i elements in the order of insertion
and let Hi = (Ti, wi) be the hierarchy after the i-th step. A leaf representing the next element z
can be grafted onto Hi to form a hierarchy Hi+1 that induces k restricted to Xi+1 = Xi ∪ {z}. Let
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(a) Hi

b1 b2 = c

b3

b

LCA(x, c)

x

p

z

(b) Hi+1 for B = {b1, b2, b3}

b

p

z

(c) Hi+1 for |B| = 1

Figure 1: Illustrative example for the construction of the hierarchy on i+1 objects (b), (c) from the hierarchy on
i objects (a) following the procedure used in the proof of Lemma 2. The inserted leaf z is highlighted in red, its
parent p with weight w(p) = kmax in green and b in blue, respectively.

B = {x ∈ Xi : k(x, z) = kmax}, where kmax = maxy∈Xi
k(y, z). There is a unique vertex b, such

that B are the leaves of the subtree rooted at b, cf. Fig. 1. We obtain Hi+1 by inserting a new vertex p
with child z into Ti, such that p becomes the parent of b, cf. Fig. 1(b), (c). We set wi+1(p) = kmax,
wi+1(z) = k(z, z) and wi+1(x) = wi(x) for all x ∈ V (Ti). Let k′ be the kernel induced by Hi+1.
Clearly, k′(x, y) = k(x, y) for all x, y ∈ Xi. According to the construction k′(z, x) = kmax = k(z, x)
for all x ∈ B. For all x /∈ B we have LCA(z, x) = LCA(c, x) for any c ∈ B, see Fig. 1(b). For strong
kernels k(x, c) ≥ min{k(x, z), k(z, c)} = k(x, z) and k(x, z) ≥ min{k(x, c), k(c, z)} = k(x, c),
since k(c, z) = kmax. Thus k(z, x) = k(c, x) must hold and consequently k′(z, x) = k(z, x).

Note that a hierarchy inducing a specific strong kernel is not unique: Adjacent inner vertices with the
same weight can be merged, and vertices with just one child can be removed without changing the
induced kernel. Combining Lemmas 1 and 2 we obtain the following result.
Theorem 1. A kernel k on X is strong if and only if it is induced by a hierarchy on X .

As a consequence of the above theorem the number of values a strong kernel on n objects may take is
bounded by the number of vertices in a binary tree with n leaves, i.e., for every strong kernel k on X
we have | img(k)| ≤ 2|X | − 1. The Dirac kernel is a common example of a strong kernel, in fact,
every kernel k : X × X → R≥0 with | img(k)| = 2 is strong.
The definition of a strong kernel and its relation to hierarchies is reminiscent of related concepts for
distances: A metric d on X is an ultrametric if d(x, y) ≤ max{d(x, z), d(z, y)} for all x, y, z ∈ X .
For every ultrametric d on X there is a rooted tree T with leaves X and edge weights, such that
(i) d is the path length between leaves in T , (ii) the path lengths from a leaf to the root are all
equal. Indeed, every ultrametric can be embedded into a Hilbert space [13] and thus the associated
inner product is a valid kernel. Moreover, it can be shown that this inner product always is a strong
kernel. However, the concept of strong kernels is more general: there are strong kernels k such
that the associated kernel metric dk(x, y) = ‖φ(x)− φ(y)‖ is not an ultrametric. The distinction
originates from the self-similarities, which in strong kernels, can be arbitrary provided that they fulfil
k(x, x) ≥ k(x, y) for all x, y in X . This degree of freedom is lost when considering distances. If we
require all self-similarities of a strong kernel to be equal, then the associated kernel metric always is
an ultrametric. Consequently, strong kernels correspond to a superset of ultrametrics. We explicitly
define a feature space for general strong kernels in the following.

3.1 Feature maps of strong kernels

We use the property that every strong kernel is induced by a hierarchy to derive feature vectors
for strong kernels. Let (T,w) be a hierarchy on X that induces the strong kernel k. We define the
additive weight function ω : V (T )→ R≥0 as ω(v) = w(v)−w(p(v)) and ω(r) = w(r) for the root
r. Note that the property of a hierarchy assures that the difference is non-negative. For v ∈ V (T ) let
P (v) ⊆ V (T ) denote the vertices in T on the path from v to the root r.
We consider the mapping φ : X → Rt, where t = |V (T )| and the components indexed by v ∈ V (T )
are

[φ(x)]v =

{√
ω(v), if v ∈ P (x)

0, otherwise.
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a b c

a 4 3 1

b 3 5 1

c 1 1 2

(a) Kernel matrix

a

4; 1
b
5; 2

c

2; 1

v 3; 2

r 1; 1

(b) Hierarchy

r v a b c

φ(a) =
( √

1,
√
2,

√
1, 0, 0

)>

φ(b) =
( √

1,
√
2, 0,

√
2, 0

)>

φ(c) =
( √

1, 0, 0, 0,
√
1

)>

(c) Feature vectors

Figure 2: The matrix of a strong kernel on three objects (a) induced by the hierarchy (b) and the derived feature
vectors (c). A vertex u in (b) is annotated by its weights w(u);ω(u).

Proposition 1. Let k be a strong kernel on X . The function φ defined as above is a feature map of k,
i.e., k(x, y) = φ(x)>φ(y) for all x, y ∈ X .

Proof. Given arbitrary x, y ∈ X and let c = LCA(x, y). The dot product yields

φ(x)>φ(y) =
∑

v∈V (T )

[φ(x)]v[φ(y)]v =
∑

v∈P (c)

√
ω(v)

2
= w(c) = k(x, y),

since according to the definition the only non-zero products contributing to the sum over v ∈ V (T )
are those in P (x) ∩ P (y) = P (c).

Figure 2 shows an example of a strong kernel, an associated hierarchy and the derived feature vectors.
As a consequence of Theorem 1 and Proposition 1, strong kernels according to Definition 1 are indeed
valid kernels.

4 Valid kernels from optimal assignments

We consider the function Kk
B on [X ]n according to Eq. (1) under the assumption that the base kernel

k is strong. Let (T,w) be a hierarchy onX which induces k. For a vertex v ∈ V (T ) and a setX ⊆ X ,
we denote by Xv the subset of X that is contained in the subtree rooted at v. We define the histogram
Hk of a set X ∈ [X ]n w.r.t. the strong base kernel k as Hk(X) =

∑
x∈X φ(x)◦φ(x), where φ is the

feature map of the strong base kernel according to Section 3.1 and ◦ denotes the element-wise product.
Equivalently, [Hk(X)]v = ω(v) · |Xv| for v ∈ V (T ). The histogram intersection kernel [20] is
defined as Ku(g,h) =

∑t
i=1 min{[g]i, [h]i}, t ∈ N, and known to be a valid kernel on Rt [2, 5].

Theorem 2. Let k be a strong kernel on X and the histograms Hk defined as above, then
Kk

B(X,Y ) = Ku
(
Hk(X), Hk(Y )

)
for all X,Y ∈ [X ]n.

Proof. Let (T,w) be a hierarchy inducing the strong base kernel k. We rewrite the weight of an
assignment B as sum of weights of vertices in T . Since

k(x, y) = w(LCA(x, y)) =
∑

v∈P (x)∩P (y)

ω(v), we have W (B) =
∑

(x,y)∈B
k(x, y) =

∑

v∈V (T )

cv · ω(v),

where cv counts how often v appears simultaneously in P (x) and P (y) in total for all (x, y) ∈ B.
For the histogram intersection kernel we obtain

Ku(H
k(X), Hk(Y )) =

∑

v∈V (T )

min{ω(v) · |Xv|, ω(v) · |Yv|} =
∑

v∈V (T )

min{|Xv|, |Yv|} · ω(v).

Since every assignment B ∈ B(X,Y ) is a bijection, each x ∈ X and y ∈ Y appears only once in B
and cv ≤ min{|Xv|, |Yv|} follows.
It remains to show that the above inequality is tight for an optimal assignment. We construct such an
assignment by the following greedy approach: We perform a bottom-up traversal on the hierarchy
starting with the leaves. For every vertex v in the hierarchy we arbitrarily pair the objects in Xv and
Yv that are not yet contained in the assignment. Note that no element in Xv has been assigned to an
element in Y \ Yv, and no element in Yv to an element from X \Xv. Hence, at every vertex v we
have cv = min{|Xv|, |Yv|} vertices from Xv assigned to vertices in Yv .
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X Y

a

a

a

b

c

a

b

b

c

c

(a) Assignment problem

r v a b c0

2

4

6

8

H(X)

r v a b c

H(Y )

(b) Histograms

Figure 3: An assignment instance (a) for X,Y ∈ [X ]5 and the derived histograms (b). The set X contains
three distinct vertices labelled a and the set Y two distinct vertices labelled b and c. Taking the multiplicities
into account the histograms are obtained from the hierarchy of the base kernel k depicted in Fig. 2. The
optimal assignment yields a value of Kk

B(X,Y ) = 15, where grey, green, brown, red and orange edges
have weight 1, 2, 3, 4 and 5, respectively. The histogram intersection kernel gives Ku(H

k(X), Hk(Y )) =
min{5, 5}+min{8, 6}+min{3, 1}+min{2, 4}+min{1, 2} = 15.

Figure 3 illustrates the relation between the optimal assignment kernel employing a strong base
kernel and the histogram intersection kernel. Note that a vertex v ∈ V (T ) with ω(v) = 0 does not
contribute to the histogram intersection kernel and can be omitted. In particular, for any two objects
x1, x2 ∈ X with k(x1, y) = k(x2, y) for all y ∈ X we have ω(x1) = ω(x2) = 0. There is no
need to explicitly represent such leaves in the hierarchy, yet their multiplicity must be considered to
determine the number of leaves in the subtree rooted at an inner vertex, cf. Fig. 2, 3.
Corollary 1. If the base kernel k is strong, then the function Kk

B is a valid kernel.

Theorem 2 implies not only that optimal assignments give rise to valid kernels for strong base kernels,
but also allows to compute them by histogram intersection. Provided that the hierarchy is known,
bottom-up computation of histograms and their intersection can both be performed in linear time,
while the general Hungarian method would require cubic time to solve the assignment problem [6].
Corollary 2. Given a hierarchy inducing k, Kk

B(X,Y ) can be computed in time O(|X|+ |Y |).

5 Graph kernels from optimal assignments

The concept of optimal assignment kernels is rather general and can be applied to derive kernels on
various structures. In this section we apply our results to obtain novel graph kernels, i.e., kernels
of the form K : G × G → R, where G denotes the set of graphs. We assume that every vertex v is
equipped with a categorical label given by τ(v). Labels typically arise from applications, e.g., in a
graph representing a chemical compound the labels may indicate atom types.

5.1 Optimal assignment kernels on vertices and edges

As a baseline we propose graph kernels on vertices and edges. The vertex optimal assignment kernel
(V-OA) is defined as K(G,H) = Kk

B(V (G), V (H)), where k is the Dirac kernel on vertex labels.
Analogously, the edge optimal assignment kernel (E-OA) is given byK(G,H) = Kk

B(E(G), E(H)),
where we define k(uv, st) = 1 if at least one of the mappings (u 7→ s, v 7→ t) and (u 7→ t, v 7→ s)
maps vertices with the same label only; and 0 otherwise. Since these base kernels are Dirac kernels,
they are strong and, consequently, V-OA and E-OA are valid kernels.

5.2 Weisfeiler-Lehman optimal assignment kernels

Weisfeiler-Lehman kernels are based on iterative vertex colour refinement and have been shown
to provide state-of-the-art prediction performance in experimental evaluations [19]. These kernels
employ the classical 1-dimensional Weisfeiler-Lehman heuristic for graph isomorphism testing and
consider subtree patterns encoding the neighbourhood of each vertex up to a given distance. For a
parameter h and a graph G with initial labels τ , a sequence (τ0, . . . , τh) of refined labels referred
to as colours is computed, where τ0 = τ and τi is obtained from τi−1 by the following procedure:
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a

b

e

c

d

f

(a) Graph G with refined colours

7→ 6
7→ 5
7→ 1
7→ 4
7→ 1

7→ 1
7→ 2
7→ 1
7→ 2
7→ 1

(b) Feature vector

{a, b} {c, d} {f} {e}
(c) Associated hierarchy

Figure 4: A graph G with uniform initial colours τ0 and refined colours τi for i ∈ {1, . . . , 3} (a), the feature
vector of G for the Weisfeiler-Lehman subtree kernel (b) and the associated hierarchy (c). Note that the vertices
of G are the leaves of the hierarchy, although not shown explicitly in Fig. 4(c).

Sort the multiset of colours {τi−1(u) : vu ∈ E(G)} for every vertex v lexicographically to obtain
a unique sequence of colours and add τi−1(v) as first element. Assign a new colour τi(v) to every
vertex v by employing a one-to-one mapping from sequences to new colours. Figure 4(a) illustrates
the refinement process. The Weisfeiler-Lehman subtree kernel (WL) counts the vertex colours two
graphs have in common in the first h refinement steps and can be computed by taking the dot product
of feature vectors, where each component counts the occurrences of a colour, see Fig. 4(b).
We propose the Weisfeiler-Lehman optimal assignment kernel (WL-OA), which is defined on the
vertices like OA-V, but employs the non-trivial base kernel

k(u, v) =

h∑

i=0

kδ(τi(u), τi(v)). (2)

This base kernel corresponds to the number of matching colours in the refinement sequence. More
intuitively, the base kernel value reflects to what extent the two vertices have a similar neighbourhood.
Let V be the set of all vertices of graphs in G, we show that the refinement process defines a hierarchy
on V , which induces the base kernel of Eq. (2). Each vertex colouring τi naturally partitions V into
colour classes, i.e., sets of vertices with the same colour. Since the refinement takes the colour τi(v) of
a vertex v into account when computing τi+1(v), the implication τi(u) 6= τi(v)⇒ τi+1(u) 6= τi+1(v)
holds for all u, v ∈ V . Hence, the colour classes induced by τi+1 are at least as fine as those induced
by τi. Moreover, the sequence (τi)0≤i≤h gives rise to a family of nested subsets, which can naturally
be represented by a hierarchy (T,w), see Fig. 4(c) for an illustration. When assuming ω(v) = 1
for all vertices v ∈ V (T ), the hierarchy induces the kernel of Eq. (2). We have shown that the base
kernel is strong and it follows from Corollary 1 that WL-OA is a valid kernel. Moreover, it can
be computed from the feature vectors of the Weisfeiler-Lehman subtree kernel in linear time by
histogram intersection, cf. Theorem 2.

6 Experimental evaluation

We report on the experimental evaluation of the proposed graph kernels derived from optimal
assignments and compare with state-of-the-art convolution kernels.

6.1 Method and Experimental Setup

We performed classification experiments using the C-SVM implementation LIBSVM [7]. We report
mean prediction accuracies and standard deviations obtained by 10-fold cross-validation repeated 10
times with random fold assignment. Within each fold all necessary parameters were selected by cross-
validation based on the training set. This includes the regularization parameter C, kernel parameters
where applicable and whether to normalize the kernel matrix. All kernels were implemented in Java
and experiments were conducted using Oracle Java v1.8.0 on an Intel Core i7-3770 CPU at 3.4GHz
(Turbo Boost disabled) with 16GB of RAM using a single processor only.

Kernels. As a baseline we implemented the vertex kernel (V) and edge kernel (E), which are the
dot products on vertex and edge label histograms, respectively, where an edge label consist of the
labels of its endpoints. V-OA and E-OA are the related optimal assignment kernels as described in
Sec. 5.1. For the Weisfeiler-Lehman kernels WL and WL-OA, see Section 5.2, the parameter h was
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Table 1: Classification accuracies and standard deviations on graph data sets representing small molecules,
macromolecules and social networks.

Kernel
Data Set

MUTAG PTC-MR NCI1 NCI109 PROTEINS D&D ENZYMES COLLAB REDDIT

V 85.4±0.7 57.8±0.9 64.6±0.1 63.6±0.2 71.9±0.4 78.2±0.4 23.4±1.1 56.2±0.0 75.3±0.1
V-OA 82.5±1.1 56.4±1.8 65.6±0.3 65.1±0.4 73.8±0.5 78.8±0.3 35.1±1.1 59.3±0.1 77.8±0.1

E 85.2±0.6 57.3±0.7 66.2±0.1 64.9±0.1 73.5±0.2 78.3±0.5 27.4±0.8 52.0±0.0 75.1±0.1
E-OA 81.0±1.1 56.3±1.7 68.9±0.3 68.7±0.2 74.5±0.6 79.0±0.4 37.4±1.8 68.2±0.3 79.8±0.2

WL 86.0±1.7 61.3±1.4 85.8±0.2 85.9±0.3 75.6±0.4 79.0±0.4 53.7±1.4 79.1±0.1 80.8±0.4
WL-OA 84.5±1.7 63.6±1.5 86.1±0.2 86.3±0.2 76.4±0.4 79.2±0.4 59.9±1.1 80.7±0.1 89.3±0.3

GL 85.2±0.9 54.7±2.0 70.5±0.2 69.3±0.2 72.7±0.6 79.7±0.7 30.6±1.2 64.7±0.1 60.1±0.2
SP 83.0±1.4 58.9±2.2 74.5±0.3 73.0±0.3 75.8±0.5 79.0±0.6 42.6±1.6 58.8±0.2 84.6±0.2

chosen from {0, ..., 7}. In addition we implemented a graphlet kernel (GL) and the shortest-path
kernel (SP) [3]. GL is based on connected subgraphs with three vertices taking labels into account
similar to the approach used in [19]. For SP we used the Dirac kernel to compare path lengths and
computed the kernel by explicit feature maps, cf. [19]. Note that all kernels not identified as optimal
assignment kernels by the suffix OA are convolution kernels.

Data sets. We tested on widely-used graph classification benchmarks from different domains [cf.
4, 23, 19, 24]: MUTAG, PTC-MR, NCI1 and NCI109 are graphs derived from small molecules,
PROTEINS, D&D and ENZYMES represent macromolecules, and COLLAB and REDDIT are derived
from social networks.1 All data sets have two class labels except ENZYMES and COLLAB, which
are divided into six and three classes, respectively. The social network graphs are unlabelled and we
considered all vertices uniformly labelled. All other graph data sets come with vertex labels. Edge
labels, if present, were ignored since they are not supported by all graph kernels under comparison.

6.2 Results and discussion

Table 1 summarizes the classification accuracies. We observe that optimal assignment kernels on
most data sets improve over the prediction accuracy obtained by their convolution-based counterpart.
The only distinct exception is MUTAG. The extent of improvement on the other data sets varies, but is
in particular remarkable for ENZYMES and REDDIT. This indicates that optimal assignment kernels
provide a more valid notion of similarity than convolution kernels for these classification tasks. The
most successful kernel is WL-OA, which almost consistently improves over WL and performs best
on seven of the nine data sets. WL-OA provides the second best accuracy on D&D and ranks in the
middle of the field for MUTAG. For these two data set the difference in accuracy between the kernels
is small and even the baseline kernels perform notably well.
The time to compute the quadratic kernel matrix was less that one minute for all kernels and data sets
with exception of SP on D&D (29 min) and REDDIT (2 h) as well as GL on COLLAB (28 min). The
running time to compute the optimal assignment kernels by histogram intersection was consistently
on par with the running time required for the related convolution kernels and orders of magnitude
faster than their computation by the Hungarian method.

7 Conclusions and future work

We have characterized the class of strong kernels leading to valid optimal assignment kernels and
derived novel effective kernels for graphs. The reduction to histogram intersection makes efficient
computation possible and known speed-up techniques for intersection kernels can directly be applied
(see, e.g., [21] and references therein). We believe that our results may form the basis for the design
of new kernels, which can be computed efficiently and adequately measure similarity.

1The data sets, further references and statistics are available from http://graphkernels.cs.
tu-dortmund.de.
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