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Abstract

We consider a crowdsourcing model in which nworkers are asked to rate the quality
of n items previously generated by other workers. An unknown set of αn workers
generate reliable ratings, while the remaining workers may behave arbitrarily and
possibly adversarially. The manager of the experiment can also manually evaluate
the quality of a small number of items, and wishes to curate together almost all
of the high-quality items with at most an ε fraction of low-quality items. Perhaps
surprisingly, we show that this is possible with an amount of work required of the
manager, and each worker, that does not scale with n: the dataset can be curated
with Õ

(
1

βα3ε4

)
ratings per worker, and Õ

(
1
βε2

)
ratings by the manager, where β

is the fraction of high-quality items. Our results extend to the more general setting
of peer prediction, including peer grading in online classrooms.

1 Introduction

How can we reliably obtain information from humans, given that the humans themselves are unreli-
able, and might even have incentives to mislead us? Versions of this question arise in crowdsourcing
(Vuurens et al., 2011), collaborative knowledge generation (Priedhorsky et al., 2007), peer grading
in online classrooms (Piech et al., 2013; Kulkarni et al., 2015), aggregation of customer reviews
(Harmon, 2004), and the generation/curation of large datasets (Deng et al., 2009). A key challenge
is to ensure high information quality despite the fact that many people interacting with the system
may be unreliable or even adversarial. This is particularly relevant when raters have an incentive to
collude and cheat as in the setting of peer grading, as well as for reviews on sites like Amazon and
Yelp, where artists and firms are incentivized to manufacture positive reviews for their own products
and negative reviews for their rivals (Harmon, 2004; Mayzlin et al., 2012).

One approach to ensuring quality is to use gold sets — questions where the answer is known, which
can be used to assess reliability on unknown questions. However, this is overly constraining — it
does not make sense for open-ended tasks such as knowledge generation on wikipedia, nor even for
crowdsourcing tasks such as “translate this paragraph” or “draw an interesting picture” where there
are different equally good answers. This approach may also fail in settings, such as peer grading in
massive online open courses, where students might collude to inflate their grades.

In this work, we consider the challenge of using crowdsourced human ratings to accurately and
efficiently evaluate a large dataset of content. In some settings, such as peer grading, the end goal
is to obtain the accurate evaluation of each datum; in other settings, such as the curation of a large
dataset, accurate evaluations could be leveraged to select a high-quality subset of a larger set of
variable-quality (perhaps crowd-generated) data.

There are several confounding difficulties that arise in extracting accurate evaluations. First, many
raters may be unreliable and give evaluations that are uncorrelated with the actual item quality;
second, some reliable raters might be harsher or more lenient than others; third, some items may be
harder to evaluate than others and so error rates could vary from item to item, even among reliable
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raters; finally, some raters may even collude or want to hack the system. This raises the question: can
we obtain information from the reliable raters, without knowing who they are a priori?

In this work, we answer this question in the affirmative, under surprisingly weak assumptions:

• We do not assume that the majority of workers are reliable.
• We do not assume that the unreliable workers conform to any statistical model; they could

behave fully adversarially, in collusion with each other and with full knowledge of how the
reliable workers behave.

• We do not assume that the reliable worker ratings match the true ratings, but only that they
are “approximately monotonic” in the true ratings, in a sense that will be formalized later.

• We do not assume that there is a “gold set” of items with known ratings presented to each
user (as an adversary could identify and exploit this). Instead, we rely on a small number of
reliable judgments on randomly selected items, obtained after the workers submit their own
ratings; in practice, these could be obtained by rating those items oneself.

For concreteness, we describe a simple formalization of the crowdsourcing setting (our actual results
hold in a more general setting). We imagine that we are the dataset curator, so that “us” and “ourselves”
refers in general to whoever is curating the data. There are n raters and m items to evaluate, which
have an unknown quality level in [0, 1]. At least αn workers are “reliable” in that their judgments
match our own in expectation, and they make independent errors. We assign each worker to evaluate
at most k randomly selected items. In addition, we ourselves judge k0 items. Our goal is to recover
the β-quantile: the set T ∗ of the βm highest-quality items. Our main result implies the following:

Theorem 1. In the setting above, suppose n=m. Then there is k=O( 1
βα3ε4 ), and k0 = Õ( 1

βε2 )

such that, with probability 99%, we can identify βm items with average quality only ε worse than T ∗.

Interestingly, the amount of work that each worker (and we ourselves) has to do does not grow with
n; it depends only on the fraction α of reliable workers and the desired accuracy ε. While the number
of evaluations k for each worker is likely not optimal, we note that the amount of work k0 required of
us is close to optimal: for α ≤ β, it is information theoretically necessary for us to evaluate Ω(1/βε2)
items, via a reduction to estimating noisy coin flips.

Why is it necessary to include some of our own ratings? If we did not, and α < 1
2 , then an adversary

could create a set of dishonest raters that were identical to the reliable raters except with the item
indices permuted by a random permutation of {1, . . . ,m}. In this case, there is no way to distinguish
the honest from the dishonest raters except by breaking the symmetry with our own ratings.

Our main result holds in a considerably more general setting where we require a weaker form of
inter-rater agreement — for example, our results hold even if some of the reliable raters are harsher
than others, as long as the expected ratings induce approximately the same ranking. The focus on
quantiles rather than raw ratings is what enables this. Note that once we estimate the quantiles, we
can approximately recover the ratings by evaluating a few items in each quantile.

items

r∗ true ratings 1 0.8 0.6 0.4 0.2 0.1 T ∗ 1 1 1 0 0 0





Ã

good raters .9 .8 .7 .6 .5 .4

=⇒ M∗

1 1 1 0 0 0
1 .9 .8 .2 .1 0 1 1 1 0 0 0

random 1 0 1 0 1 0 1 0 1 0 1 0

adversaries
1 .8 .6 0 0 1 1 1 0 0 0 1
1 .8 .6 0 0 1 1 1 0 0 0 1

Figure 1: Illustration of our problem setting. We observe a small number of ratings from each rater
(indicated in blue), which we represent as entries in a matrix Ã (unobserved ratings in red, treated as
zero by our algorithm). There is also a true rating r∗ that we would assign to each item; by rating
some items ourself, we observe some entries of r∗ (also in blue). Our goal is to recover the set T ∗
representing the top β fraction of items under r∗. As an intermediate step, we approximately recover
a matrix M∗ that indicates the top items for each individual rater.
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Our technical tools draw on semidefinite programming methods for matrix completion, which have
been used to study graph clustering as well as community detection in the stochastic block model
(Holland et al., 1983; Condon and Karp, 2001). Our setting corresponds to the sparse case of graphs
with constant degree, which has recently seen great interest (Decelle et al., 2011; Mossel et al., 2012;
2013b;a; Massoulié, 2014; Guédon and Vershynin, 2014; Mossel et al., 2015; Chin et al., 2015; Abbe
and Sandon, 2015a;b; Makarychev et al., 2015). Makarychev et al. (2015) in particular provide an
algorithm that is robust to adversarial perturbations, but only if the perturbation has size o(n); see
also Cai and Li (2015) for robustness results when the degree of the graph is logarithmic.

Several authors have considered semirandom settings for graph clustering, which allow for some
types of adversarial behavior (Feige and Krauthgamer, 2000; Feige and Kilian, 2001; Coja-Oghlan,
2004; Krivelevich and Vilenchik, 2006; Coja-Oghlan, 2007; Makarychev et al., 2012; Chen et al.,
2014; Guédon and Vershynin, 2014; Moitra et al., 2015; Agarwal et al., 2015). In our setting, these
semirandom models are unsuitable because they rule out important types of strategic behavior, such
as an adversary rating some items accurately to gain credibility. By allowing arbitrary behavior
from the adversary, we face a key technical challenge: while previous analyses consider errors
relative to a ground truth clustering, in our setting the ground truth only exists for rows of the matrix
corresponding to reliable raters, while the remaining rows could behave arbitrarily even in the limit
where all ratings are observed. This necessitates a more careful analysis, which helps to clarify what
properties of a clustering are truly necessary for identifying it.

2 Algorithm and Intuition

We now describe our recovery algorithm. To fix notation, we assume that there are n raters and m
items, and that we observe a matrix Ã ∈ [0, 1]n×m: Ãij = 0 if rater i does not rate item j, and
otherwise Ãij is the assigned rating, which takes values in [0, 1]. In the settings we care about Ã is
very sparse — each rater only rates a few items. Remember that our goal is to recover the β-quantile
T ∗ of the best items according to our own rating.

Our algorithm is based on the following intuition: the reliable raters must (approximately) agree on
the ranking of items, and so if we can cluster the rows of Ã appropriately, then the reliable raters
should form a single very large cluster (of size αn). There can be at most 1

α disjoint clusters of this
size, and so we can manually check the accuracy of each large cluster (by checking agreement with
our own rating on a few randomly selected items) and then choose the best one.

One major challenge in using the clustering intuition is the sparsity of Ã: any two rows of Ã will
almost certainly have no ratings in common, so we must exploit the global structure of Ã to discover
clusters, rather than using pairwise comparisons of rows. The key is to view our problem as a form of
noisy matrix completion — we imagine a matrix A∗ in which all the ratings have been filled in and
all noise from individual ratings has been removed. We define a matrix M∗ that indicates the top βm
items in each row of A∗: M∗ij = 1 if item j has one of the top βm ratings from rater i, and M∗ij = 0
otherwise (this differs from the actual definition of M∗ given in Section 4, but is the same in spirit).
If we could recover M∗, we would be close to obtaining the clustering we wanted.

Algorithm 1 Algorithm for recovering β-quantile matrix M̃ using (unreliable) ratings Ã.
1: Parameters: reliable fraction α, quantile β, tolerance ε, number of raters n, number of items m
2: Input: noisy rating matrix Ã
3: Let M̃ be the solution of the optimization problem (1):

maximize 〈Ã,M〉, (1)
subject to 0 ≤Mij ≤ 1 ∀i, j,∑

jMij ≤ βm ∀j, ‖M‖∗ ≤
2

αε

√
αβnm,

where ‖ · ‖∗ denotes nuclear norm.
4: Output M̃ .
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Algorithm 2 Algorithm for recovering an accurate β-quantile T from the β-quantile matrix M̃ .
1: Parameters: tolerance ε, reliable fraction α
2: Input: matrix M̃ of approximate β-quantiles, noisy ratings r̃
3: Select 2 log(2/δ)/α indices i ∈ [n] at random.
4: Let i∗ be the index among these for which 〈M̃i, r̃〉 is largest, and let T0 ← M̃i∗ . . T0 ∈ [0, 1]m

5: do T ← RANDOMIZEDROUND(T0) while 〈T − T0, r̃〉 < − ε
4βk

6: return T . T ∈ {0, 1}m

The key observation that allows us to approximate M∗ given only the noisy, incomplete Ã is that M∗
has low-rank structure: since all of the reliable raters agree with each other, their rows in M∗ are all
identical, and so there is an (αn)×m submatrix ofM∗ with rank 1. This inspires the low-rank matrix
completion algorithm for recovering M̃ given in Algorithm 1. Each row of M is constrained to have
sum at most βm, and M as a whole is constrained to have nuclear norm ‖M‖∗ at most 2

αε

√
αβnm.

Recall that the nuclear norm is the sum of the singular values of M ; in the same way that the `1-norm
is a convex surrogate for the `0-norm, the nuclear norm acts as a convex surrogate for the rank of M
(i.e., number of non-zero singular values). The optimization problem (1) therefore chooses a set of
βm items in each row to maximize the corresponding values in Ã, while constraining the item sets to
have low rank (where low rank is relaxed to low nuclear norm to obtain a convex problem). This
low-rank constraint acts as a strong regularizer that quenches the noise in Ã.

Once we have recovered M̃ using Algorithm 1, it remains to recover a specific set T that approximates
the β-quantile according to our ratings. Algorithm 2 provides a recipe for doing so: first, rate k0
items at random, obtaining the vector r̃: r̃j = 0 if we did not rate item j, and otherwise r̃j is the
(possibly noisy) rating that we assign to item j. Next, score each row M̃i based on the noisy ratings∑

j M̃ij r̃j , and let T0 be the highest-scoring M̃i amongO(log(2/δ)/α) randomly selected i. Finally,
randomly round the vector T0 ∈ [0, 1]m to a discrete vector T ∈ {0, 1}m, and treat T as the indicator
function of a set approximating the β-quantile (see Section 5 for details of the rounding algorithm).

In summary, given a noisy rating matrix Ã, we will first run Algorithm 1 to recover a β-quantile
matrix M̃ for each rater, and then run Algorithm 2 to recover our personal β-quantile using M̃ .

Possible attacks by adversaries. In our algorithm, the adversaries can influence M̃i for reliable
raters i via the nuclear norm constraint (note that the other constraints are separable across rows).
This makes sense because the nuclear norm is what causes us to pool global structure across raters
(and thus potentially pool bad information). In order to limit this influence, the constraint on the
nuclear norm is weaker than is typical by a factor of 2

ε ; it is not clear to us whether this is actually
necessary or due to a loose analysis.

The constraint
∑
jMij ≤ βm is not typical in the literature. For instance, (Chen et al., 2014) place

no constraint on the sum of each row in M (they instead normalize M̃ to lie in [−1, 1]n×m, which
recovers the items with positive rating rather than the β-quantile). Our row normalization constraint
prevents an attack in which a spammer rates a random subset of items as high as possible and rates the
remaining items as low as possible. If the actual set of high-quality items has density much smaller
than 50%, then the spammer gains undue influence relative to honest raters that only rate e.g. 10% of
the items highly. Normalizing M to have a fixed row sum prevents this; see Section B for details.

3 Assumptions and Approach
We now state our assumptions more formally, state the general form of our results, and outline the
key ingredients of the proof. In our setting, we can query a rater i ∈ [n] and item j ∈ [m] to obtain a
rating Ãij ∈ [0, 1]. Let r∗ ∈ [0, 1]m denote the vector of true ratings of the items. We can also query
an item j (by rating it ourself) to obtain a noisy rating r̃j such that E[r̃j ] = r∗j .

Let C ⊆ [n] be the set of reliable raters, where |C| ≥ αn. Our main assumption is that the reliable
raters make independent errors:

Assumption 1 (Independence). When we query a pair (i, j) with i ∈ C, we obtain an output Ãij
whose value is independent of all of the other queries so far. Similarly, when we query an item j, we
obtain an output r̃j that is independent of all of the other queries so far.
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Algorithm 3 Algorithm for obtaining (unreliable) ratings matrix Ã and noisy ratings r̃, r̃′.
1: Input: number of raters n, number of items m, and number of ratings k and k0.
2: Initially assign each rater to each item independently with probability k/m.
3: For each rater with more than 2k items, arbitrarily unassign items until there are 2k remaining.
4: For each item with more than 2k raters, arbitrarily unassign raters until there are 2k remaining.
5: Have the raters submit ratings of their assigned items, and let Ã denote the resulting matrix of

ratings with missing entries fill in with zeros.
6: Generate r̃ by rating items with probability k0

m (fill in missing entries with zeros)
7: Output Ã, r̃

Note that Assumption 1 allows the unreliable ratings to depend on all previous ratings and also allows
arbitrary collusion among the unreliable raters. In our algorithm, we will generate our own ratings
after querying everyone else, which ensures that at least r̃ is independent of the adversaries.

We need a way to formalize the idea that the reliable raters agree with us. To this end, for i ∈ C
let A∗ij = E[Ãij ] be the expected rating that rater i assigns to item j. We want A∗ to be roughly
increasing in r∗:

Definition 1 (Monotonic raters). We say that the reliable raters are (L, ε)-monotonic if

r∗j − r∗j′ ≤ L · (A∗ij −A∗ij′) + ε (2)

whenever r∗j ≥ r∗j′ , for all i ∈ C and all j, j′ ∈ [m].

The (L, ε)-monotonicity property says that if we think that one item is substantially better than another
item, the reliable raters should think so as well. As an example, suppose that our own ratings are
binary (r∗j ∈ {0, 1}) and that each rating Ãi,j matches r∗j with probability 3

5 . Then A∗i,j = 2
5 + 1

5r
∗
j ,

and hence the ratings are (5, 0)-monotonic. In general, the monotonicity property is fairly mild — if
the reliable ratings are not (L, ε)-monotonic, it is not clear that they should even be called reliable!

Algorithm for collecting ratings. Under the model given in Assumption 1, our algorithm for
collecting ratings is given in Algorithm 3. Given integers k and k0, Algorithm 3 assigns each rater
at most 2k ratings, and assigns us k0 ratings in expectation. The output is a noisy rating matrix
Ã ∈ [0, 1]n×m as well as a noisy rating vector r̃ ∈ [0, 1]m. Our main result states that we can use Ã
and r̃ to estimate the β-quantile T ∗; throughout we will assume that m is at least n.

Theorem 2. Let m ≥ n. Suppose that Assumption 1 holds, that the reliable raters are (L, ε0)-

monotonic, and that we run Algorithm 3 to obtain noisy ratings. Then there is k = O
(

log3(2/δ)
βα3ε4

m
n

)
and k0 = O

(
log(2/αβεδ)

βε2

)
such that, with probability 1− δ, Algorithms 1 and 2 output a set T with

1

βm

∑
j∈T∗

r∗j −
∑
j∈T

r∗j

 ≤ (2L+ 1) · ε+ 2ε0. (3)

Note that the amount of work for the raters scales as m
n . Some dependence on m

n is necessary, since
we need to make sure that every item gets rated at least once.

The proof of Theorem 2 can be split into two parts: analyzing Algorithm 1 (Section 4), and analyzing
Algorithm 2 (Section 5). At a high level, analyzing Algorithm 1 involves showing that the nuclear
norm constraint in (1) imparts sufficient noise robustness while not allowing the adversary too much
influence over the reliable rows of M̃ . Analyzing Algorithm 2 is far more straightforward, and
requires only standard concentration inequalities and a standard randomized rounding idea (though
the latter is perhaps not well-known, so we will explain it briefly in Section 5).

4 Recovering M̃ (Algorithm 1)

The goal of this section is to show that solving the optimization problem (1) recovers a matrix M̃ that
approximates the β-quantile of r∗ in the following sense:
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Proposition 1. Under the conditions of Theorem 2 and the corresponding values of k and k0,
Algorithm 1 outputs a matrix M̃ satisfying

1

|C|
1

βm

∑
i∈C

∑
j∈[m]

(T ∗j − M̃ij)A
∗
ij ≤ ε (4)

with probability 1− δ, where T ∗j = 1 if j lies in the β-quantile of r∗, and is 0 otherwise.

Proposition 1 says that the row M̃i is good according to rater i’s ratings A∗i . Note that (L, ε0)-
monotonicity then implies that M̃i is also good according to r∗. In particular (see A.2 for details)

1

|C|
1

βm

∑
i∈C

∑
j∈[m]

(T ∗j − M̃ij)r
∗
j ≤ L ·

1

|C|
1

βm

∑
i∈C

∑
j∈[m]

(T ∗j − M̃ij)A
∗
ij + ε0 ≤ L · ε+ ε0. (5)

Proving Proposition 1 involves two major steps: showing (a) that the nuclear norm constraint in (1)
imparts noise-robustness, and (b) that the constraint does not allow the adversaries to influence M̃C
too much. (For a matrix X we let XC denote the rows indexed by C and XC the remaining rows.)

In a bit more detail, if we let M∗ denote the “ideal” value of M̃ , and B denote a denoised version
of Ã, we first show (Lemma 1) that 〈B, M̃ −M∗〉 ≥ −ε′ for some ε′ determined below. This is
established via the matrix concentration inequalities in Le et al. (2015). Lemma 1 would already
suffice for standard approaches (e.g., Guédon and Vershynin, 2014), but in our case we must grapple
with the issue that the rows of B could be arbitrary outside of C, and hence closeness according to
B may not imply actual closeness between M̃ and M∗. Our main technical contribution, Lemma 2,
shows that 〈BC , M̃C−M∗C 〉 ≥ 〈B, M̃−M∗〉−ε′; that is, closeness according toB implies closeness
according to BC . We can then restrict attention to the reliable raters, and obtain Proposition 1.

Part 1: noise-robustness. Let B be the matrix satisfying BC = k
mA
∗
C , BC = ÃC , which denoises Ã

on C. The scaling k
m is chosen so that E[ÃC ] ≈ BC . Also define R ∈ Rn×m by Rij = T ∗j .

Ideally, we would like to have MC = RC , i.e., M matches T ∗ on all the rows of C. In light of this,
we will let M∗ be the solution to the following “corrected” program, which we don’t have access to
(since it involves knowledge of A∗ and C), but which will be useful for analysis purposes:

maximize 〈B,M〉, (6)
subject to MC = RC , 0 ≤Mij ≤ 1 ∀i, j,∑

jMij ≤ βm ∀i, ‖M‖∗ ≤
2

αε

√
αβnm

Importantly, (6) enforces M∗ij = T ∗j for all i ∈ C. Lemma 1 shows that M̃ is “close” to M∗:

Lemma 1. Let m ≥ n. Suppose that Assumption 1 holds. Then there is a k = O
(

log3(2/δ)
βα3ε4

m
n

)
such

that the solution M̃ to (1) performs nearly as well as M∗ under B; specifically, with probability
1− δ,

〈B, M̃〉 ≥ 〈B,M∗〉 − εαβkn. (7)

Note that M̃ is not necessarily feasible for (6), because of the constraint MC = RC ; Lemma 1 merely
asserts that M̃ approximates M∗ in objective value. The proof of Lemma 1, given in Section A.3,
primarily involves establishing a uniform deviation result; if we let P denote the feasible set for (1),
then we wish to show that |〈Ã − B,M〉| ≤ 1

2εαβkn for all M ∈ P . This would imply that the
objectives of (1) and (6) are essentially identical, and so optimizing one also optimizes the other.

Using the inequality |〈Ã − B,M〉| ≤ ‖Ã − B‖op‖M‖∗, where ‖ · ‖op denotes operator norm, it
suffices to establish a matrix concentration inequality bounding ‖Ã − B‖op. This bound follows
from the general matrix concentration result of Le et al. (2015), stated in Section A.1.

Part 2: bounding the influence of adversaries. We next show that the nuclear norm constraint does
not give the adversaries too much influence over the de-noised program (6); this is the most novel
aspect of our argument.
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‖M‖∗ ≤ ρ

MC = RC

B

BC−ZC

MC

MC

M∗

〈B
C
−
Z
C
,M
∗
−
M
〉≤

ε M̃

Figure 2: Illustration of our Lagrangian duality argument, and of the role of Z. The blue region
represents the nuclear norm constraint and the gray region the remaining constraints. Where the blue
region slopes downwards, a decrease in MC can be offset by an increase in MC when measuring
〈B,M〉. By linearizing the nuclear norm constraint, the vector B − Z accounts for this offset, and
the red region represents the constraint 〈BC − ZC ,M∗C −MC〉 ≤ ε, which will contain M̃ .

Suppose that the constraint on ‖M‖∗ were not present in (6). Then the adversaries would have no
influence on M∗C , because all the remaining constraints in (6) are separable across rows. How can we
quantify the effect of this nuclear norm constraint? We exploit Lagrangian duality, which allows us to
replace constraints with appropriate modifications to the objective function.

To gain some intuition, consider Figure 2. The key is that the Lagrange multiplier ZC can bound the
amount that 〈B,M〉 can increase due to changing M outside of C. If we formalize this and analyze
Z in detail, we obtain the following result:

Lemma 2. Let m ≥ n. Then there is a k = O
(

log3(2/δ)
αβε2

m
n

)
such that, with probability at least

1− δ, there exists a matrix Z with rank(Z) = 1, ‖Z‖F ≤ εk
√
αβn/m, and

〈BC − ZC ,M∗C −MC〉 ≤ 〈B,M∗ −M〉 for all M ∈ P. (8)

By localizing 〈B,M∗ −M〉 to C via (8), Lemma 2 bounds the effect that the adversaries can have
on M̃C . It is therefore the key technical tool powering our results, and is proved in Section A.4.
Proposition 1 is proved from Lemmas 1 and 2 in Section A.5.

5 Recovering T (Algorithm 2)
In this section we show that if M̃ satisfies the conclusion of Proposition 1, then Algorithm 2 recovers
a set T that approximates T ∗ well. We represent the sets T and T ∗ as {0, 1}-vectors, and use the
notation 〈T, r〉 to denote

∑
j∈[m] Tjrj . Formally, we show the following:

Proposition 2. Suppose Assumption 1 holds. For some k0 = O
(

log(2/αβεδ)
βε2

)
, with probability 1−δ,

Algorithm 2 outputs a set T satisfying

〈T ∗ − T, r∗〉 ≤ 2

|C|

(∑
i∈C
〈T ∗ − M̃i, r

∗〉
)

+ εβm. (9)

To establish Proposition 2, first note that with probability 1− δ
2 , at least one of the 2 log(2/δ)

α randomly
selected i from Algorithm 2 will have cost 〈T ∗ − M̃i, r

∗〉 within twice the average cost across i ∈ C.
This is because with probability α, a randomly selected i will lie in C, and with probability 1

2 , an
i ∈ C will have cost at most twice the average cost (by Markov’s inequality).

The remainder of the proof hinges on two results. First, we establish a concentration bound showing
that

∑
j M̃ij r̃j is close to k0

m

∑
j M̃ijr

∗
j for any fixed i, and hence (by a union bound) also for

the 2 log(2/δ)
α randomly selected i. This yields the following lemma, which is a straightforward

application of Bernstein’s inequality (see Section A.6 for a proof):
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Lemma 3. Let i∗ be the row selected in Algorithm 2. Suppose that r̃ satisfies Assumption 1. For
some k0 = O

(
log(2/αδ)

βε2

)
, with probability 1− δ, we have

〈T ∗ − M̃i∗ , r
∗〉 ≤ 2

|C|

(∑
i∈C
〈T ∗ − M̃i, r

∗〉
)

+
ε

4
βm. (10)

Having recovered a good row T0 = M̃i∗ , we need to turn T0 into a binary vector so that Algorithm 2
can output a set; we do so via randomized rounding, obtaining a vector T ∈ {0, 1}m such that E[T ] =
T0 (where the randomness is with respect to the choices made by the algorithm). Our rounding
procedure is given in Algorithm 4; the following lemma, proved in A.7, asserts its correctness:
Lemma 4. The output T of Algorithm 4 satisfies E[T ] = T0, ‖T‖0 ≤ βm.

Algorithm 4 Randomized rounding algorithm.
1: procedure RANDOMIZEDROUND(T0) . T0 ∈ [0, 1]m satisfies ‖T0‖1 ≤ βm
2: Let s be the vector of partial sums of T0 . i.e., sj = (T0)1 + · · ·+ (T0)j
3: Sample u ∼ Uniform([0, 1]).
4: T ← [0, . . . , 0] ∈ Rm

5: for z = 0 to βm− 1 do
6: Find j such that u+ z ∈ [sj−1, sj), and set Tj = 1. . if no such j exists, skip this step
7: end for
8: return T
9: end procedure

The remainder of the proof involves lower-bounding the probability that T is accepted in each stage
of the while loop in Algorithm 2. We refer the reader to Section A.8 for details.

6 Open Directions and Related Work

Future Directions. On the theoretical side, perhaps the most immediate open question is whether it is
possible to improve the dependence of k (the amount of work required per worker) on the parameters
α, β, and ε. It is tempting to hope that when m = n a tight result would have k = Õ

(
1

αβε2

)
, in

loose analogy to recent results for the stochastic block model (Abbe and Sandon, 2015b;a; Banks and
Moore, 2016). For stochastic block models, there is conjectured to be a gap between computational
and information-theoretic thresholds, and it would be interesting to see if a similar phenomenon holds
here (the scaling for k given above is based on the conjectured computational threshold).

A second open question concerns the scaling in n: if n � m, can we get by with much less work
per rater? Finally, it would be interesting to consider adaptivity: if the choice of queries is based on
previous worker ratings, can we reduce the amount of work?

Related work. Our setting is closely related to the problem of peer prediction (Miller et al., 2005),
in which we wish to obtain truthful information from a population of raters by exploiting inter-rater
agreement. While several mechanisms have been proposed for these tasks, they typically assume that
rater accuracy is observable online (Resnick and Sami, 2007), that the dishonest raters are rational
agents maximizing a payoff function (Dasgupta and Ghosh, 2013; Kamble et al., 2015; Shnayder
et al., 2016), that the raters follow a simple statistical model (Karger et al., 2014; Zhang et al., 2014;
Zhou et al., 2015), or some combination of the above (Shah and Zhou, 2015; Shah et al., 2015).
Ghosh et al. (2011) allow o(n) adversaries to behave arbitrarily but require the rest to be stochastic.

The work closest to ours is Christiano (2014; 2016), which studies online collaborative prediction in
the presence of adversaries; roughly, when raters interact with an item they predict its quality and
afterwards observe the actual quality; the goal is to minimize the number of incorrect predictions
among the honest raters. This differs from our setting in that (i) the raters are trying to learn the item
qualities as part of the task, and (ii) there is no requirement to induce a final global estimate of the
high-quality items, which is necessary for estimating quantiles. It seems possible however that there
are theoretical ties between this setting and ours, which would be interesting to explore.
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