
Integrated Perception with Recurrent Multi-Task

Neural Networks

Hakan Bilen Andrea Vedaldi
Visual Geometry Group, University of Oxford
{hbilen,vedaldi}@robots.ox.ac.uk

Abstract

Modern discriminative predictors have been shown to match natural intelligences in
specific perceptual tasks in image classification, object and part detection, boundary
extraction, etc. However, a major advantage that natural intelligences still have is
that they work well for all perceptual problems together, solving them efficiently
and coherently in an integrated manner. In order to capture some of these advan-
tages in machine perception, we ask two questions: whether deep neural networks
can learn universal image representations, useful not only for a single task but for
all of them, and how the solutions to the different tasks can be integrated in this
framework. We answer by proposing a new architecture, which we call multinet, in
which not only deep image features are shared between tasks, but where tasks can
interact in a recurrent manner by encoding the results of their analysis in a common
shared representation of the data. In this manner, we show that the performance of
individual tasks in standard benchmarks can be improved first by sharing features
between them and then, more significantly, by integrating their solutions in the
common representation.

1 Introduction

Natural perception can extract complete interpretations of sensory data in a coherent and efficient
manner. By contrast, machine perception remains a collection of disjoint algorithms, each solving
specific information extraction sub-problems. Recent advances such as modern convolutional neural
networks have dramatically improved the performance of machines in individual perceptual tasks,
but it remains unclear how these could be integrated in the same seamless way as natural perception
does.

In this paper, we consider the problem of learning data representations for integrated perception. The
first question we ask is whether it is possible to learn universal data representations that can be used
to solve all sub-problems of interest. In computer vision, fine-tuning or retraining has been show
to be an effective method to transfer deep convolutional networks between different tasks [9, 29].
Here we show that, in fact, it is possible to learn a single, shared representation that performs well on
several sub-problems simultaneously, often as well or even better than specialised ones.

A second question, complementary to the one of feature sharing, is how different perceptual subtasks
should be combined. Since each subtask extracts a partial interpretation of the data, the problem
is to form a coherent picture of the data as a whole. We consider an incremental interpretation
scenario, where subtasks collaborate in parallel or sequentially in order to gradually enrich a shared
interpretation of the data, each contributing its own “dimension” to it. Informally, many computer
vision systems operate in this stratified manner, with different modules running in parallel or in
sequence (e.g. object detection followed by instance segmentation). The question is how this can be
done end-to-end and systematically.

In this paper, we develop an architecture, multinet (fig. 1), that provides an answer to such questions.
Multinet builds on the idea of a shared representation, called an integration space, which reflects both

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

airplane

location partsclass

Figure 1: Multinet. We propose a modular multi-task architecture in which several perceptual tasks
are integrated in a synergistic manner. The subnetwork φ0enc encodes the data x

0 (an image in the
example) producing a representation h shared between K different tasks. Each task estimates one of
K different labels xα (object class, location, and parts in the example) using K decoder functions
ψα

dec. Each task contributes back to the shared representation by means of a corresponding encoder
function φαenc. The loop is closed in a recurrent configuration by means of suitable integrator functions
(not shown here to avoid cluttering the diagram).

the statistics extracted from the data as well as the result of the analysis carried by the individual
subtasks. As a loose metaphor, one can think the integration space as a “canvas” which is progressively
updated with the information obtained by solving sub-problems. The representation distills this
information and makes it available for further task resolution, in a recurrent configuration.

Multinet has several advantages. First, by learning the latent integration space automatically, synergies
between tasks can be discovered automatically. Second, tasks are treated in a symmetric manner, by
associating to each of them encoder, decoder, and integrator functions, making the system modular
and easily extensible to new tasks. Third, the architecture supports incremental understanding because
tasks contribute back to the latent representation, making their output available to other tasks for
further processing. Finally, while multinet is applied here to a image understanding setting, the
architecture is very general and could be applied to numerous other domains as well.

The new architecture is described in detail in sect. 2 and an instance specialized for computer vision
applications is given in sect. 3. The empirical evaluation in sect. 4 demonstrates the benefits of
the approach, including that sharing features between different tasks is not only economical, but
also sometimes better for accuracy, and that integrating the outputs of different tasks in the shared
representation yields further accuracy improvements. Sect. 5 summarizes our findings.

1.1 Related work

Multiple task learning (MTL): Multitask learning [5, 25, 1] methods have been studied over
two decades by the machine learning community. The methods are based on the key idea that
the tasks share a common low-dimensional representation which is jointly learnt with the task
specific parameters. While MLT trains many tasks in parallel, Mitchell and Thrun [18] propose a
sequential transfer method called Explanation-Based Neural Nets (EBNN) which exploits previously
learnt domain knowledge to initialise or constraint the parameters of the current task. Breiman
and Freidman [3] devise a hybrid method that first learns separate models and then improves their
generalisation by exploiting the correlation between the predictions.

Multi-task learning in computer vision: MTL has been shown to improve results in many computer
vision problems. Typically, researchers incorporate auxiliary tasks into their target tasks, jointly train
them in parallel and achieve performance gains in object tracking [30], object detection [11], facial
landmark detection [31]. Differently, Dai et al. [8] propose multi-task network cascades in which
convolutional layer parameters are shared between three tasks and the tasks are predicted sequentially.
Unlike [8], our method can train multiple tasks in parallel and does not require a specification of task
execution.

Recurrent networks: Our work is also related to recurrent neural networks (RNN) [22] which has
been successfully used in language modelling [17], speech recognition [13], hand-written recogni-
tion [12], semantic image segmentation [20] and human pose estimation [2]. Related to our work,
Carreira et al. [4] propose an iterative segmentation model that progressively updates an initial

2

Figure 2: Multinet recurrent architecture. The components in the rounded box are repeated K
times, one for each task α = 1, . . . ,K.

solution by feeding back error signal. Najibi et al. [19] propose an efficient grid based object detector
that iteratively refine the predicted object coordinates by minimising the training error. While these
methods [4, 19] are also based on an iterative solution correcting mechanism, our main goal is to
improve generalisation performance for multiple tasks by sharing the previous predictions across
them and learning output correlations.

2 Method

In this section, we first introduce the multinet architecture for integrated multi-task prediction
(sect. 2.1) and then we discuss ordinary multi-task prediction as a special case of multinet (sect. 2.2).

2.1 Multinet: integrated multiple-task prediction

We propose a recurrent neural network architecture (fig. 1 and 2) that can address simultaneously
multiple data labelling tasks. For symmetry, we drop the usual distinction between input and output
spaces and consider insteadK label spaces Xα, α = 0, 1, . . . ,K. A label in the α-th space is denoted
by the symbol xα ∈ Xα. In the following, α = 0 is used for the input (e.g. an image) of the network
and is not inferred, whereas x1, . . . ,xK are labels estimated by the neural network (e.g. an object
class, location, and parts). One reason why it is useful to keep the notation symmetric is because it is
possible to ground any label xα and treat it as an input instead.

Each task α is associated to a corresponding encoder function φαenc, which maps the label xα to a
vectorial representation r

α ∈ Rα given by

r
α = φαenc(x

α). (1)

Each task has also a decoder function ψα

dec going in the other direction, from a common representation
space h ∈ H to the label xα:

x
α = ψα

dec(h). (2)

The information r
0, r1, . . . , rα extracted from the data and the different tasks by the encoders is

integrated in the shared representation h by using an integrator function Γ. Since this update operation
is incremental, we associate to it an iteration number t = 0, 1, 2, By doing so, the update equation
can be written as

ht+1 = Γ(ht, r
0, r1t , . . . , r

K

t). (3)

Note that, in the equation above, r0 is constant as the corresponding variable x
0 is the input of the

network, which is grounded and not updated.

Overall, a task α is specified by the triplet T α = (Xα, φαenc, ψ
α

dec) and by its contribution to the update
rule (3). Full task modularity can be achieved by decomposing the integrator function as a sequence
of task-specific updates ht+1 = ΓK(·, rKt) ◦ · · · ◦ Γ1(ht, r

1
t), such that each task is a quadruplet

(Xα, φαenc, ψ
α

dec,Γ
α), but this option is not investigated further here.

Given tasks T α, α = 1, . . . ,K, several variants of the recurrent architecture are possible. A natural
one is to process tasks sequentially, but this has the added complication of having to choose a
particular order and may in any case be suboptimal; instead, we propose to update all the task at each
recurrent iteration, as follows:

3

t = 0 Ordinary multi-task prediction. At the first iteration, the measurement x0 is acquired
and the shared representation h is initialized as h0 = φ0enc(x

0) = Γ(∗, r0, ∗, . . . , ∗). The
symbol ∗ denotes the initial value of a variable (often zero in practice). Given h

0, the output
x
α
0 = ψα

dec(h0) = (ψα

dec ◦ φ
0
enc)(x

0) for each task is computed. This step corresponds to
ordinary multi-task prediction, as discussed later (sect. 2.2).

t > 0 Iterative updates. Each task α = 1, . . . ,K is re-encoded using equations rαt = φαenc(x
α
t),

the shared representation is updated using ht+1 = Γ(ht, r
0, r1t , . . . , r

K
t), and the labels are

predicted again using x
α
t+1 = ψα

dec(ht+1).

The idea of feeding back the network output for further processing exists in several existing recurrent
architectures [16, 24]; however, in these cases it is used to process sequential data, passing back
the output obtained from the last process element in the sequence; here, instead, the feedback is
used to integrate different and complementary labelling tasks. Our model is also reminiscent of
encoder/decoder architectures [15, 21, 28]; however, in our case the encoder and decoder functions
are associated to the output labels rather than to the input data.

2.2 Ordinary multi-task learning

Ordinarily, multiple-task learning [5, 25, 1] is based on sharing features or parameters between
different tasks. Multinet reduces to ordinary multi-task learning when there is no recurrence. At the
first iteration t = 0, in fact, multinet simply evaluatesK predictor functions ψ1

dec◦φ
0
enc, . . . , ψ

K

dec◦φ
0
enc,

one for each task, which share the common subnetwork φ0enc.

While multi-task learning from representation sharing is conceptually simple, it is practically im-
portant because it allows learning a universal representation function φ0enc which works well for all
tasks simultaneously. The possibility of learning such a polyvalent representation, which can only
be verified empirically, is a non-trivial and useful fact. In particular, in our experiments in image
understanding (sect. 4), we will see that, for certain image analysis tasks, it is not only possible and
efficient to learn such a shared representation, but that in some cases feature sharing can even improve
the performance in the individual sub-problems.

3 A multinet for classification, localization, and part detection

In this section we instantiate multinet for three complementary tasks in computer vision: object
classification, object detection, and part detection. The main advantage of multinet compared to
ordinary multi-task prediction is that, while sharing parameters across related tasks may improve
generalization [5], it is not enough to capture correlations in the task input spaces. For example,
in our computer vision application ordinary multi-task prediction would not be able to ensure that
the detected parts are contained within a detected object. Multinet can instead capture interactions
between the different labels and potentially learn to enforce such constraints. The latter is done in
a soft and distributed manner, by integrating back the output of the individual tasks in the shared
representation.

Next, we discuss in some detail the specific architecture components used in our application. As a
starting point we consider a standard CNN for image classification. While more powerful networks
exist, we choose here a good performing model which is at the same time reasonably efficient to
train and evaluate, namely the VGG-M-1024 network of [6]. This model is pre-trained for image
classification from the ImageNet ILSVRC 2012 data [23] and was extended in [11] to object detection;
here we follow such blueprints, and in particular the Fast R-CNN method of [11], to design the
subnetworks for the three tasks. These components are described in some detail below, first focusing
on the components corresponding to ordinary multi-task prediction, and then moving to the ones used
for multiple task integration.

Ordinary multiple-task components. The first several layers of the VGG-M network can be
grouped in five convolutional sections, each comprising linear convolution, a non-linear activation
function and, in some cases, max pooling and normalization. These are followed by three fully-
connected sections, which are the same as the convolutional ones, but with filter support of the same
size as the corresponding input. The last layer is softmax and computes a posterior probability vector
over the 1,000 ImageNet ILSVRC classes.

4

VGG-M is adapted for the different tasks as follows. For clarity, we use symbolic names for the tasks
rather than numeric indexes, and consider α ∈ {img, cls, det, part} instead of α ∈ {0, 1, 2, 3}. The

five convolutional sections of VGG-M are used as the image encoder φimg
enc and hence compute the

initial value h0 of the shared representation. Cutting VGG-M at the level of the last convolutional
layer is motivated by the fact that the fully-connected layers remove or at least dramatically blur
spatial information, whereas we would like to preserve it for object and part localization. Hence, the
shared representation is a tensor h ∈ R

H×W×C , where H ×W are the spatial dimensions and C is
the number of feature channels as determined by the VGG-M configuration (see sect. 4).

Next, φimg
enc is branched off in three directions, choosing a decoder ψα

dec for each task: image classifica-
tion (α = cls), object detection (α = det), and part detection (α = part). For the image classification
branch, we choose φαenc as the rest of the original VGG-M network for image classification. In
other words, the decoder function ψcls

dec for the image-level labels is initialized to be the same as the

fully-connected layers of the original VGG-M, such that φVGG-M
enc = ψcls

dec ◦ φ
img
enc . There are however

two differences. The first is the last fully-connected layer is reshaped and reinitialized randomly to
predict a different number C of possible objects instead of the 1,000 ImageNet classes. The second
difference is that the final output is a vector of binary probabilities obtained using sigmoid instead of
a softmax.

The object and part detection decoders are instead based on the Fast R-CNN architecture [11], and
classify individual image regions as belonging to one of the object classes (part types) or background.
To do so, the Selective Search Windows (SSW) method [26] is used to generate a shortlist of M
region (bounding box) proposals B(ximg) = {b1, . . . ,bM} from image x

img; this set is inputted to
the spatial pyramid pooling (SPP) layer [14, 11] ψSPP

dec (h,B(x
img)), which extracts subsets of the

feature map h in correspondence of each region using max pooling. The object detection decoder

(and similarly for the part detector) is then given by ψdet
dec(h) = ψdec

det(ψSPP
dec (h,B(x

img))) where

ψdec
det contains fully connected layers initialized in the same manner as the classification decoder

above (hence, before training one also has φVGG-M
enc = ψdec

det ◦ φimg
enc). The exception is once more the

last layer, reshaped and reinitialized as needed, whereas softmax is still used as regions can have only
one class.

So far, we have described the image encored φimg
enc and the decoder branches ψcls

dec, ψdet
dec and ψpart

dec for
the three tasks. Such components are sufficient for ordinary multi-task learning, corresponding to the
initial multinet iteration. Next, we specify the components that allow to iterate multinet several times.

Recurrent components: integrating multiple tasks. For task integration, we need to construct

the encoder functions φcls
enc, φ

det
enc and φpart

enc for each task as well as the integrator function Γ. While
several constructions are possible, here we experiment with simple ones.

In order to encode the image label xcls, the encoder rcls = φcls
enc(x

cls) takes the vector of Ccls binary

probabilities x
cls ∈ R

C
cls

, one for each of the Ccls possible object classes, and broadcasts the

corresponding values to all H ×W spatial locations (u, v) in h. Formally r
cls ∈ R

H×W×C
cls

and

∀u, v, c : rcls
uvc = xcls

c .

Encoding the object detection label xdet is similar, but reflects the geometric information captured by
such labels. In particular, each bounding box bm of the M extracted by SSW is associated to a vector

of Ccls + 1 probabilities (one for each object class plus one more for background) xdet
m ∈ R

C
cls+1.

This is decoded in a heat map r
cls ∈ R

H×W×(Ccls+1) by max pooling across boxes:

∀u, v, c : rcls
uvc = max

{

xdet
mc, ∀m : (u, v) ∈ bm

}

∪ {0}.

The part label xpart is encoded in an entirely analogous manner.

Lastly, we need to construct the integrator function Γ. We experiment with two simple designs. The
first one simply stacks evidence from the different sources: h = stack(rimg, rcls, rdet, rpart). Then the
update equation is given by

ht = Γ(ht−1, r
img, rcls

t , r
det
t , rpart

t) = stack(rimg, rcls
t , r

det
t , rpart

t). (4)

Note that this formulation requires modifying the first fully-connected layers of each decoder ψ̂cls
dec,

ψ̂det
dec and ψ̂part

dec as the shared representation h has now C+2Ccls +Cpart +2 channels instead of just C

5

Figure 3: Illustration of the multinet instantiation tackling three computer vision problem: image
classification, object detection, and part detection.

as for the original VGG-M architecture. This is done by initializing randomly additional dimensions
in the linear maps.

We also experiment with a second update equation

ht = Γ(ht−1, r
img, rcls

t , r
det
t , rpart

t) = ReLU(A ∗ stack(ht−1, r
cls, rcls

t , r
det
t , rpart

t)) (5)

where A ∈ R
1×1×(2C+2Ccls+C

part+2)×C is a filter bank whose purpose is to reduce the stacked
representation back to the original C channels. This is a useful design as it maintains the same repre-
sentation dimensionality regardless of the number of tasks added. However, due to the compression,
it may perform less well.

4 Experiments

4.1 Implementation details and training

The image encoder φimg
enc is initialized from the pre-trained VGG-M model using sections conv1 to

conv5. If the input to the network is an RGB image ximg ∈ R
H

img
×W

img
×3, then, due to downsampling,

the spatial dimension H ×W × C of rimg = φimg
enc (ximg) are H ≈ H img/16 and W ≈ W img/16.

The number of feature channels is C = 512. As noted above, the decoders contain respectively

subnetworks ψdec
cls, ψdec

det, and ψdec
part comprising layers fc6 and fc7 from VGG-M, followed by a

randomly-initialized linear predictor with output dimension equal to, respectively, Ccls, Ccls + 1, and
Cpart + 1. Max pooling in SPP is performed in a grid of 6× 6 spatial bins as in [14, 11]. The task

encoders φcls
enc, φ

det
enc, φ

part
enc are given in sect. 2 and contain no parameter.

For training, each task is associated with a corresponding loss function. For the classification task, the
objective is to minimize the sum of negative posterior log-probabilities of whether the image contains
a certain object type or not (this allows different objects to be present in a single image). Combined
with the fact that the classification branch uses sigmoid, this is the same as binary logistic regression.
For the object and part detection tasks, decoders are optimized to classify the target regions as one of
the Ccls or Cpart classes or background (unlike image-level labels, classes in region-level labels are
mutually exclusive). Furthermore, we also train a branch performing bounding box refinement to
improve the fit of the selective search region as proposed by [11].

The fully connected layers used for softmax classification and bounding-box regression in object
and part detection tasks are initialized from zero-mean Gaussian distributions with 0.01 and 0.001
standard deviations respectively. The fully connected layers used for object classification task and the
adaptation layer A (see eq. 5) are initialized with zero-mean Gaussian with 0.01 standard deviation.

6

All layers use a learning rate of 1 for filters and 2 for biases. We used SGD to optimize the parameters
with a learning rate of 0.001 for 6 epochs and lower it to 0.0001 for another 6 epochs. We observe that
running two iterations of recursion is sufficient to reach 99% of the performance, although marginal
gains are possible with more. We use the publicly available CNN toolbox MatConvNet [27] in our
experiments.

4.2 Results

In this section, we describe and discuss experimental results of our models in two benchmarks.

PASCAL VOC 2010 [10] and Parts [7]: The dataset contains 4998 training and 5105 validation
images for 20 object categories and ground truth bounding box annotations for target categories. We
use the PASCAL-Part dataset [7] to obtain bounding box annotations of object parts which consists
of 193 annotated part categories such as aeroplane engine, bicycle back-wheel, bird left-wing, person
right-upper-leg. After removing annotations that are smaller than 20 pixels on one side and the
categories with less than 50 training samples, the number of part categories reduces to 152. The
dataset provides annotations for only training and validation splits, thus we train our models in the
train split and report results in the validation split for all the tasks. We follow the standard PASCAL
VOC evaluation and report average precision (AP) and AP at 50% intersection-over-union (IoU) of
the detected boxes with the ground ones for object classification and detection respectively. For the
part detection, we follow [7] and report AP at a more relaxed 40% IoU threshold. The results for the
tasks are reported in tab. 1.

In order to establish the first baseline, we train an independent network for each task. Each network
is initialized with the VGG-M model, the last classification and regression layers are initialized with
random noise and all the layers are fine-tuned for the respective task. For object and part detection,
we use our implementation of Fast-RCNN [11]. Note that, for consistency between the baselines and
our method, minimum dimension of each image is scaled to be 600 pixels for all the tasks including
object classification. An SPP layer is employed to scale the feature map into 6× 6 dimensionality.

For the second baseline, we train a multi-task network that shares the convolutional layers across the
tasks (this setting is called ordinary multi-task prediction in sect. 2.1). We observe in tab. 1 that the
multi-task model performs comparable or better than the independent networks, while being more
efficient due to the shared convolutional computations. Since the training images are the same in all
cases, this shows that just combining multiple labels together improves efficiency and in some cases
even performance.

Finally we test the full multinet model for two settings defined as update rules (1) and (2) corre-
sponding to eq. 4 and 5 respectively. We first see that both models outperforms the independent
networks and multi-task network as well. This is remarkable because our model consists of smaller
number of parameters than the sum of three independent networks and yet our best model (update 1)
consistently outperforms them by roughly 1.5 points in mean AP. Furthermore, multinet improves
over the ordinary multi-task prediction by exploiting the correlations in the solutions of the individual
tasks. In addition, we observe that update (1) performs better than update (2) that constraints the
shared representation space to 512 dimensions regardless of the number of tasks, as it can be expected
due to the larger capacity. Nevertheless, even with the bottleneck we observe improvements compared
to ordinary multi-task prediction.

We also run a test case to verify whether multinet learns to mix information extracted by the various
tasks as presumed. To do so, we exploit the predictions performed by these task in will be able to
improve more with ground truth labels during test time. At test time we ground the classification
label rcls in the first iteration of multinet to the ground truth class labels and we read the predictions
after one iteration. The performances expectedly in the three tasks improve to 90.1, 58.9 and 39.2
respectively. This shows that, the feedback on the class information has a strong effect on class
prediction itself, and a more modest but nevertheless significant effect on the other tasks as well.

PASCAL VOC 2007 [10]: The dataset consists of 2501 training, 2510 validation, and 5011 test
images containing bounding box annotations for 20 object categories. There is no part annotations
available for this dataset, thus, we exclude the part detection task and run the same baselines and
our best model for object classification and detection. The results are reported for the test split and
depicted in tab. 2. Note that our RCNN for the individual networks obtains the same detection score

7

Method / Task classification object-detection part-detection

Independent 76.4 55.5 37.3
Multi-task 76.2 57.1 37.2
Ours 77.4 57.5 38.8
Ours (with bottleneck) 76.8 57.3 38.5

Table 1: Object classification, detection and part detection results in the PASCAL VOC 2010
validation split.

Method / Task classification object-detection

Independent 78.7 59.2
MTL 78.9 60.4
Ours 79.8 61.3

Table 2: Object classification and detection results in the PASCAL VOC 2007 test split.

in [11]. In parallel to the former results, our method consistently outperforms both the baselines in
classification and detection tasks.

5 Conclusions

In this paper, we have presented multinet, a recurrent neural network architecture to solve multiple
perceptual tasks in an efficient and coordinated manner. In addition to feature and parameter sharing,
which is common to most multi-task learning methods, multinet combines the output of the different
tasks by updating a shared representation iteratively.

Our results are encouraging. First, we have shown that such architectures can successfully inte-
grate multiple tasks by sharing a large subset of the data representation while matching or even
outperforming specialised network. Second, we have shown that the iterative update of a common
representation is an effective method for sharing information between different tasks which further
improve performance.

Acknowledgments

This work acknowledges the support of the ERC Starting Grant Integrated and Detailed Image
Understanding (EP/L024683/1).

References

[1] J. Baxter. A model of inductive bias learning. J. Artif. Intell. Res.(JAIR), 12(149-198):3, 2000.

[2] V. Belagiannis and A. Zisserman. Recurrent human pose estimation. arXiv preprint
arXiv:1605.02914, 2016.

[3] L. Breiman and J. H. Friedman. Predicting multivariate responses in multiple linear regression.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(1):3–54, 1997.

[4] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Human pose estimation with iterative
error feedback. CVPR, 2016.

[5] R. Caruana. Multitask learning. Machine Learning, 28(1), 1997.

[6] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details:
Delving deep into convolutional nets. In BMVC, 2014.

[7] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. L. Yuille. Detect what you can:
Detecting and representing objects using holistic models and body parts. In CVPR, pages
1971–1978, 2014.

[8] J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task network
cascades. In CVPR, 2016.

[9] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep
convolutional activation feature for generic visual recognition. CoRR, abs/1310.1531, 2013.

8

[10] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL
Visual Object Classes (VOC) challenge. IJCV, 88(2):303–338, 2010.

[11] R. Girshick. Fast r-cnn. In ICCV, 2015.

[12] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber. A novel
connectionist system for unconstrained handwriting recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 31(5):855–868, 2009.

[13] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. In ICASSP, pages 6645–6649. IEEE, 2013.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks
for visual recognition. In ECCV, pages 346–361, 2014.

[15] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, 2006.

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[17] T. Mikolov. Statistical Language Models Based on Neural Networks. PhD thesis, Ph. D. thesis,
Brno University of Technology, 2012.

[18] T. M. Mitchell and S. B. Thrun. Explanation-based neural network learning for robot control.
NIPS, pages 287–287, 1993.

[19] M. Najibi, M. Rastegari, and L. S. Davis. G-cnn: an iterative grid based object detector. CVPR,
2016.

[20] P. H. O. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene parsing.
arXiv preprint arXiv:1306.2795, 2013.

[21] M. A. Ranzato, F. J. Huang, Y. Boureau, and Y. LeCun. Unsupervised learning of invariant
feature hierarchies with applications to object recognition. In CVPR, pages 1–8, 2007.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. Cognitive modeling, 5(3):1, 1988.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, S. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A.C. Berg, and F.F. Li. Imagenet large scale visual recognition
challenge. IJCV, 2015.

[24] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
NIPS, pages 3104–3112, 2014.

[25] S. Thrun and L. Pratt, editors. Learning to Learn. Kluwer Academic Publishers, 1998.

[26] K. van de Sande, J. Uijlings, T. Gevers, and A. Smeulders. Segmentation as selective search for
object recognition. In ICCV, 2011.

[27] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural networks for matlab. In Proceeding
of the ACM Int. Conf. on Multimedia, 2015.

[28] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol. Extracting and composing robust
features with denoising autoencoders. In ICML, pages 1096–1103. ACM, 2008.

[29] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR,
abs/1311.2901, 2013.

[30] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual tracking via structured multi-task
sparse learning. IJCV, 101(2):367–383, 2013.

[31] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark detection by deep multi-task learning.
In ECCV, pages 94–108. Springer, 2014.

9

