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Abstract

Given a family of probability measures in P (X ), the space of probability mea-
sures on a Hilbert space X , our goal in this paper is to highlight one ore more
curves in P (X ) that summarize efficiently that family. We propose to study this
problem under the optimal transport (Wasserstein) geometry, using curves that
are restricted to be geodesic segments under that metric. We show that concepts
that play a key role in Euclidean PCA, such as data centering or orthogonality of
principal directions, find a natural equivalent in the optimal transport geometry,
using Wasserstein means and differential geometry. The implementation of these
ideas is, however, computationally challenging. To achieve scalable algorithms
that can handle thousands of measures, we propose to use a relaxed definition
for geodesics and regularized optimal transport distances. The interest of our ap-
proach is demonstrated on images seen either as shapes or color histograms.

1 Introduction

Optimal transport distances (Villani, 2008), a.k.a Wasserstein or earth mover’s distances, define
a powerful geometry to compare probability measures supported on a metric space X . The
Wasserstein space P (X )—the space of probability measures on X endowed with the Wasserstein
distance—is a metric space which has received ample interest from a theoretical perspective. Given
the prominent role played by probability measures and feature histograms in machine learning, the
properties of P (X ) can also have practical implications in data science. This was shown by Agueh
and Carlier (2011) who described first Wasserstein means of probability measures. Wasserstein
means have been recently used in Bayesian inference (Srivastava et al., 2015), clustering (Cuturi
and Doucet, 2014), graphics (Solomon et al., 2015) or brain imaging (Gramfort et al., 2015). When
X is not just metric but also a Hilbert space, P (X ) is an infinite-dimensional Riemannian manifold
(Ambrosio et al. 2006, Chap. 8; Villani 2008, Part II). Three recent contributions by Boissard et al.
(2015, §5.2), Bigot et al. (2015) and Wang et al. (2013) exploit directly or indirectly this structure to
extend Principal Component Analysis (PCA) to P (X ). These important seminal papers are, how-
ever, limited in their applicability and/or the type of curves they output. Our goal in this paper is to
propose more general and scalable algorithms to carry out Wasserstein principal geodesic analysis
on probability measures, and not simply dimensionality reduction as explained below.

Principal Geodesics in P (X ) vs. Dimensionality Reduction on P (X ) We provide in Fig. 1 a
simple example that illustrates the motivation of this paper, and which also shows how our approach
differentiates itself from existing dimensionality reduction algorithms (linear and non-linear) that
draw inspiration from PCA. As shown in Fig. 1, linear PCA cannot produce components that re-
main in P (X ). Even more advanced tools, such as those proposed by Hastie and Stuetzle (1989),
fall slightly short of that goal. On the other hand, Wasserstein geodesic analysis yields geodesic
components in P (X ) that are easy to interpret and which can also be used to reduce dimensionality.
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Figure 1: (top-left) Dataset: 60 × 60 images of a single Chinese character randomly translated,
scaled and slightly rotated (36 images displayed out of 300 used). Each image is handled as a
normalized histogram of 3, 600 non-negative intensities. (middle-left) Dataset schematically drawn
on P (X ). The Wasserstein principal geodesics of this dataset are depicted in red, its Euclidean
components in blue, and its principal curve (Verbeek et al., 2002) in yellow. (right) Actual curves
(blue colors depict negative intensities, green intensities ≥ 1). Neither the Euclidean components
nor the principal curve belong to P (X ), nor can they be interpreted as meaningful axis of variation.

Foundations of PCA and Riemannian Extensions Carrying out PCA on a family (x1, . . . , xn)
of points taken in a space X can be described in abstract terms as: (i) define a mean element x̄
for that dataset; (ii) define a family of components in X , typically geodesic curves, that contain x̄;
(iii) fit a component by making it follow the xi’s as closely as possible, in the sense that the sum
of the distances of each point xi to that component is minimized; (iv) fit additional components
by iterating step (iii) several times, with the added constraint that each new component is different
(orthogonal) enough to the previous components. When X is Euclidean and the xi’s are vectors in
Rd, the (n+ 1)-th component vn+1 can be computed iteratively by solving:

vn+1 ∈ argmin
v∈V ⊥

n ,||v||2=1

N∑
i=1

min
t∈R

‖xi − (x̄+ tv)‖22, where V0
def.
= ∅, and Vn

def.
= span{v1, · · · , vn}. (1)

Since PCA is known to boil down to a simple eigen-decomposition when X is Euclidean or Hilber-
tian (Schölkopf et al., 1997), Eq. (1) looks artificially complicated. This formulation is, however,
extremely useful to generalize PCA to Riemannian manifolds (Fletcher et al., 2004). This gen-
eralization proceeds first by replacing vector means, lines and orthogonality conditions using re-
spectively Fréchet means (1948), geodesics, and orthogonality in tangent spaces. Riemannian PCA
builds then upon the knowledge of the exponential map at each point x of the manifold X . Each ex-
ponential map expx is locally bijective between the tangent space Tx of x and X . After computing
the Fréchet mean x̄ of the dataset, the logarithmic map logx̄ at x̄ (the inverse of expx̄) is used to map
all data points xi onto Tx̄. Because Tx̄ is a Euclidean space by definition of Riemannian manifolds,
the dataset (logx̄ xi)i can be studied using Euclidean PCA. Principal geodesics in X can then be
recovered by applying the exponential map to a principal component v?, {expx̄(tv?), |t| < ε}.

From Riemannian PCA to Wasserstein PCA: Related Work As remarked by Bigot et al.
(2015), Fletcher et al.’s approach cannot be used as it is to define Wasserstein geodesic PCA, be-
cause P (X ) is infinite dimensional and because there are no known ways to define exponential
maps which are locally bijective between Wasserstein tangent spaces and the manifold of probabil-
ity measures. To circumvent this problem, Boissard et al. (2015), Bigot et al. (2015) have proposed
to formulate the geodesic PCA problem directly as an optimization problem over curves in P (X ).
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Boissard et al. and Bigot et al. study the Wasserstein PCA problem in restricted scenarios: Bigot
et al. focus their attention on measures supported on X = R, which considerably simplifies their
analysis since it is known in that case that the Wasserstein space P (R) can be embedded isometri-
cally in L1(R); Boissard et al. assume that each input measure has been generated from a single
template density (the mean measure) which has been transformed according to one “admissible de-
formation” taken in a parameterized family of deformation maps. Their approach to Wasserstein
PCA boils down to a functional PCA on such maps. Wang et al. proposed a more general approach:
given a family of input empirical measures (µ1, . . . , µN ), they propose to compute first a “template
measure” µ̃ using k-means clustering on

∑
i µi. They consider next all optimal transport plans πi

between that template µ̃ and each of the measures µi, and propose to compute the barycentric pro-
jection (see Eq. 8) of each optimal transport plan πi to recover Monge maps Ti, on which standard
PCA can be used. This approach is computationally attractive since it requires the computation of
only one optimal transport per input measure. Its weakness lies, however, in the fact that the curves
in P (X ) obtained by displacing µ̃ along each of these PCA directions are not geodesics in general.

Contributions and Outline We propose a new algorithm to compute Wasserstein Principal
Geodesics (WPG) in P (X ) for arbitrary Hilbert spaces X . We use several approximations—both
of the optimal transport metric and of its geodesics—to obtain tractable algorithms that can scale
to thousands of measures. We provide first in §2 a review of the key concepts used in this paper,
namely Wasserstein distances and means, geodesics and tangent spaces in the Wasserstein space.
We propose in §3 to parameterize a Wasserstein principal component (PC) using two velocity fields
defined on the support of the Wasserstein mean of all measures, and formulate the WPG problem
as that of optimizing these velocity fields so that the average distance of all measures to that PC
is minimal. This problem is non-convex and non-smooth. We propose to optimize smooth upper-
bounds of that objective using entropy regularized optimal transport in §4. The practical interest of
our approach is demonstrated in §5 on toy samples, datasets of shapes and histograms of colors.

Notations We write 〈A,B 〉 for the Frobenius dot-product of matrices A and B. D(u) is the
diagonal matrix of vector u. For a mapping f : Y → Y , we say that f acts on a measure µ ∈ P (Y)
through the pushforward operator # to define a new measure f#µ ∈ P (Y). This measure is
characterized by the identity (f#µ)(B) = µ(f−1(B)) for any Borel set B ⊂ Y . We write p1 and
p2 for the canonical projection operatorsX 2 → X , defined as p1(x1, x2) = x1 and p2(x1, x2) = x2.

2 Background on Optimal Transport

Wasserstein Distances We start this section with the main mathematical object of this paper:
Definition 1. (Villani, 2008, Def. 6.1) Let P (X ) the space of probability measures on a Hilbert
space X . Let Π(ν, η) be the set of probability measures on X 2 with marginals ν and η, i.e. p1#π =
ν and p2#π = η. The squared 2-Wasserstein distance between ν and η in P (X ) is defined as:

W 2
2 (ν, η) = inf

π∈Π(ν,η)

∫
X 2

‖x− y‖2Xdπ(x, y). (2)

Wasserstein Barycenters Given a family of N probability measures (µ1, · · · , µN ) in P (X ) and
weights λ ∈ RN+ , Agueh and Carlier (2011) define µ̄, the Wasserstein barycenter of these measures:

µ̄ ∈ argmin
ν∈P (X )

N∑
i=1

λiW
2
2 (µi, ν).

Our paper relies on several algorithms which have been recently proposed (Benamou et al., 2015;
Bonneel et al., 2015; Carlier et al., 2015; Cuturi and Doucet, 2014) to compute such barycenters.

Wasserstein Geodesics Given two measures ν and η, let Π?(ν, η) be the set of optimal couplings
for Eq. (2). Informally speaking, it is well known that if either ν or η are absolutely continuous
measures, then any optimal coupling π? ∈ Π?(ν, η) is degenerated in the sense that, assuming for
instance that ν is absolutely continuous, for all x in the support of ν only one point y ∈ X is
such that dπ?(x, y) > 0. In that case, the optimal transport is said to have no mass splitting, and
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there exists an optimal mapping T : X → X such that π? can be written, using a pushforward, as
π? = (id×T )#ν. When there is no mass splitting to transport ν to η, McCann’s interpolant (1997):

gt = ((1− t)id + tT )#ν, t ∈ [0, 1], (3)

defines a geodesic curve in the Wasserstein space, i.e. (gt)t is locally the shortest path between
any two measures located on the geodesic, with respect to W2. In the more general case, where no
optimal map T exists and mass splitting occurs (for some locations x one may have dπ?(x, y) > 0
for several y), then a geodesic can still be defined, but it relies on the optimal plan π? instead:
gt = ((1− t)p1 + tp2)#π?, t ∈ [0, 1], (Ambrosio et al., 2006, §7.2). Both cases are shown in Fig. 2.
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Figure 2: Both plots display geodesic curves between two empirical measures ν and η on R2. An
optimal map exists in the left plot (no mass splitting occurs), whereas some of the mass of ν needs
to be split to be transported onto η on the right plot.

Tangent Space and Tangent Vectors We briefly describe in this section the tangent spaces of
P (X ), and refer to (Ambrosio et al., 2006, Chap. 8) for more details. Let µ : I ⊂ R → P (X )
be a curve in P (X ). For a given time t, the tangent space of P (X ) at µt is a subset of L2(µt,X ),
the space of square-integrable velocity fields supported on Supp(µt). At any t, there exists tangent
vectors vt in L2(µt,X ) such that limh→0W2(µt+h, (id + hvt)#µt)/|h| = 0. Given a geodesic
curve in P (X ) parameterized as Eq. (3), its corresponding tangent vector at time zero is v = T − id.

3 Wasserstein Principal Geodesics

Geodesic Parameterization The goal of principal geodesic analysis is to define geodesic curves
in P (X ) that go through the mean µ̄ and which pass close enough to all target measures µi. To that
end, geodesic curves can be parameterized with two end points ν and η. However, to avoid dealing
with the constraint that a principal geodesic needs to go through µ̄, one can start instead from µ̄, and
consider a velocity field v ∈ L2(µ̄,X ) which displaces all of the mass of µ̄ in both directions:

gt(v)
def.
= (id + tv) #µ̄, t ∈ [−1, 1]. (4)

Lemma 7.2.1 of Ambrosio et al. (2006) implies that any geodesic going through µ̄ can be written
as Eq. (4). Hence, we do not lose any generality using this parameterization. However, given an
arbitrary vector field v, the curve (gt(v))t is not necessarily a geodesic. Indeed, the maps id± v are
not necessarily in the set Cµ̄

def.
= {r ∈ L2(µ̄,X )|(id×r)#µ̄ ∈ Π?(µ̄, r#µ̄)} of maps that are optimal

when moving mass away from µ̄. Ensuring thus, at each step of our algorithm, that v is still such
that (gt(v))t is a geodesic curve is particularly challenging. To relax this strong assumption, we
propose to use a generalized formulation of geodesics, which builds upon not one but two velocity
fields, as introduced by Ambrosio et al. (2006, §9.2):

Definition 2. (adapted from (Ambrosio et al., 2006, §9.2)) Let σ, ν, η ∈ P (X ), and assume there
is an optimal mapping T (σ,ν) from σ to ν and an optimal mapping T (σ,η) from σ to η. A generalized
geodesic, illustrated in Fig. 3 between ν and η with base σ is defined by,

gt =
(

(1− t)T (σ,ν) + tT (σ,η)
)

#σ, t ∈ [0, 1].

Choosing µ̄ as the base measure in Definition 2, and two fields v1, v2 such that id− v1, id + v2 are
optimal mappings (in Cµ̄), we can define the following generalized geodesic gt(v1, v2):

gt(v1, v2)
def.
= (id− v1 + t(v1 + v2)) #µ̄, for t ∈ [0, 1]. (5)
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Generalized geodesics become true geodesics when v1 and v2 are positively proportional. We can
thus consider a regularizer that controls the deviation from that property by defining Ω(v1, v2) =
(〈v1, v2 〉L2(µ̄,X ) − ‖v1‖L2(µ̄,X )‖v2‖L2(µ̄,X ))

2, which is minimal when v1 and v2 are indeed posi-
tively proportional. We can now formulate the WPG problem as computing, for n ≥ 0, the (n+ 1)th

principal (generalized) geodesic component of a family of measures (µi)i by solving, with λ > 0:

min
v1,v2∈L2(µ̄,X )

λΩ(v1, v2) +

N∑
i=1

min
t∈[0,1]

W 2
2 (gt(v1, v2), µi), s.t.

{
id− v1, id + v2 ∈ Cµ̄,
v1+v2∈span({v(i)

1 + v
(i)
2 }i≤n)⊥.

(6)
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Figure 3: Generalized geodesic interpolation be-
tween two empirical measures ν and η using the
base measure σ, all defined on X = R2.

This problem is not convex in v1, v2. We pro-
pose to find an approximation of that minimum
by a projected gradient descent, with a projec-
tion that is to be understood in terms of an al-
ternative metric on the space of vector fields
L2(µ̄,X ). To preserve the optimality of the
mappings id − v1 and id + v2 between itera-
tions, we introduce in the next paragraph a suit-
able projection operator on L2(µ̄,X ).
Remark 1. A trivial way to ensure that (gt(v))t
is geodesic is to impose that the vector field v is
a translation, namely that v is uniformly equal
to a vector τ on all of Supp(µ̄). One can show
in that case that the WPG problem described
in Eq. (6) outputs an optimal vector τ which is
the Euclidean principal component of the fam-
ily formed by the means of each measure µi.

Projection on the Optimal Mapping Set We use a projected gradient descent method to solve
Eq. (6) approximately. We will compute the gradient of a local upper-bound of the objective of
Eq. (6) and update v1 and v2 accordingly. We then need to ensure that v1 and v2 are such that id−v1

and id + v2 belong to the set of optimal mappings Cµ̄. To do so, we would ideally want to compute
the projection r2 of id + v2 in Cµ̄

r2 = argmin
r∈Cµ̄

‖(id + v2)− r‖2L2(µ̄,X ), (7)

to update v2 ← r2 − id. Westdickenberg (2010) has shown that the set of optimal mappings Cµ̄ is a
convex closed cone in L2(µ̄,X ), leading to the existence and the unicity of the solution of Eq. (7).
However, there is to our knowledge no known method to compute the projection r2 of id + v2.
There is nevertheless a well known and efficient approach to find a mapping r2 in Cµ̄ which is close
to id + v2. That approach, known as the the barycentric projection, requires to compute first an
optimal coupling π? between µ̄ and (id + v2)#µ̄, to define then a (conditional expectation) map

Tπ?(x)
def.
=

∫
X
ydπ?(y|x). (8)

Ambrosio et al. (2006, Theorem 12.4.4) or Reich (2013, Lemma 3.1) have shown that Tπ? is indeed
an optimal mapping between µ̄ and Tπ?#µ̄. We can thus set the velocity field as v2 ← Tπ? − id to
carry out an approximate projection. We show in the supplementary material that this operator can
be in fact interpreted as a projection under a pseudo-metric GWµ̄ on L2(µ̄,X ).

4 Computing Principal Generalized Geodesics in Practice

We show in this section that when X = Rd, the steps outlined above can be implemented efficiently.

Input Measures and Their Barycenter Each input measure in the family (µ1, · · · , µN ) is a finite
weighted sum of Diracs, described by ni points contained in a matrix Xi of size d× ni, and a (non-
negative) weight vector ai of dimension ni summing to 1. The Wasserstein mean of these measures
is given and equal to µ̄ =

∑p
k=1 bkδyk , where the nonnegative vector b = (b1, · · · , bp) sums to one,

and Y = [y1, · · · , yp] ∈ Rd×p is the matrix containing locations of µ̄.
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Generalized Geodesic Two velocity vectors for each of the p points in µ̄ are needed to pa-
rameterize a generalized geodesic. These velocity fields will be represented by two matrices
V1 = [v1

1 , · · · , v1
p] and V2 = [v2

1 , · · · , v2
p] in Rd×p. Assuming that these velocity fields yield optimal

mappings, the points at time t of that generalized geodesic are the measures parameterized by t,

gt(V1, V2) =

p∑
k=1

bkδztk , with locations Zt = [zt1, . . . , z
t
p]

def.
= Y − V1 + t(V1 + V2).

The squared 2-Wasserstein distance between datum µi and a point gt(V1, V2) on the geodesic is:
W 2

2 (gt(V1, V2), µi) = min
P∈U(b,ai)

〈P,MZtXi 〉, (9)

where U(b, ai) is the transportation polytope {P ∈ Rp×ni+ , P1ni = b, PT1p = ai}, and MZtXi
stands for the p× ni matrix of squared-Euclidean distances between the p and ni column vectors of
Zt and Xi respectively. Writing zt = D(ZTt Zt) and xi = D(XT

i Xi), we have that
MZtXi = zt1

T
ni + 1px

T
i − 2ZTt Xi ∈ Rp×ni ,

which, by taking into account the marginal conditions on P ∈ U(b, ai), leads to,
〈P,MZtXi 〉 = bT zt + aTi xi − 2〈P,ZTt Xi 〉. (10)

1. Majorization of the Distance of each µi to the Principal Geodesic Using Eq. (10), the dis-
tance between each µi and the PC (gt(V1, V2))t can be cast as a function fi of (V1, V2):

fi(V1, V2)
def.
= min

t∈[0,1]

(
bT zt + aTi xi + min

P∈U(b,ai)
−2〈P, (Y − V1 + t(V1 + V2))

T
Xi 〉

)
. (11)

where we have replaced Zt above by its explicit form in t to highlight that the objective above
is quadratic convex plus piecewise linear concave as a function of t, and thus neither convex nor
concave. Assume that we are given P ] and t] that are approximate arg-minima for fi(V1, V2). For
any A,B in Rd×p, we thus have that each distance fi(V1, V2) appearing in Eq. (6), is such that

fi(A,B) 6 mV1V2
i (A,B)

def.
= 〈P ],MZ

t]
Xi 〉. (12)

We can thus use a majorization-minimization procedure (Hunter and Lange, 2000) to minimize the
sum of terms fi by iteratively creating majorization functions mV1V2

i at each iterate (V1, V2). All
functions mV1V2

i are quadratic convex. Given that we need to ensure that these velocity fields yield
optimal mappings, and that they may also need to satisfy orthogonality constraints with respect to
lower-order principal components, we use gradient steps to update V1, V2, which can be recovered
using (Cuturi and Doucet, 2014, §4.3) and the chain rule as:
∇1m

V1V2
i = 2(t] − 1)(Zt] −XiP

]TD(b−1)), ∇2m
V1V2
i = 2t](Zt] −XiP

]TD(b−1)). (13)

2. Efficient Approximation of P ] and t] As discussed above, gradients for majorization func-
tions mV1V2

i can be obtained using approximate minima P ] and t] for each function fi. Because the
objective of Eq. (11) is not convex w.r.t. t, we propose to do an exhaustive 1-d grid search with K
values in [0, 1]. This approach would still require, in theory, to solve K optimal transport problems
to solve Eq. (11) for each of the N input measures. To carry out this step efficiently, we propose
to use entropy regularized transport (Cuturi, 2013), which allows for much faster computations and
efficient parallelizations to recover approximately optimal transports P ].

3. Projected Gradient Update Velocity fields are updated with a gradient stepsize β > 0,

V1 ← V1 − β

(
N∑
i=1

∇1m
V1V2
i + λ∇1Ω

)
, V2 ← V2 − β

(
N∑
i=1

∇2m
V1V2
i + λ∇2Ω

)
,

followed by a projection step to enforce that V1 and V2 lie in span(V
(1)
1 +V

(1)
2 , · · · , V (n)

1 +V
(n)
2 )⊥

in the L2(µ̄,X ) sense when computing the (n+ 1)th PC. We finally apply the barycentric projection
operator defined in the end of §3. We first need to compute two optimal transport plans,

P ?1 ∈ argmin
P∈U(b,b)

〈P,MY (Y−V1) 〉, P ?2 ∈ argmin
P∈U(b,b)

〈P,MY (Y+V2) 〉, (14)

to form the barycentric projections, which then yield updated velocity vectors:
V1 ← −

(
(Y − V1)P ?T1 D(b−1)− Y

)
, V2 ← (Y + V2)P ?T2 D(b−1)− Y. (15)

We repeat steps 1,2,3 until convergence. Pseudo-code is given in the supplementary material.
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5 Experiments
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Figure 4: Wasserstein mean µ̄ and first PC computed on a dataset of four (left) and three (right)
empirical measures. The second PC is also displayed in the right figure.

Toy samples: We first run our algorithm on two simple synthetic examples. We consider re-
spectively 4 and 3 empirical measures supported on a small number of locations in X = R2, so
that we can compute their exact Wasserstein means, using the multi-marginal linear programming
formulation given in (Agueh and Carlier, 2011, §4). These measures and their mean (red squares)
are shown in Fig. 4. The first principal component on the left example is able to capture both the
variability of average measure locations, from left to right, and also the variability in the spread
of the measure locations. On the right example, the first principal component captures the overall
elliptic shape of the supports of all considered measures. The second principal component reflects
the variability in the parameters of each ellipse on which measures are located. The variability in
the weights of each location is also captured through the Wasserstein mean, since each single line
of a generalized geodesic has a corresponding location and weight in the Wasserstein mean.

MNIST: For each of the digits ranging from 0 to 9, we sample 1,000 images in the MNIST
database representing that digit. Each image, originally a 28x28 grayscale image, is converted into a
probability distribution on that grid by normalizing each intensity by the total intensity in the image.
We compute the Wasserstein mean for each digit using the approach of Benamou et al. (2015). We
then follow our approach to compute the first three principal geodesics for each digit. Geodesics
for four of these digits are displayed in Fig. 5 by showing intermediary (rasterized) measures on the
curves. While some deformations in these curves can be attributed to relatively simple rotations
around the digit center, more interesting deformations appear in some of the curves, such as the the
loop on the bottom left of digit 2. Our results are easy to interpret, unlike those obtained with Wang
et al.’s approach (2013) on these datasets, see supplementary material. Fig. 6 displays the first PC
obtained on a subset of MNIST composed of 2,000 images of 2 and 4 in equal proportions.

t = 0

t = 1

PC1 PC2 PC3

Figure 5: 1000 images for each of the digits 1,2,3,4 were sampled from the MNIST database. We
display above the first three PCs sampled at times tk = k/4, k = 0, . . . , 4 for each of these digits.

Color histograms: We consider a subset of the Caltech-256 Dataset composed of three image
categories: waterfalls, tomatoes and tennis balls, resulting in a set of 295 color images. The pixels
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Figure 6: First PC on a subset of MNIST composed of one thousand 2s and one thousand 4s.

contained in each image can be seen as a point-cloud in the RGB color space [0, 1]3. We use k-means
quantization to reduce the size of these uniform point-clouds into a set of k = 128 weighted points,
using cluster assignments to define the weights of each of the k cluster centroids. Each image can be
thus regarded as a discrete probability measure of 128 atoms in the tridimensional RGB space. We
then compute the Wasserstein barycenter of these measures supported on p = 256 locations using
(Cuturi and Doucet, 2014, Alg.2). Principal components are then computed as described in §4. The
computation for a single PC is performed within 15 minutes on an iMac (3.4GHz Intel Core i7).
Fig. 7 displays color palettes sampled along each of the first three PCs. The first PC suggests that
the main source of color variability in the dataset is the illumination, each pixel going from dark to
light. Second and third PCs display the variation of colors induced by the typical images’ dominant
colors (blue, red, yellow). Fig. 8 displays the second PC, along with three images projected on that
curve. The projection of a given image on a PC is obtained by finding first the optimal time t? such
that the distance of that image to the PC at t? is minimum, and then by computing an optimal color
transfer (Pitié et al., 2007) between the original image and the histogram at time t?.

Figure 7: Each row represents a PC displayed at regular time intervals from t = 0 (left) to t = 1
(right), from the first PC (top) to the third PC (bottom).

Figure 8: Color palettes from the second PC (t = 0 on the left, t = 1 on the right) displayed at times
t = 0, 1

3 ,
2
3 , 1. Images displayed in the top row are original; their projection on the PC is displayed

below, using a color transfer with the palette in the PC to which they are the closest.

Conclusion We have proposed an approximate projected gradient descent method to compute gener-
alized geodesic principal components for probability measures. Our experiments suggest that these
principal geodesics may be useful to analyze shapes and distributions, and that they do not require
any parameterization of shapes or deformations to be used in practice.

Aknowledgements MC acknowledges the support of JSPS young researcher A grant 26700002.

8



References
Martial Agueh and Guillaume Carlier. Barycenters in the Wasserstein space. SIAM Journal on Mathematical

Analysis, 43(2):904–924, 2011.
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