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Abstract

Stochastic Gradient Descent (SGD) is a workhorse in machine learning, yet its
slow convergence can be a computational bottleneck. Variance reduction tech-
niques such as SAG, SVRG and SAGA have been proposed to overcome this
weakness, achieving linear convergence. However, these methods are either based
on computations of full gradients at pivot points, or on keeping per data point cor-
rections in memory. Therefore speed-ups relative to SGD may need a minimal
number of epochs in order to materialize. This paper investigates algorithms that
can exploit neighborhood structure in the training data to share and re-use infor-
mation about past stochastic gradients across data points, which offers advantages
in the transient optimization phase. As a side-product we provide a unified con-
vergence analysis for a family of variance reduction algorithms, which we call
memorization algorithms. We provide experimental results supporting our theory.

1 Introduction

We consider a general problem that is pervasive in machine learning, namely optimization of an em-
pirical or regularized convex risk function. Given a convex loss l and a µ-strongly convex regularizer
Ω, one aims at finding a parameter vector w which minimizes the (empirical) expectation:

w∗ = argmin
w

f(w), f(w) =
1

n

n∑
i=1

fi(w), fi(w) := l(w, (xi, yi)) + Ω(w) . (1)

We assume throughout that each fi has L-Lipschitz-continuous gradients. Steepest descent can
find the minimizer w∗, but requires repeated computations of full gradients f ′(w), which becomes
prohibitive for massive data sets. Stochastic gradient descent (SGD) is a popular alternative, in
particular in the context of large-scale learning [2, 10]. SGD updates only involve f ′i(w) for an index
i chosen uniformly at random, providing an unbiased gradient estimate, since Ef ′i(w) = f ′(w).

It is a surprising recent finding [11, 5, 9, 6] that the finite sum structure of f allows for significantly
faster convergence in expectation. Instead of the standard O(1/t) rate of SGD for strongly-convex
functions, it is possible to obtain linear convergence with geometric rates. While SGD requires
asymptotically vanishing learning rates, often chosen to be O(1/t) [7], these more recent methods
introduce corrections that ensure convergence for constant learning rates.

Based on the work mentioned above, the contributions of our paper are as follows: First, we de-
fine a family of variance reducing SGD algorithms, called memorization algorithms, which includes
SAGA and SVRG as special cases, and develop a unifying analysis technique for it. Second, we
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show geometric rates for all step sizes γ < 1
4L , including a universal (µ-independent) step size

choice, providing the first µ-adaptive convergence proof for SVRG. Third, based on the above anal-
ysis, we present new insights into the trade-offs between freshness and biasedness of the corrections
computed from previous stochastic gradients. Fourth, we propose a new class of algorithms that
resolves this trade-off by computing corrections based on stochastic gradients at neighboring points.
We experimentally show its benefits in the regime of learning with a small number of epochs.

2 Memorization Algorithms

2.1 Algorithms

Variance Reduced SGD Given an optimization problem as in (1), we investigate a class of
stochastic gradient descent algorithms that generates an iterate sequence wt (t ≥ 0) with updates
taking the form:

w+ = w − γgi(w), gi(w) = f ′i(w)− ᾱi with ᾱi := αi − ᾱ, (2)

where ᾱ := 1
n

∑n
j=1 αj . Here w is the current and w+ the new parameter vector, γ is the step size,

and i is an index selected uniformly at random. ᾱi are variance correction terms such that Eᾱi = 0,
which guarantees unbiasedness Egi(w) = f ′(w). The aim is to define updates of asymptotically
vanishing variance, i.e. gi(w) → 0 as w → w∗, which requires ᾱi → f ′i(w

∗). This implies that
corrections need to be designed in a way to exactly cancel out the stochasticity of f ′i(w

∗) at the
optimum. How the memory αj is updated distinguishes the different algorithms that we consider.

SAGA The SAGA algorithm [4] maintains variance corrections αi by memorizing stochastic gra-
dients. The update rule is α+

i = f ′i(w) for the selected i, and α+
j = αj , for j 6= i. Note that

these corrections will be used the next time the same index i gets sampled. Setting ᾱi := αi − ᾱ
guarantees unbiasedness. Obviously, ᾱ can be updated incrementally. SAGA reuses the stochastic
gradient f ′i(w) computed at step t to update w as well as ᾱi.

q-SAGA We also consider q-SAGA, a method that updates q ≥ 1 randomly chosen αj variables
at each iteration. This is a convenient reference point to investigate the advantages of “fresher”
corrections. Note that in SAGA the corrections will be on average n iterations “old”. In q-SAGA
this can be controlled to be n/q at the expense of additional gradient computations.

SVRG We reformulate a variant of SVRG [5] in our framework using a randomization argument
similar to (but simpler than) the one suggested in [6]. Fix q > 0 and draw in each iteration r ∼
Uniform[0; 1). If r < q/n, a complete update, α+

j = f ′j(w) (∀j) is performed, otherwise they are
left unchanged. While q-SAGA updates exactly q variables in each iteration, SVRG occasionally
updates all α variables by triggering an additional sweep through the data. There is an option to not
maintain α variables explicitly and to save on space by storing only ᾱ = f ′(w) and w.

Uniform Memorization Algorithms Motivated by SAGA and SVRG, we define a class of algo-
rithms, which we call uniform memorization algorithms.
Definition 1. A uniform q-memorization algorithm evolves iterates w according to Eq. (2) and
selects in each iteration a random index set J of memory locations to update according to

α+
j :=

{
f ′j(w) if j ∈ J
αj otherwise,

(3)

such that any j has the same probability of q/n of being updated, i.e. ∀j,
∑
J3j P{J} = q

n .

Note that q-SAGA and the above SVRG are special cases. For q-SAGA: P{J} = 1/
(
n
q

)
if |J | = q

P{J} = 0 otherwise. For SVRG: P{∅} = 1− q/n, P{[1 : n]} = q/n, P{J} = 0, otherwise.

N -SAGA Because we need it in Section 3, we will also define an algorithm, which we call N -
SAGA, which makes use of a neighborhood system Ni ⊆ {1, . . . , n} and which selects neighbor-
hoods uniformly, i.e. P{Ni} = 1

n . Note that Definition 1 requires |{i : j ∈ Ni}| = q (∀j).

2



Finally, note that for generalized linear models where fi depends on xi only through 〈w, xi〉, we
get f ′i(w) = ξ′i(w)xi, i.e. the update direction is determined by xi, whereas the effective step length
depends on the derivative of a scalar function ξi(w). As used in [9], this leads to significant memory
savings as one only needs to store the scalars ξ′i(w) as xi is always given when performing an update.

2.2 Analysis

Recurrence of Iterates The evolution equation (2) in expectation implies the recurrence (by cru-
cially using the unbiasedness condition Egi(w) = f ′(w)):

E‖w+−w∗‖2 = ‖w − w∗‖2 − 2γ〈f ′(w), w − w∗〉+ γ2E‖gi(w)‖2 . (4)
Here and in the rest of this paper, expectations are always taken only with respect to i (conditioned
on the past). We utilize a number of bounds (see [4]), which exploit strong convexity of f (wherever
µ appears) as well as Lipschitz continuity of the fi-gradients (wherever L appears):

〈f ′(w), w − w∗〉 ≥ f(w)− f(w∗) + µ
2 ‖w − w

∗‖2 , (5)

E‖gi(w)‖2 ≤ 2E‖f ′i(w)− f ′i(w∗)‖2 + 2E‖ᾱi − f ′i(w∗)‖2 , (6)

‖f ′i(w)− f ′i(w∗)‖2 ≤ 2Lhi(w), hi(w) := fi(w)− fi(w∗)− 〈w − w∗, f ′i(w∗)〉 , (7)

E‖f ′i(w)−f ′i(w∗)‖2 ≤ 2Lfδ(w), fδ(w) := f(w)− f(w∗) , (8)

E‖ᾱi − f ′i(w∗)‖2 = E‖αi − f ′i(w∗)‖2 − ‖ᾱ‖2 ≤ E‖αi − f ′i(w∗)‖2. (9)

Eq. (6) can be generalized [4] using ‖x±y‖2 ≤ (1+β)‖x‖2+(1+β−1)‖y‖2 with β > 0. However
for the sake of simplicity, we sacrifice tightness and choose β = 1. Applying all of the above yields:
Lemma 1. For the iterate sequence of any algorithm that evolves solutions according to Eq. (2), the
following holds for a single update step, in expectation over the choice of i:

‖w − w∗‖2 −E‖w+ − w∗‖2 ≥ γµ‖w − w∗‖2 − 2γ2E‖αi − f ′i(w∗)‖2 +
(
2γ − 4γ2L

)
fδ(w) .

All proofs are deferred to the Appendix.

Ideal and Approximate Variance Correction Note that in the ideal case of αi = f ′i(w
∗), we

would immediately get a condition for a contraction by choosing γ = 1
2L , yielding a rate of 1 − ρ

with ρ = γµ = µ
2L , which is half the inverse of the condition number κ := L/µ.

How can we further bound E‖αi − f ′i(w∗)‖2 in the case of “non-ideal” variance-reducing SGD? A
key insight is that for memorization algorithms, we can apply the smoothness bound in Eq. (7)

‖αi − f ′i(w∗)‖2 = ‖f ′i(wτi)− f ′i(w∗)‖2 ≤ 2Lhi(w
τi), (where wτi is old w) . (10)

Note that if we only had approximations βi in the sense that ‖βi − αi‖2 ≤ εi (see Section 3), then
we can use ‖x− y‖ ≤ 2‖x‖+ 2‖y‖ to get the somewhat worse bound:

‖βi − f ′i(w∗)‖2 ≤ 2‖αi − f ′i(w∗)‖2 + 2‖βi − αi‖2 ≤ 4Lhi(w
τi) + 2εi. (11)

Lyapunov Function Ideally, we would like to show that for a suitable choice of γ, each iteration
results in a contraction E‖w+ − w∗‖2 ≤ (1− ρ)‖w − w∗‖2, where 0 < ρ ≤ 1. However, the main
challenge arises from the fact that the quantities αi represent stochastic gradients from previous iter-
ations. This requires a somewhat more complex proof technique. Adapting the Lyapunov function
method from [4], we define upper bounds Hi ≥ ‖αi − f ′i(w∗)‖2 such that Hi → 0 as w → w∗. We
start with α0

i =0 and (conceptually) initialize Hi = ‖f ′i(w∗)‖2, and then update Hi in sync with αi,

H+
i :=

{
2Lhi(w) if αi is updated
Hi otherwise

(12)

so that we always maintain valid bounds ‖αi − f ′i(w∗)‖2 ≤ Hi and E‖αi − f ′i(w∗)‖2 ≤ H̄ with
H̄ := 1

n

∑n
i=1Hi. The Hi are quantities showing up in the analysis, but need not be computed. We

now define a σ-parameterized family of Lyapunov functions1

Lσ(w,H) := ‖w − w∗‖2 + Sσ H̄, with S :=

(
γn

Lq

)
and 0 ≤ σ ≤ 1 . (13)

1This is a simplified version of the one appearing in [4], as we assume f ′(w∗) = 0 (unconstrained regime).
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In expectation under a random update, the Lyapunov function Lσ changes as ELσ(w+, H+) =
E‖w+ −w∗‖2 + SσEH̄+. We can readily apply Lemma 1 to bound the first part. The second part
is due to (12), which mirrors the update of the α variables. By crucially using the property that any
αj has the same probability of being updated in (3), we get the following result:
Lemma 2. For a uniform q-memorization algorithm, it holds that

EH̄+ =

(
n− q
n

)
H̄ +

2Lq

n
fδ(w). (14)

Note that in expectation the shrinkage does not depend on the location of previous iterates wτ and
the new increment is proportional to the sub-optimality of the current iterate w. Technically, this is
how the possibly complicated dependency on previous iterates is dealt with in an effective manner.

Convergence Analysis We first state our main Lemma about Lyapunov function contractions:
Lemma 3. Fix c ∈ (0; 1] and σ ∈ [0; 1] arbitrarily. For any uniform q-memorization algorithm with
sufficiently small step size γ such that

γ ≤ 1

2L
min

{
Kσ

K + 2cσ
, 1− σ

}
, and K :=

4qL

nµ
, (15)

we have that
ELσ(w+, H+) ≤ (1− ρ)Lσ(w,H), with ρ := cµγ. (16)

Note that γ < 1
2L maxσ∈[0,1] min{σ, 1− σ} = 1

4L (in the c→ 0 limit).

By maximizing the bounds in Lemma 3 over the choices of c and σ, we obtain our main result that
provides guaranteed geometric rates for all step sizes up to 1

4L .
Theorem 1. Consider a uniform q-memorization algorithm. For any step size γ = a

4L with a < 1,
the algorithm converges at a geometric rate of at least (1− ρ(γ)) with

ρ(γ) =
q

n
· 1− a

1− a/2
=

µ

4L
· K(1− a)

1− a/2
, if γ ≥ γ∗(K), otherwise ρ(γ) = µγ (17)

where

γ∗(K) :=
a∗(K)

4L
, a∗(K) :=

2K

1 +K +
√

1 +K2
, K :=

4qL

nµ
=

4q

n
κ . (18)

We would like to provide more insights into this result.
Corollary 1. In Theorem 1, ρ is maximized for γ = γ∗(K). We can write ρ∗(K) = ρ(γ∗) as

ρ∗(K) =
µ

4L
a∗(K) =

q

n

a∗(K)

K
=
q

n

[
2

1 +K +
√

1 +K2

]
(19)

In the big data regime ρ∗ = q
n (1 − 1

2K + O(K3)), whereas in the ill-conditioned case ρ∗ =
µ
4L (1− 1

2K
−1 +O(K−3)).

The guaranteed rate is bounded by µ
4L in the regime where the condition number dominates n (large

K) and by q
n in the opposite regime of large data (small K). Note that if K ≤ 1, we have ρ∗ = ζ qn

with ζ ∈ [2/(2 +
√

2); 1] ≈ [0.585; 1]. So for q ≤ n µ
4L , it pays off to increase freshness as it affects

the rate proportionally. In the ill-conditioned regime (κ > n), the influence of q vanishes.

Note that for γ ≥ γ∗(K), γ → 1
4L the rate decreases monotonically, yet the decrease is only minor.

With the exception of a small neighborhood around 1
4L , the entire range of γ ∈ [γ∗; 1

4L ) results in
very similar rates. Underestimating γ∗ however leads to a (significant) slow-down by a factor γ/γ∗.

As the optimal choice of γ depends on K, i.e. µ, we would prefer step sizes that are µ-independent,
thus giving rates that adapt to the local curvature (see [9]). It turns out that by choosing a step size
that maximizes minK ρ(γ)/ρ∗(K), we obtain a K-agnostic step size with rate off by at most 1/2:

Corollary 2. Choosing γ = 2−
√
2

4L , leads to ρ(γ) ≥ (2−
√

2)ρ∗(K) > 1
2ρ
∗(K) for all K.

To gain more insights into the trade-offs for these fixed large universal step sizes, the following
corollary details the range of rates obtained:
Corollary 3. Choosing γ = a

4L with a < 1 yields ρ = min{ 1−a
1− 1

2a
q
n ,

a
4
µ
L}. In particular, we have

for the choice γ = 1
5L that ρ = min{ 13

q
n ,

1
5
µ
L} (roughly matching the rate given in [4] for q = 1).

4



3 Sharing Gradient Memory

3.1 ε-Approximation Analysis

As we have seen, fresher gradient memory, i.e. a larger choice for q, affects the guaranteed conver-
gence rate as ρ ∼ q/n. However, as long as one step of a q-memorization algorithm is as expensive
as q steps of a 1-memorization algorithm, this insight does not lead to practical improvements per
se. Yet, it raises the question, whether we can accelerate these methods, in particular N -SAGA,
by approximating gradients stored in the αi variables. Note that we are always using the correct
stochastic gradients in the current update and by assuring

∑
i ᾱi = 0, we will not introduce any bias

in the update direction. Rather, we lose the guarantee of asymptotically vanishing variance at w∗.
However, as we will show, it is possible to retain geometric rates up to a δ-ball around w∗.

We will focus on SAGA-style updates for concreteness and investigate an algorithm that mirrorsN -
SAGA with the only difference that it maintains approximations βi to the true αi variables. We aim
to guarantee E‖αi − βi‖2 ≤ ε and will use Eq. (11) to modify the right-hand-side of Lemma 1. We
see that approximation errors εi are multiplied with γ2, which implies that we should aim for small
learning rates, ideally without compromising the N -SAGA rate. From Theorem 1 and Corollary 1
we can see that we can choose γ . q/µn for n sufficiently large, which indicates that there is hope
to dampen the effects of the approximations. We now make this argument more precise.
Theorem 2. Consider a uniform q-memorization algorithm with α-updates that are on average ε-
accurate (i.e. E‖αi − βi‖2 ≤ ε). For any step size γ ≤ γ̃(K), where γ̃ is given by Corollary 5 in
the appendix (note that γ̃(K) ≥ 2

3γ
∗(K) and γ̃(K)→ γ∗(K) as K → 0), we get

EL(wt, Ht) ≤ (1− µγ)tL0 +
4γε

µ
, with L0 := ‖w0 − w∗‖2 + s(γ)E‖fi(w∗)‖2, (20)

where E denote the (unconditional) expectation over histories (in contrast to E which is conditional),
and s(γ) := 4γ

Kµ (1− 2Lγ).

Corollary 4. With γ = min{µ, γ̃(K)} we have
4γε

µ
≤ 4ε, with a rate ρ = min{µ2, µγ̃} . (21)

In the relevant case of µ ∼ 1/
√
n, we thus converge towards some

√
ε-ball around w∗ at a similar

rate as for the exact method. For µ ∼ n−1, we have to reduce the step size significantly to com-
pensate the extra variance and to still converge to an

√
ε-ball, resulting in the slower rate ρ ∼ n−2,

instead of ρ ∼ n−1.

We also note that the geometric convergence of SGD with a constant step size to a neighborhood
of the solution (also proven in [8]) can arise as a special case in our analysis. By setting αi = 0 in
Lemma 1, we can take ε = E‖f ′i(w∗)‖2 for SGD. An approximate q-memorization algorithm can
thus be interpreted as making ε an algorithmic parameter, rather than a fixed value as in SGD.

3.2 Algorithms

Sharing Gradient Memory We now discuss our proposal of using neighborhoods for sharing
gradient information between close-by data points. Thereby we avoid an increase in gradient com-
putations relative to q- or N -SAGA at the expense of suffering an approximation bias. This leads
to a new tradeoff between freshness and approximation quality, which can be resolved in non-trivial
ways, depending on the desired final optimization accuracy.

We distinguish two types of quantities. First, the gradient memory αi as defined by the reference
algorithm N -SAGA. Second, the shared gradient memory state βi, which is used in a modified
update rule in Eq. (2), i.e. w+ = w − γ(f ′i(w)− βi + β̄). Assume that we select an index i for the
weight update, then we generalize Eq. (3) as follows

β+
j :=

{
f ′i(w) if j ∈ Ni
βj otherwise

, β̄ :=
1

n

n∑
i=1

βi, β̄i := βi − β̄ . (22)

In the important case of generalized linear models, where one has f ′i(w) = ξ′i(w)xi, we can modify
the relevant case in Eq. (22) by β+

j := ξ′i(w)xj . This has the advantages of using the correct
direction, while reducing storage requirements.
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Approximation Bounds For our analysis, we need to control the error ‖αi − βi‖2 ≤ εi. This
obviously requires problem-specific investigations.

Let us first look at the case of ridge regression. fi(w) := 1
2 (〈xi, w〉 − yi)

2 + λ
2 ‖w‖

2 and thus
f ′i(w) = ξ′i(w)xi + λw with ξ′i(w) := 〈xi, w〉 − yi. Considering j ∈ Ni being updated, we have

‖α+
j − β

+
j ‖ = |ξ′j(w)− ξ′i(w)|‖xj‖ ≤ (δij‖w‖+ |yj − yi|) ‖xj‖ =: εij(w) (23)

where δij := ‖xi − xj‖. Note that this can be pre-computed with the exception of the norm ‖w‖
that we only know at the time of an update.

Similarly, for regularized logistic regression with y ∈ {−1, 1}, we have ξ′i(w) = yi/(1 + eyi〈xi,w〉).
With the requirement on neighbors that yi = yj we get

‖α+
j − β

+
j ‖ ≤

eδij‖w‖ − 1

1 + e−〈xi,w〉
‖xj‖ =: εij(w) (24)

Again, we can pre-compute δij and ‖xj‖. In addition to ξ′i(w) we can also store 〈xi, w〉.

εN -SAGA We can use these bounds in two ways. First, assuming that the iterates stay within a
norm-ball (e.g. L2-ball), we can derive upper bounds

εj(r) ≥ max{εij(w) : j ∈ Ni, ‖w‖ ≤ r}, ε(r) =
1

n

∑
j

εj(r) . (25)

Obviously, the more compact the neighborhoods are, the smaller ε(r). This is most useful for the
analysis. Second, we can specify a target accuracy ε and then prune neighborhoods dynamically.
This approach is more practically relevant as it allows us to directly control ε. However, a dynam-
ically varying neighborhood violates Definition 1. We fix this in a sound manner by modifying the
memory updates as follows:

β+
j :=


f ′i(w) if j ∈ Ni and εij(w) ≤ ε
f ′j(w) if j ∈ Ni and εij(w) > ε

βj otherwise
(26)

This allows us to interpolate between sharing more aggressively (saving computation) and perform-
ing more computations in an exact manner. In the limit of ε→ 0, we recoverN -SAGA, as ε→ εmax

we recover the first variant mentioned.

Computing Neighborhoods Note that the pairwise Euclidean distances show up in the bounds in
Eq. (23) and (24). In the classification case we also require yi = yj , whereas in the ridge regression
case, we also want |yi − yj | to be small. Thus modulo filtering, this suggests the use of Euclidean
distances as the metric for defining neighborhoods. Standard approximation techniques for finding
near(est) neighbors can be used. This comes with a computational overhead, yet the additional costs
will amortize over multiple runs or multiple data analysis tasks.

4 Experimental Results

Algorithms We present experimental results on the performance of the different variants of mem-
orization algorithms for variance reduced SGD as discussed in this paper. SAGA has been uniformly
superior to SVRG in our experiments, so we compare SAGA and εN -SAGA (from Eq. (26)), along-
side with SGD as a straw man and q-SAGA as a point of reference for speed-ups. We have chosen
q = 20 for q-SAGA and εN -SAGA. The same setting was used across all data sets and experiments.

Data Sets As special cases for the choice of the loss function and regularizer in Eq. (1), we con-
sider two commonly occurring problems in machine learning, namely least-square regression and
`2-regularized logistic regression. We apply least-square regression on the million song year regres-
sion from the UCI repository. This dataset contains n = 515, 345 data points, each described by
d = 90 input features. We apply logistic regression on the cov and ijcnn1 datasets obtained from
the libsvm website 2. The cov dataset contains n = 581, 012 data points, each described by d = 54
input features. The ijcnn1 dataset contains n = 49, 990 data points, each described by d = 22 input
features. We added an `2-regularizer Ω(w) = µ‖w‖22 to ensure the objective is strongly convex.

2http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets
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Figure 1: Comparison of εN -SAGA, q-SAGA, SAGA and SGD (with decreasing and constant step
size) on three datasets. The top two rows show the suboptimality as a function of the number
of gradient evaluations for two different values of µ = 10−1, 10−3. The bottom two rows show
the suboptimality as a function of the number of datapoint evaluations (i.e. number of stochastic
updates) for two different values of µ = 10−1, 10−3.
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Experimental Protocol We have run the algorithms in question in an i.i.d. sampling setting and
averaged the results over 5 runs. Figure 1 shows the evolution of the suboptimality fδ of the ob-
jective as a function of two different metrics: (1) in terms of the number of update steps performed
(“datapoint evaluation”), and (2) in terms of the number of gradient computations (“gradient evalua-
tion”). Note that SGD and SAGA compute one stochastic gradient per update step unlike q-SAGA,
which is included here not as a practically relevant algorithm, but as an indication of potential im-
provements that could be achieved by fresher corrections. A step size γ = q

µn was used everywhere,
except for “plain SGD”. Note that as K � 1 in all cases, this is close to the optimal value suggested
by our analysis; moreover, using a step size of ∼ 1

L for SAGA as suggested in previous work [9]
did not appear to give better results. For plain SGD, we used a schedule of the form γt = γ0/t with
constants optimized coarsely via cross-validation. The x-axis is expressed in units of n (suggestively
called ”epochs”).

SAGA vs. SGD cst As we can see, if we run SGD with the same constant step size as SAGA,
it takes several epochs until SAGA really shows a significant gain. The constant step-size variant
of SGD is faster in the early stages until it converges to a neighborhood of the optimum, where
individual runs start showing a very noisy behavior.

SAGA vs. q-SAGA q-SAGA outperforms plain SAGA quite consistently when counting stochas-
tic update steps. This establishes optimistic reference curves of what we can expect to achieve with
εN -SAGA. The actual speed-up is somewhat data set dependent.

εN -SAGA vs. SAGA and q-SAGA εN -SAGA with sufficiently small ε can realize much of the
possible freshness gains of q-SAGA and performs very similar for a few (2-10) epochs, where it
traces nicely between the SAGA and q-SAGA curves. We see solid speed-ups on all three datasets
for both µ = 0.1 and µ = 0.001.

Asymptotics It should be clearly stated that running εN -SAGA at a fixed ε for longer will not
result in good asymptotics on the empirical risk. This is because, as theory predicts, εN -SAGA
can not drive the suboptimality to zero, but rather levels-off at a point determined by ε. In our
experiments, the cross-over point with SAGA was typically after 5− 15 epochs. Note that the gains
in the first epochs can be significant, though. In practice, one will either define a desired accuracy
level and choose ε accordingly or one will switch to SAGA for accurate convergence.

5 Conclusion

We have generalized variance reduced SGD methods under the name of memorization algorithms
and presented a corresponding analysis, which commonly applies to all such methods. We have
investigated in detail the range of safe step sizes with their corresponding geometric rates as guar-
anteed by our theory. This has delivered a number of new insights, for instance about the trade-offs
between small (∼ 1

n ) and large (∼ 1
4L ) step sizes in different regimes as well as about the role of

the freshness of stochastic gradients evaluated at past iterates.

We have also investigated and quantified the effect of additional errors in the variance correction
terms on the convergence behavior. Dependent on how µ scales with n, we have shown that such
errors can be tolerated, yet, for small µ, may have a negative effect on the convergence rate as much
smaller step sizes are needed to still guarantee convergence to a small region. We believe this result
to be relevant for a number of approximation techniques in the context of variance reduced SGD.

Motivated by these insights and results of our analysis, we have proposed εN -SAGA, a modification
of SAGA that exploits similarities between training data points by defining a neighborhood system.
Approximate versions of per-data point gradients are then computed by sharing information among
neighbors. This opens-up the possibility of variance-reduction in a streaming data setting, where
each data point is only seen once. We believe this to be a promising direction for future work.

Empirically, we have been able to achieve consistent speed-ups for the initial phase of regularized
risk minimization. This shows that approximate computations of variance correction terms consti-
tutes a promising approach of trading-off computation with solution accuracy.

Acknowledgments We would like to thank Yannic Kilcher, Martin Jaggi, Rémi Leblond and the
anonymous reviewers for helpful suggestions and corrections.
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A Appendix

Lemma 1. For the iterate sequence of any algorithm that evolves solutions according to Eq. (2), the
following holds for a single update step, in expectation over the choice of i, with
4 := ‖w − w∗‖2 −E‖w+ − w∗‖2, then:

4 ≥ γµ‖w − w∗‖2 − 2γ2E‖αi − f ′i(w∗)‖2 +
(
2γ − 4γ2L

)
fδ(w) .

Proof. Starting from Eq. (4) we have

4 =2γ〈f ′(w), w − w∗〉 − γ2E‖gi(w)‖2

(5)
≥γµ‖w − w∗‖2 + 2γfδ(w)− γ2E‖gi(w)‖2

(6)
≥γµ‖w − w∗‖2 + 2γfδ(w)− 2γ2E‖f ′i(w)− f ′i(w∗)‖2 − 2γ2E‖ᾱi − f ′i(w∗)‖2

(8),(9)
≥ γµ‖w − w∗‖2 + 2γ(1− 2γL)fδ(w)− 2γ2E‖αi − f ′i(w∗)‖2 .

Lemma 2. For a uniform q-memorization algorithm, it holds that

EH̄+ =

(
n− q
n

)
H̄ +

2Lq

n
fδ(w).

Proof. From the uniformity property (∗) in Definition 1, it follows that

nEH+ =

n∑
i=1

EH+
i

(∗)
=

n∑
i=1

((
1− q

n

)
Hi + 2L

( q
n

)
hi(w)

)
= (n− q)H̄ +

2Lq

n

n∑
i=1

hi(w).

Exploiting the fact that 1
n

∑n
i=1 hi(w) = f(w)− f(w∗) + 0 = fδ(w) completes the proof.

Lemma 3. Fix c ∈ (0; 1] and σ ∈ [0; 1] arbitrarily. For any uniform q-memorization algorithm with
sufficiently small step size γ such that

γ ≤ 1

L
min

{
Kσ

2K + 4cσ
,

1− σ
2

}
, and K :=

4qL

nµ
,

we have that

ELσ(w+, H+) ≤ (1− ρ)Lσ(w,H), with ρ := cµγ. (27)

Note that γ < 1
2L maxσ∈[0,1] min{σ, 1− σ} = 1

4L (in the c→ 0 limit).

Proof. From Lemma 1, we can see that we will have ρ ≤ γµ based on the ‖w − w∗‖2 part of Lσ .
Hence, we can write the rate as ρ = cµγ, where 0 < c ≤ 1.

Let us now apply both, Lemma 1 and Lemma 2, to quantify the progress guaranteed to be made in
one iteration of the algorithm in expectation, combining the changes to the iterate w → w+ as well
as those to the memory α→ α+ into Lσ . Set4σ := Lσ(w,H)−EL+

σ (w,H), then

4σ =‖w − w∗‖2 −E‖w+ − w∗‖2 + Sσ
(
H̄ −EH̄+

)
(28)

≥γµ‖w − w∗‖2 − 2γ2E‖αi − f ′i(w∗)‖2 + 2γ (1− 2γL) fδ(w)

+ Sσ

(
H̄ −

(
n− q
n

)
H̄ − 2Lq

n
fδ(w))

)
.

As we argued after Eq. (12), the definition of Hi combined with property (10) ensure the crucial
bound E‖αi − f ′i(w∗)‖2 ≤ H̄ . Including it and gathering terms in the same “units”, we get:

4σ ≥ γµ‖w − w∗‖2 +
[
Sσ
( q
n

)
− 2γ2

]
H̄ + 2

[
−SσL

( q
n

)
+ γ (1− 2γL)

]
fδ(w) (29)
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We can further simplify the term in the second rectangular brackets with the definition of S (in
hindsight motivating its definition):

−2SσL
( q
n

)
+ 2γ (1− 2γL) = 2γ [−σ + (1− 2γL)] (30)

We require this term to be non-negative, so that we can safely drop it. This leads an upper bound
requirement on the step size:

−σ + 1− 2γL ≥ 0 ⇐⇒ γ ≤ 1− σ
2L

. (31)

The term in the first rectangular brackets in Eq. (29) needs to be ≥ ρSσ in order to recover ρLσ =
ρ
(
‖w − w∗‖2 + SσH̄

)
. Inserting the definition of S, ρ and dividing by γ yields

σ

L
− 2γ ≥ ρSσ

γ
= cγµ

nσ

Lq
=

4cσγ

K
⇐⇒ γ ≤ 1

L

Kσ

2K + 4cσ
(32)

We can summarize the derivation in the claimed combined inequality.

Theorem 1. Consider a uniform q-memorization algorithm. For any step size γ = a
4L , with a < 1

the algorithm converges at a geometric rate of at least (1− ρ(γ)) with

ρ(γ) =
q

n
· 1− a

1− a/2
=

µ

4L
· K(1− a)

1− a/2
, if γ ≥ γ∗(K), otherwise ρ(γ) = µγ

where

γ∗(K) :=
a∗(K)

4L
, a∗(K) :=

2K

1 +K +
√

1 +K2
, K :=

4qL

nµ

Proof. Consider a fixed γ < 1
4L . There are potentially (infinitely) many choices of (c, σ) that

fulfill the condition in Eq. (15). Among those, the largest rate is obtained by maximizing c ≤ 1 as
ρ(γ) = cµγ. Note that for any γ that does not achieve Eq. (15) with equality for both terms, one
can find a larger γ with the same choice of c by either increasing (slack in the first inequality) or
decreasing (slack in the second inequality) σ. We thus focus on step sizes that are maximal for some
choice of (c, σ). Equality with the second bound directly gives us

1

L

1− σ
2

!
= γ =⇒ σ∗ = 1− 2Lγ. (33)

We plug this into the first bound and again equal γ, which yields an optimality condition for c

Lγ
!
=

Kσ∗

2K + 4cσ∗
⇐⇒ c∗ =

K

4γL

[
1− 2γL

σ∗

]
=⇒ c∗ =

K

4γL

1− 4Lγ

1− 2Lγ
(34)

and thus

ρ = cµγ =
µK

4L

1− 4Lγ

1− 2Lγ
=
q

n

1− 4Lγ

1− 2Lγ
(35)

It remains to check what the admissible range of γ is that achieves the bound in Eq. (15) as we
required. The latter is determined by the constraints c ∈ (0; 1]. From Eq. (34) we can read off for
c∗ > 0,

1− 4Lγ > 0 ⇐⇒ γ <
1

4L
. (36)

At the other extreme of c = 1 we can solve the resulting quadratic equation in γ

γ =
q

nµ

1− 4Lγ

1− 2Lγ
=

K

4L

1− 4Lγ

1− 2Lγ
(37)

to get γ = γ∗(K) as claimed in Eq. (18) (excluding the second root which yields γ > 1
4L ). More-

over, for γ < γ∗(K) we choose c = 1 to maximize the rate and have ρ = µγ.
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Corollary 1. In Theorem 1, ρ is maximized for γ = γ∗(K). We can write ρ∗(K) = ρ(γ∗) as

ρ∗(K) =
µ

4L
a∗(K) =

q

n

a∗(K)

K
=
q

n

[
2

1 +K +
√

1 +K2

]
In the big data regime ρ∗ = q

n (1 − 1
2K + O(K3)), whereas in the ill-conditioned case ρ∗ =

µ
4L (1− 1

2K
−1 +O(K−3)).

Proof. Plugging in the definitions of γ∗(K) and K and performing some symbolic simplifications
yields the result.

Corollary 2. Choosing γ = 2−
√
2

4L , leads to ρ(γ) ≥ (2−
√

2)ρ∗ > 1
2ρ
∗.

Proof. Write γ = a
4L , then if γ ≥ γ∗(K): ρ

ρ∗ ≥
1−a

1−a/2 , otherwise: ρ
ρ∗ = γ

γ∗ ≥ a, with equality

when K =∞. Setting both equal yields a = 2−
√

2 ≈ 0.5858.

Corollary 3. Choosing γ = a
4L with a < 1 yields ρ = min{ 1−a

1− 1
2a

q
n ,

a
4
µ
L}. In particular, we have

for the choice γ = 1
5L that ρ = min{ 13

q
n ,

1
5
µ
L}.

Proof. If γ ≥ γ∗(R) then ρ = 1−a
1−a/2

q
n = 1

3
q
n ; otherwise, ρ = µγ = µ a

4L = 1
5
µ
L .

Theorem 2. Consider a uniform q-memorization algorithm with α-updates that are on average ε-
accurate (i.e. E‖αi − βi‖2 ≤ ε). For any step size γ ≤ γ̃(K), where γ̃ is given in Eq. (39) in
Corollary 5 below (note that γ̃(K) ≥ 2

3γ
∗(K) and γ̃(K)→ γ∗(K) as K → 0), we get

EL(wt, Ht) ≤ (1− µγ)tL0 +
4γε

µ
, with L0 := ‖w0 − w∗‖2 + s(γ)E‖fi(w∗)‖2, (38)

where E denote the (unconditional) expectation over histories (in contrast to E which is conditional),
and s(γ) := 4γ

Kµ (1− 2Lγ).

Proof. Following the same line of argument as in Lemma 3 and Theorem 1 with the modifications
summarized in Corollary 5

EL(w+, H+) ≤ (1− γµ)L(w,H) + 4γ2ε

and unrolling the recurrence over t

EL(wt, Ht) ≤ (1− γµ)tL(w0, H0) +

≤1/(γµ)︷ ︸︸ ︷[
t−1∑
s=0

(1− γµ)s

]
4γ2ε

using 1
1−x =

∑∞
s=0 x

s applied with x = (1 − ρ) (see [8] for its use for constant step size SGD).
According to Eq. (13), L(w0, H0) = ‖w−w∗‖2 +SσH̄0, where S = γn

Lq = 4γ
Kµ . As the algorithm

initializes α0
i to 0, we have H̄0 = E‖f ′i(w∗)‖2. Finally, the proof of Corollary 5 follows the proof

of Theorem 1 and also gives σ∗ = 1− 2Lγ as in Eq. (33). Substituting in L(w0, H0) gives L0.

Corollary 4. With γ = min{µ, γ̃(K)} we have

4γε

µ
≤ 4ε, with a rate ρ = min{µ2, µγ̃} .

Proof. By definition, γ ≤ µ, thus γ/µ ≤ 1, yielding the first claim. By definition, we also have
γ ≤ γ̃(K), thus from Theorem 1 adapted to Corollary 5, we know that ρ = µγ, which concludes
the proof. (Note that with γ > γ̃(K) we will increase the error, while decreasing ρ(γ) ≤ ρ̃ = µγ̃.
This is why this choice is not sensible according to our theory.)
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Corollary 5 (Patch-ups). Using Eq.(11) instead of Eq. (10), but then setting εi = 0 yields the same
results as before with the following changes:

(a) Lemma 3: the bound becomes γ ≤ 1
L min{ 14

Kσ
K+cσ ,

1−σ
2 } <

1
6L .

(b) Theorem 1: still using γ = a
4L , we require a < 2

3 and we get a similar (slightly smaller)
expression for ρ as well as for the optimal step size γ̃(K) := ã(K)

4L replacing γ∗ in the theorem:

ρ =
q

n

1− 3
2a

1− 1
2a

and ã(K) =
2K

1 + 3
2K +

√
1 +K +

(
3
2K
)2 ≥ 2

3
a∗(K) . (39)

(c) The optimal asymptotic rate is still ρ̃ n→∞−→ q
n .

Proof. Redoing all proofs with an additional factor of 2 on the RHS of Eq. (10). One can also
readily verify that the ratio ã(K)

a∗(K) (with a∗(K) defined in Eq. (18)) is a decreasing function of K,
with value 1 for K = 0, and limiting value 2

3 for K →∞.

A.1 Implementation details

Construction of the neighborhoods required by q-SAGA and N -SAGA: For each datapoint i,
we want to define a neighborhood Ni (defined as the set of children of i in a directed graph) such
that for j ∈ Ni, ‖αj − βj‖2 ≤ ε. The approximation bounds in Section 3 show that this distance
is a function of w, which is not known a priori. In order to address this issue, we used the distance
between data points δij := ‖xi − xj‖ as a surrogate. The construction of the neighborhoods then
amounts to constructing a directed graph on n nodes by setting the q nearest points to j as its
parents.3 This ensures that |{i : j ∈ Ni}| = q (∀j), i.e. every j has exactly q parents. Note that this
simple construction can yield asymmetric neighborhoods (i.e. j ∈ Ni 6=⇒ i ∈ Nj);Ni is the set of
children of i, and does not have to be of size q. One could also construct a symmetric neighborhood
by defining j to be a child of i if their distance is less than

√
ε (which is a symmetric relationship),

where ε is a constant chosen such that q ≈ 20. In practice, we did not find this construction to yield
better performance (in addition to violating the uniform q-memorization property). Note also that
the above constructions ensure that i ∈ Ni.

Growing n heuristic: For all the q-memorization algorithms, we used the same initialization
heuristic proposed in [9, 4] for which during the first pass, datapoints are introduced one by-one,
with averages computed in terms of the number datapoints processed so far (i.e. the normalization
for ᾱ is the number of different points seen so far instead of n).

3This can be naively implemented by computing all pairwise distances δij between data points (O(n2)), but
more efficient data structures using hashing [1] or randomized partition trees [3] can be used.
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