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Abstract

Despite their success, convolutional neural networks are computationally expen-
sive because they must examine all image locations. Stochastic attention-based
models have been shown to improve computational efficiency at test time, but they
remain difficult to train because of intractable posterior inference and high vari-
ance in the stochastic gradient estimates. Borrowing techniques from the literature
on training deep generative models, we present the Wake-Sleep Recurrent Atten-
tion Model, a method for training stochastic attention networks which improves
posterior inference and which reduces the variability in the stochastic gradients.
We show that our method can greatly speed up the training time for stochastic
attention networks in the domains of image classification and caption generation.

1 Introduction

Convolutional neural networks, trained end-to-end, have been shown to substantially outperform
previous approaches to various supervised learning tasks in computer vision (e.g. [1])). Despite their
wide success, convolutional nets are computationally expensive when processing high-resolution
input images, because they must examine all image locations at a fine scale. This has motivated
recent work on visual attention-based models [2, 3, 4], which reduce the number of parameters and
computational operations by selecting informative regions of an image to focus on. In addition to
computational speedups, attention-based models can also add a degree of interpretability, as one can
understand what signals the algorithm is using by seeing where it is looking. One such approach
was recently used by [5] to automatically generate image captions and highlight which image region
was relevant to each word in the caption.

There are two general approaches to attention-based image understanding: hard and soft attention.
Soft attention based models (e.g. [5]) obtain features from a weighted average of all image locations,
where locations are weighted based on a model’s saliency map. By contrast, a hard attention model
(e.g. [2, 3]) chooses, typically stochastically, a series of discrete glimpse locations. Soft attention
models are computationally expensive, as they have to examine every image location; we believe
that the computational gains of attention require a hard attention model. Unfortunately, this comes
at a cost: while soft attention models can be trained with standard backpropagation [6, 5], this does
not work for hard attention models, whose glimpse selections are typically discrete.

Training stochastic hard attention models is difficult because the loss gradient involves intractable
posterior expectations, and because the stochastic gradient estimates can have high variance. (The
latter problem was also observed by [7] in the context of memory networks.) In this work, we pro-
pose the Wake-Sleep Recurrent Attention Model (WS-RAM), a method for training stochastic recur-
rent attention models which deals with the problems of intractable inference and high-variance gradi-
ents by taking advantage of several advances from the literature on training deep generative models:
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inference networks [8], the reweighted wake-sleep algorithm [9], and control variates [10, 11]. Dur-
ing training, the WS-RAM approximates posterior expectations using importance sampling, with a
proposal distribution computed by an inference network. Unlike the prediction network, the infer-
ence network has access to the object category label, which helps it choose better glimpse locations.
As the name suggests, we train both networks using the reweighted wake-sleep algorithm. In ad-
dition, we reduce the variance of the stochastic gradient estimates using carefully chosen control
variates. In combination, these techniques constitute an improved training procedure for stochastic
attention models.

The main contributions of our work are the following. First, we present a new learning algorithm for
stochastic attention models and compare it with a training method based on variational inference [2].
Second, we develop a novel control variate technique for gradient estimation which further speeds
up training. Finally, we demonstrate that our stochastic attention model can learn to (1) classify
translated and scaled MNIST digits, and (2) generate image captions by attending to the relevant
objects in images and their corresponding scale. Our model achieves similar performance to the
variational method [2], but with much faster training times.

2 Related work

In recent years, there has been a flurry of work on attention-based neural networks. Such models
have been applied successfully in image classification [12, 4, 3, 2], object tracking [13, 3], machine
translation [6], caption generation [5], and image generation [14, 15]. Attention has been shown
both to improve computational efficiency [2] and to yield insight into the network’s behavior [5].

Our work is most closely related to stochastic hard attention models (e.g. [2]). A major difficulty
of training such models is that computing the gradient requires taking expectations with respect
to the posterior distribution over saccades, which is typically intractable. This difficulty is closely
related to the problem of posterior inference in training deep generative models such as sigmoid
belief networks [16]. Since our proposed method draws heavily from the literature on training deep
generative models, we overview various approaches here.

One of the challenges of training a deep (or recurrent) generative model is that posterior inference
is typically intractable due to the explaining away effect. One way to deal with intractable inference
is to train a separate inference network whose job it is to predict the posterior distribution. A classic
example was the Helmholtz machine [8], where the inference network predicts a mean field approx-
imation to the posterior.1 The generative and inference networks are trained with the wake-sleep
algorithm: in the wake phase, the generative model is updated to increase a variational lower bound
on the data likelihood. In the sleep phase, data are generated from the model, and the inference
network is trained to predict the latent variables used to generate the observations.

The wake-sleep approach was limited by the fact that the wake and sleep phases were minimizing
two unrelated objective functions. More recently, various methods have been proposed which unify
the training of the generative and inference networks into a single objective function. Neural vari-
ational inference and learning (NVIL) [11] trains both networks to maximize a variational lower
bound on the log-likelihood. Since the stochastic gradient estimates in NVIL are very noisy, the
method of control variates is used to reduce the variance. In particular, one uses an algortihm from
reinforcement learning called REINFORCE [17], which attempts to infer a reward baseline for each
instance. The choice of baseline is crucial to good performance; NVIL uses a separate neural net-
work to compute the baseline, an approach also used by [3] in the context of attention networks.
Control variates are discussed in more detail in Section 4.4.

The reweighted wake-sleep approach [9] is similar to traditional wake-sleep, but uses importance
sampling in place of mean field inference to approximate the posterior. Reweighted wake-sleep is
described more formally in Section 4.3. Another method based on inference networks is variational
autoencoders [18, 19], which exploit a clever reparameterization of the probabilistic model in order
to improve the signal in the stochastic gradients. NVIL, reweighted wake-sleep, and variational
autoencoders have all been shown to achieve considerably higher test log-likelihoods compared to

1In the literature, the inference network is often called a recognition network; we avoid this terminology to
prevent confusion with the task of image classification.
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Figure 1: The Wake-Sleep Recurrent Attention Model.

traditional wake-sleep. The term “Helmholtz machine” is often used loosely to refer to the entire
collection of techniques which simultaneously learn a generative network and an inference network.

3 Wake-Sleep Recurrent Attention Model

We now describe our wake-sleep recurrent attention model (WS-RAM). Given an image I, the net-
work first chooses a sequence of glimpses a = (a1, . . . , aN ), and after each glimpse, receives an
observation xn computed by a mapping g(an, I). This mapping might, for instance, extract an
image patch at a given scale. The first glimpse is based on a low-resolution version of the input,
while subsequent glimpses are chosen based on information acquired from previous glimpses. The
glimpses are chosen stochastically according to a distribution p(an | a1:n−1, I,θ), where θ denotes
the parameters of the network. This is in contrast with soft attention models, which deterministi-
cally allocate attention across all image locations. After the last glimpse, the network predicts a
distribution p(y |a, I,θ) over the target y (for instance, the caption or image category).

As shown in Figure 1, the core of the attention network is a two-layer recurrent network, which we
term the “prediction network”, where the output at each time step is an action (saccade) which is
used to compute the input at the next time step. A low-resolution version of the input image is fed
to the network at the first time step, and the network predicts the class label at the final time step.
Importantly, the low-resolution input is fed to the second layer, while the class label prediction is
made by the first layer, preventing information from propagating directly from the low-resolution
image to the output. This prevents local optima where the network learns to predict y directly from
the low-resolution input, disregarding attention completely.

On top of the prediction network is an inference network, which receives both the class label and
the attention network’s top layer representation as inputs. It tries to predict the posterior distribu-
tion q(an+1 | y, a1:n, I,η), parameterized by η, over the next saccade, conditioned on the image
category being correctly predicted. Its job is to guide the posterior sampler during training time,
thereby acting as a “teacher” for the attention network. The inference network is described further
in Section 4.3.

One of the benefits of stochastic attention models is that the mapping g can be localized to a small
image region or coarse granularity, which means it can potentially be made very efficient. Further-
more, g need not be differentiable, which allows for operations (such as choosing a scale) which
would be difficult to implement in a soft attention network. The cost of this flexibility is that stan-
dard backpropagation cannot be applied, so instead we use novel algorithms described in the next
section.
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4 Learning

In this work, we assume that we have a dataset with labels y for the supervised prediction task
(e.g. object category). In contrast to the supervised saliency prediction task (e.g. [20, 21]), there are
no labels for where to attend. Instead, we learn an attention policy based on the idea that the best
locations to attend to are the ones which most robustly lead the model to predict the correct category.
In particular, we aim to maximize the probability of the class label (or equivalently, minimize the
cross-entropy) by marginalizing over the actions at each glimpse:

` = log p(y | I,θ) = log
∑
a

p(a | I,θ)p(y |a, I,θ). (1)

We train the attention model by maximizing a lower bound on `. In Section 4.1, we first describe
a previous approach which minimized a variational lower bound. We then introduce our proposed
method which directly estimates the gradients of `. As shown in Section 4.2, our method can be
seen as maximizing a tighter lower bound on `.

4.1 Variational lower bound

We first outline the approach of [2], who trained the model to maximize a variational lower bound
on `. Let q(a | y, I) be an approximating distribution. The lower bound on ` is then given by:

` = log
∑
a

p(a | I,θ)p(y |a, I,θ) ≥
∑
a

q(a | y, I) log p(y,a | I,θ) +H[q] = F . (2)

In the case where q(a | y, I) = p(a | I,θ) is the prior, as considered by [2], this reduces to

F =
∑
a

p(a | I,θ) log p(y |a, I,θ). (3)

The learning rules can be derived by taking derivatives of Eqn. 3 with respect to the model parame-
ters:

∂F
∂θ

=
∑
a

p(a | I,θ)
[
∂ log p(y |a, I,θ)

∂θ
+ log p(y |a, I,θ)∂ log p(a | I,θ)

∂θ

]
. (4)

The summation can be approximated using M Monte Carlo samples ãm from p(a | I,θ):

∂F
∂θ
≈ 1

M

M∑
m=1

[
∂ log p(y | ãm, I,θ)

∂θ
+ log p(y | ãm, I,θ)∂ log p(ãm | I,θ)

∂θ

]
. (5)

The partial derivative terms can each be computed using standard backpropagation. This suggests a
simple gradient-based training algorithm: For each image, one first computes the samples ãm from
the prior p(a | I,θ), and then updates the parameters according to Eqn. 5. As observed by [2], one
must carefully use control variates in order to make this technique practical; we defer discussion of
control variates to Section 4.4.

4.2 An improved lower bound on the log-likelihood

The variational method described above has some counterintuitive properties early in training. First,
because it averages the log-likelihood over actions, it greatly amplifies the differences in probabili-
ties assigned to the true category by different bad glances. For instance, a glimpse sequence which
leads to 0.01 probability assigned to the correct class is considered much worse than one which leads
to 0.02 probability under the variational objective, even though in practice they may be equally bad
since they have both missed the relevant information. A second odd behavior is that all glimpse
sequences are weighted equally in the log-likelihood gradient. It would be better if the training
procedure focused its effort on using those glances which contain the relevant information. Both of
these effects contribute noise in the training procedure, especially in the early stages of training.
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Instead, we adopt an approach based on the wake-p step of reweighted wake-sleep [9], where we
attempt to maximize the marginal log-probability ` directly. We differentiate the marginal log-
likelihood objective in Eqn. 1 with respect to the model parameters:

∂`

∂θ
=

1

p(y | I,θ)
∑
a

p(a | I,θ)p(y |a, I,θ)
[
∂ log p(y |a, I,θ)

∂θ
+

∂ log p(a | I,θ)
∂θ

]
. (6)

The summation and normalizing constant are both intractable to evaluate, so we estimate them using
importance sampling. We must define a proposal distribution q(a | y, I), which ideally should be
close to the posterior p(a | y, I,θ). One reasonable choice is the prior p(a | I,θ), but another choice
is described in Section 4.3. Normalized importance sampling gives a biased but consistent estimator
of the gradient of `. Given samples ã1, . . . , ãM from q(a | y, I), the (unnormalized) importance
weights are computed as:

w̃m =
p(ãm | I,θ)p(y | ãm, I,θ)

q(ãm | y, I) . (7)

The Monte Carlo estimate of the gradient is given by:

∂`

∂θ
≈

M∑
m=1

wm

[
∂ log p(y | ãm, I,θ)

∂θ
+

∂ log p(ãm | I,θ)
∂θ

]
, (8)

where wm = w̃m/
∑M

i=1 w̃
i are the normalized importance weights. When q is chosen to be the

prior, this approach is equivalent to the method of [22] for learning generative feed-forward net-
works.

Our importance sampling based estimator can also be viewed as the gradient ascent update on the
objective function E

[
log 1

M

∑M
m=1 w̃

m
]
. Combining Jensen’s inequality with the unbiasedness of

the w̃m shows that this is a lower bound on the log-likelihood:

E

[
log

1

M

M∑
m=1

w̃m

]
≤ logE

[
1

M

M∑
m=1

w̃m

]
= logE [w̃m] = `. (9)

We relate this to the previous section by noting thatF = E[log w̃m]. Another application of Jensen’s
inequality shows that our proposed bound is at least as accurate as F :

F = E [log w̃m] = E

[
1

M

M∑
m=1

log w̃m

]
≤ E

[
log

1

M

M∑
m=1

w̃m

]
. (10)

Burda et al. [23] further analyzed a closely related importance sampling based estimator in the con-
text of generative models, bounding the mean absolute deviation and showing that the bias decreases
monotonically with the number of samples.

4.3 Training an inference network

Late in training, once the attention model has learned an effective policy, the prior distribution
p(a | I,θ) is a reasonable choice for the proposal distribution q(a | y, I), as it puts significant prob-
ability mass on good actions. But early in training, the model may have only a small probability of
choosing a good set of glimpses, and the prior may have little overlap with the posterior. To deal
with this, we train an inference network to predict, given the observations as well as the class label,
where the network should look to correctly predict that class (see Figure 1). With this additional
information, the inference network can act as a “teacher” for the attention policy.

The inference network predicts a sequence of glimpses stochastically:

q(a | y, I,η) =
N∏

n=1

q(an | y, I,η, a1:n−1). (11)

This distribution is analogous to the prior, except that each decision also takes into account the class
label y. We denote the parameters for the inference network as η. During training, the prediction net-
work is learnt by following the gradient of the estimator in Eqn. 8 with samples ãm ∼ q(a | y, I,η)
drawn from the inference network output.
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Our training procedure for the inference network parallels the wake-q step of reweighted wake-
sleep [9]. Intuitively, the inference network is most useful if it puts large probability density over
locations in an image that are most informative for predicting class labels. We therefore train the
inference weights η to minimize the Kullback-Leibler divergence between the recognition model
prediction q(a | y, I,η) and posterior distribution from the attention model p(a | y, I,θ):

min
η

DKL(p ‖ q) = min
η
−
∑
a

p(a | y, I,θ) log q(a | y, I,η). (12)

The gradient update for the recognition weights can be obtained by taking the derivatives of Eq. (12)
with respect to the recognition weights η:

∂DKL(p ‖ q)
∂η

= Ep(a | y,I,θ)

[
∂ log q(a | y, I,η)

∂η

]
. (13)

Since the posterior expectation is intractable, we estimate it with importance sampling. In fact, we
reuse the importance weights computed for the prediction network update (see Eqn. 7) to obtain the
following gradient estimate for the recognition network:

∂DKL(p ‖ q)
∂η

≈
M∑

m=1

wm ∂ log q(ãm | y, I,η)
∂η

. (14)

4.4 Control variates

The speed of convergence of gradient ascent with the gradients defined in Eqns. 8 and 14 suffers
from high variance of the stochastic gradient estimates. Past work using similar gradient updates has
found significant benefit from the use of control variates, or reward baselines, to reduce the variance
[17, 10, 3, 11, 2]. Choosing effective control variates for the stochastic gradient estimators amounts
to finding a function that is highly correlated with the gradient vectors, and whose expectation is
known or tractable to compute [10, 24]. Unfortunately, a good choice of control variate is highly
model-dependent.

We first note that:

Eq(a | y,I,η)

[
p(a | I,θ)
q(a | y, I,η)

∂ log p(a | I,θ)
∂θ

]
= 0, Eq(a | y,I,η)

[
∂ log q(a | y, I,η)

∂η

]
= 0. (15)

The terms inside the expectation are very similar to the gradients in Eqns. 8 and 14, suggesting
that stochastic estimates of these expectations would make good control variates. To increase the
correlation between the gradients and the control variates, we reuse the same set of samples and
importance weights for the gradients and control variates. Using these control variates results in the
gradient estimates for the prediction and recognition networks, we obtain:

∂ log p(a | I,θ)
∂θ

≈
M∑

m=1

wm −
p(ãm | I,θ)
q(ãm | y,I,η)∑M
i=1

p(ãi | I,θ)
q(ãi | y,I,η)

 ∂ log p(ãm | I,θ)
∂θ

, (16)

∂DKL(p ‖ q)
∂η

≈
M∑

m=1

(
wm − 1

M

)
∂ log q(ãm | y, I,η)

∂η
. (17)

Our use of control variates does not bias the gradient estimates (beyond the bias which is present
due to importance sampling). However, as we show in the experiments, the resulting estimates have
much lower variance than those of Eqns. 8 and 14.

Following the analogy with reinforcement learning highlighted by [11], these control variates can
also be viewed as reward baselines:

bp =

p(a | I,θ)
q(a | y,I,η)Eq(a | y,I,η) [p(y |a, I,θ)]

M · Eq(a | y,I,η)

[
p(a | I,θ)
q(a | y,I,η)Eq(a | y,I,θ) [p(y |a, I,θ)]

] ≈ p(ãm | I,θ)
q(ãm | y,I,η)∑M
i=1

p(ãi | I,θ)
q(ãi | y,I,η)

, (18)

bq =
Ep(a | I,θ) [p(y |a, I,θ)]

M · Ep(a | I,θ) [p(y |a, I,θ)]
=

1

M
, (19)

where M is the number of samples drawn for proposal q.
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Figure 2: Left: Training error as a function of the number of updates. Middle: variance of the gradient
estimates. Right: effective sample size (max = 5). Horizontal axis: thousands of updates. VAR: variational
baseline; WS-RAM: our proposed method; +q: uses the inference networks for the proposal distribution; +c:
uses control variates.

4.5 Encouraging exploration

Similarly to other methods based on reinforcement learning, stochastic attention networks face the
problem of encouraging the method to explore different actions. Since the gradient in Eqn. 8 only
rewards or punishes glimpse sequences which are actually performed, any part of the space which
is never visited will receive no reward signal. [2] introduced several heuristics to encourage ex-
ploration, including: (1) raising the temperature of the proposal distribution, (2) regularizing the
attention policy to encourage viewing all image locations, and (3) adding a regularization term to
encourage high entropy in the action distribution. We have implemented all three heuristics for
the WS-RAM and for the baselines. While these heuristics are important for good performance of
the baselines, we found that they made little difference to the WS-RAM because the basic method
already explores adequately.

5 Experimental results

To measure the effectiveness of the proposed WS-RAM method, we first investigated a toy classifi-
cation task involving a variant of the MNIST handwritten digits dataset [25] where transformations
were applied to the images. We then evaluated the proposed method on a substantially more difficult
image caption generation task using the Flickr8k [26] dataset.

5.1 Translated scaled MNIST

We generated a dataset of randomly translated and scaled handwritten digits from the MNIST
dataset [25]. Each digit was placed in a 100x100 black background image at a random location
and scale. The task was to identify the digit class. The attention models were allowed four glimpses
before making a classification prediction. The goal of this experiment was to evaluate the effective-
ness of our proposed WS-RAM model compared with the variational approach of [2].

For both the WS-RAM and the baseline, the architecture was a stochastic attention model which
used ReLU units in all recurrent layers. The actions included both continuous and discrete latent
variables, corresponding to glimpse scale and location, respectively. The distribution over actions
was represented as a Gaussian random variable for the location and an independent multinomial
random variable for the scale. All networks were trained using Adam [27], with the learning rate set
to the highest value that allowed the model to successfully converge to a sensible attention policy.

The classification performance results are shown in Table 1. In Figure 2, the WS-RAM is compared
with the variational baseline, each using the same number of samples (in order to make computation
time roughly equivalent). We also show comparisons against ablated versions of the WS-RAM
where the control variates and inference network were removed. When the inference network was
removed, the prior p(a | I,θ) was used for the proposal distribution.

In addition to the classification results, we measured the effective sample size (ESS) of our method
with and without control variates and the inference network. ESS is a standard metric for evaluating
importance samplers, and is defined as 1/

∑
m(wm)2, where wm denotes the normalized importance

weights. Results are shown in Figure 2. Using the inference network reduced the variances in
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Test err. VAR WS-RAM WS-RAM + q
no c.v. 3.11% 4.23% 2.59%
+c.v. 1.81% 1.85% 1.62%

Table 1: Classification error rate comparison for the
attention models trained using different algorithms on
translated scaled MNIST. The numbers are reported
after 10 million updates using 5 samples.
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BLEU1 BLEU2 BLEU3 BLEU4
VAR 62.3 41.6 26.9 17.2

WS-RAM+Qnet 61.1 40.4 26.9 17.8

Table 2: BLEU score performance on the Flickr8K
dataset for our WS-RAM and the variational method.
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Figure 4: Training negative log-likelihood on
Flickr8K for the first 10,000 updates. See Figure 2
for the labels.

gradient estimation, although this improvement did not reflect itself in the ESS. Control variates
improved both metrics.

In Section 4.5, we described heuristics which encourage the models to explore the action space. Fig-
ure 3 compares the training with and without these heuristics. Without the heuristics, the variational
method quickly fell into a local minimum where the model predicted only one glimpse scale over
all images; the exploration heuristics fixed this problem. By contrast, the WS-RAM did not appear
to have this problem, so the heuristics were not necessary.

5.2 Generating captions using multi-scale attention

We also applied the WS-RAM method to learn a stochastic attention model similar to [5] for gener-
ating image captions. We report results on the widely-used Flickr8k dataset. The training/valid/test
split followed the same protocol as used in previous work [28].

The goal of this experiment was to examine the improvement of the WS-RAM over the variational
method for learning with realistic imgaes. Similarly to [5], we first ran a convolutional network,
and the attention network then determined which part of the convolutional net representation to
attend to. The attention network predicted both which layer to attend to and a location within the
layer, in contrast with [5], where the scale was held fixed. Because a convolutional net shrinks
the representation with max-pooling, choosing a layer is analogous to choosing a scale. At each
glimpse, the inference network was given the immediate preceding word in the target sentences.
We compare the BLEU scores of our WS-RAM and the variational method in in Table 2. Figure 4
shows training curves for both models. We observe that WS-RAM obtained similar performance to
the variatinoal method, but trained more efficiently.

6 Conclusions

In this paper, we introduced the Wake-Sleep Recurrent Attention Model (WS-RAM), an efficient
method for training stochastic attention models. This method improves upon prior work by using the
reweighted wake-sleep algorithm [9] to approximate expectations from the posterior over glimpses.
We also introduced control variates to reduce the variability of the stochastic gradients. Our method
reduces the variance in the gradient estimates and accelerates training of attention networks for both
invariant handwritten digit recognition and image caption generation.
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