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1 Computational details for common observation likelihoods

Here we give further details for computing (4) with common observation likelihoods.

1.1 Regression with Gaussian noise

For regression problems with zero-mean homoskedastic Gaussian noise with variance σ2
n, we have

p(y | f) = N (y; f, σ2
n).

We may integrate this against a Gaussian distribution on the latent value f (such as that resulting from
the MGP approximation (11)) to find the predictive distribution. Suppose p(f | x,D) = N (f ;µ, σ2).
Then

p(y | x,D) = N (y;µ, σ2 + σ2
n).

The model-conditional predictive distributions
{
p(y∗ | X∗,D,Mi)

}
are thus Gaussian under the

MGP approximation:
p(y∗ | x∗,D,Mi) = N

(
y∗;µ∗

i ,
(
ν∗MGP)i + σ2

n

)
.

The differential entropy of a one-dimensional Gaussian is

H
[
N (y;µ, σ2)

]
= 1

2 log(2πeσ2);

with these results and an approximation to the model posterior, we may compute the second term in
(4). The marginal predictive distribution p(y∗ | x∗,D) is now a mixture of Gaussians weighted by
the approximate model posterior. The differential entropy of a mixture of Gaussians does not have a
closed form, so for the first term in (4), we must resort to (one-dimensional) quadrature.

Note that we may also treat the noise variance σ2
n as a model-dependent hyperparameter and use the

MGP to approximately marginalize it as well, which changes the above only slightly. An extension to
heteroskedastic noise is also trivial.

1.2 Probit regression

For binary classification problems with a probit likelihood, we have

Pr(y = 1 | f) = Φ(f),
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where Φ is the univariate standard normal CDF. We may integrate this against a Gaussian distribution
on the latent value f to find the predictive distribution. Suppose p(f | x,D) = N (f ;µ, σ2). Then

Pr(y = 1 | x,D) =

∫
Φ(f)N (f ;µ, σ2) df = Φ

(
µ√

1 + σ2

)
.

The model-conditional predictive distributions
{
p(y∗ | X∗,D,Mi)

}
are thus Bernoulli distributions

under the MGP approximation:

p(y∗ | x∗,D,Mi) = B

(
Φ

(
µ∗
i√

1 + (ν∗MGP)i

))
.

The differential entropy of a Bernoulli distribution with success probability p is given by the Bernoulli
entropy function h:

H
[
B(p)

]
= h(p) = −p log p− (1− p) log(1− p);

with these results and an approximation to the model posterior, we may compute the second term
in (4). The marginal predictive distribution p(y∗ | x∗,D) is now a mixture of Bernoullis weighted
by the approximate model posterior. Bernoulli distributions are closed under taking mixtures, and
therefore in this case we may compute both terms in (4) without resorting to quadrature.

2 Description of general-purpose code

Finding a Laplace approximation to a GP hyperparameter posterior p(θ | D,M) (8) requires evaluat-
ing the Hessian of the log posterior at the mode, a somewhat atypical computation. MATLAB code
for calculating this Hessian for exact inference (with a Gaussian observation likelihood) has been
previously published;1 along with this manuscript, we will provide general-purpose MATLAB code
(built on top of the popular GPML toolkit [1]) for calculating this Hessian for arbitrary observation
models using the Laplace approximation for approximate GP inference [2].

Computing the MGP predictive variance (12) requires the gradient of the latent predictive mean and
variance with respect to the hyperparameters, another uncommon computation. We will also provide
code computing these gradients both for exact inference and approximate inference using the Laplace
approximation, allowing the MGP to be used for arbitrary observation likelihoods. With this and
the above-mentioned code, our entire scheme for active Bayesian model selection with GPs can be
implemented with minimal effort on top of the popular GPML toolbox.
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1https://github.com/rmgarnett/gpml_extensions
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