
A Proofs for competitive formulation

A.1 Examples of partitions

The following examples evaluate rPn(∆k) for the two simplest partitions.
Example 7. The singleton partition consists of |∆k| parts, each a single distribution in ∆k,

P|∆k|
def
= {{p} : p ∈ ∆k} .

An oracle-aided estimator that knows the part containing p knows p. The competitive regret of
data-driven estimators is therefore the min-max regret,

r
P|∆k|
n (∆k) = min

q
max
p∈∆k

(rn(q, {p})− rn({p}))

= min
q

max
p∈∆k

rn(q, p)

= rn(∆k),

where the middle equality follows as rn(q, {p}) = rn(q, p), and rn({p}) = 0.
Example 8. The whole-collection partition has only one part, the whole collection ∆k,

P1
def
= {∆k} .

An estimator aided by an oracle that knows the part containing p has no additional information,
hence no advantage over a data-driven estimator, and the competitive regret is 0,

rP1
n (∆k) = min

q
max

P∈{∆k}

(
max
p∈P

rn(q, p)− rn(P )

)
= min

q

(
max
p∈∆k

rn(q, p)− rn(∆k)

)
= min

q
max
p∈∆k

(rn(q, p))− rn(∆k)

= rn(∆k)− rn(∆k)

= 0.

The examples show that for the coarsest partition of ∆k, into a single part, the competitive regret
is the lowest possible, 0, while for the finest partition, into singletons, the competitive regret is the
highest possible, rn(∆k).

A.2 Proof of Equation (5)

The definition implies that if P ′ ⊆ P then rn(P ′) ≤ rn(P ), for every distribution class P and P ′.
Hence for every q,

rP
′

n (q,∆k) = max
P ′∈P′

(rn(q, P ′)− rn(P ′))

= max
P∈P

max
P⊇P ′∈P′

(rn(q, P ′)− rn(P ′))

≥ max
P∈P

max
P⊇P ′∈P′

(rn(q, P ′)− rn(P ))

= max
P∈P

(
max

P⊇P ′∈P′
rn(q, P ′)− rn(P )

)
= max

P∈P
(rn(q, P )− rn(P ))

= rPn(q,∆k).

B Upper bounds

For a distribution p and sequence xn, let p(xn) be the probability of observing xn under p. Recall
that for a symbol x, we abbreviate p(x) to be px.
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B.1 Proof of Lemma 4

The proof uses the following result.

Lemma 9. For every class P ∈ Pσ , rn(P ) ≥ maxp∈P r
nat
n (p).

Proof. We first show that there is an optimal estimator q that is natural. In particular, let

q′′y(xn) =

∑
p∈P p(x

ny)∑
p′∈P p

′(xn)
.

We show that q′′y(xn) is an optimal estimator for P . Since q′′y(xn) = q′′σ(y)(σ(xn)) for any
permutation σ, the estimator achieves the same loss for every p ∈ P ,

max
p∈P

rn(q′′, p) =
1

k!

∑
p∈P

rn(q′′, p′). (6)

For any estimator q,

max
p∈P

E[D(p||q)]
(a)

≥ 1

k!

∑
p∈P

Ep[D(p||q)]

(b)
=

1

k!

∑
p∈P

∑
xn∈Xn

∑
y∈X

p(xny) log
1

qy(xn)
−H(p)

=
1

k!

∑
xn∈Xn

∑
y∈X

∑
p∈P

p(xny) log
1

qy(xn)
−H(p)

(c)

≥ 1

k!

∑
xn∈Xn

∑
y∈X

∑
p∈P

p(xny) log

∑
p′∈P p

′(xn)∑
p′′∈P p

′′(xny)
−H(p)

=
1

k!

∑
p∈P

∑
xn∈Xn

∑
y∈X

p(xny) log
1

q′′y(xn)
−H(p)

(d)
=

1

k!

∑
p∈P

rn(q′′, p).

(a) follows from the fact that maximum is larger than the average. (b) follows from the fact that
every distribution in P has the same entropy. Non-negativity of KL divergence implies (c). All
distributions in P has the same entropy and hence (d). Hence together with Equation (6)

rn(P ) = min
q

max
p∈P

E[D(p||q)]

≥ 1

k!

∑
p∈P

rn(q′′, p′)

= max
p∈P

rn(q′′, p).

Hence q′′ is an optimal estimator. Recall that ny denote the number of times symbol y appears in the
sequence. q′′ is natural as if ny = ny′ , then q′′y(xn) = q′′y′(x

n). Since there is a natural estimator
that achieves minimum in rn(P ),

rn(P ) = min
q

max
p∈P

E[D(p||q)]

= min
q∈Qnat

max
p∈P

E[D(p||q)]

≥ max
p∈P

min
q∈Qnat

E[D(p||q)]

= max
p∈P

rnat
n (p),

where the last inequality follows from the fact that min-max is bigger than max-min.
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We can now prove Lemma 4.

Proof of Lemma 4.

rPσn (q,∆k) = max
P∈Pσ

(
max
p∈P

E[D(p||q)]− rn(P )

)
(a)

≤ max
P∈Pσ

(
max
p∈P

E[D(p||q)]−max
p∈P

rnat
n (p)

)
(b)

≤ max
P∈Pσ

max
p∈P

(E[D(p||q)]− rnat
n (p))

= max
p∈∆k

(E[D(p||q)]− rnat
n (p))

= rnat
n (q,∆k).

Lemma 9 implies (a). Difference of maximums is smaller than maximum of differences, hence
(b).

B.2 Proof of Lemma 5

The proof uses the following lemma which computes the best natural estimator. For a random
sequence Xn, let Φt

def
= ϕt(X

n). Recall that St(xn) is the sum of probabilities of symbols that
appears t times in xn. For notational convenience we use St to denote both St(xn) and St(Xn).

Lemma 10. Let q∗x(xn)= Snx
ϕnx

, then

q∗ = arg min
q∈Qnat

rn(q, p)

and

rnat
n (p) = E

[
n∑
t=0

St log
Φt
St

]
−H(p).

Proof. For a natural estimator q, if ny = ny′ , then qy(xn) = qy′(x
n) . Hence, with a slight abuse

of notation let qny (xn) = qy(xn). For a sequence xn and estimator q,

∑
y∈X

py log
1

qy(xn)
−

n∑
t=0

St log
ϕt
St

=

n∑
t=0

∑
y:ny=t

py log
1

qy(xn)
−

n∑
t=0

St log
ϕt
St

=

n∑
t=0

St log
1

qt(xn)
−

n∑
t=0

St log
ϕt
St

=

n∑
t=0

St log
St

ϕtqt(xn)

≥ 0,

where the last inequality follows from the fact that
∑n
t=0 St =

∑n
t=0 ϕtqt(x

n) = 1 and KL di-
vergence is non-negative. Furthermore, equality is achieved only by the estimator that assigns
q∗x =

Snx
ϕnx

. Hence,

rnat
n (p) = min

q∈Qnat
E

∑
y∈X

py log
py

qy(Xn)

 = −H(p) + E

[
n∑
t=0

St log
Φt
St

]
.
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Proof of Lemma 5. As before, with a slight abuse of notation let qny (xn) = qy(xn) for natural
estimators q. For any natural estimator q and sequence xn,

∑
y∈X

py log
1

qy(xn)
=

n∑
t=0

∑
y:ny=t

py log
1

qy(xn)

=

n∑
t=0

St log
St

ϕtqt(xn)
+

n∑
t=0

St log
ϕt
St

=

n∑
t=0

St log
St

Ŝt
+

n∑
t=0

St log
ϕt
St
.

Thus by Lemma 10,

rnat
n (q, p) = −H(p) + E

[
n∑
t=0

St log
St

Ŝt
+

n∑
t=0

St log
Φt
St

]
+H(p)− E

[
n∑
t=0

St log
Φt
St

]

= E

[
n∑
t=0

St log
St

Ŝt

]
= E[D(S||Ŝ)].

B.3 Optimality of natural estimators

We now show that exist natural estimators that achieve rnat
n (∆k) and rPσn (∆k).

Lemma 11. The exists a natural estimator q′′ such that

rnat
n (q′′,∆k) = rnat

n (∆k).

Similar there exists a natural estimator q′ such that

rPσn (q′,∆k) = rPσn (∆k).

Proof. We prove the result for rnat
n (∆k). The result for rPσn (∆k) is similar and omit-

ted. Let profile ϕ̄ of a sequence xn be the vector of its prevalences i.e., ϕ̄(xn)
def
=

(ϕ0(xn), ϕ1(xn), ϕ2(xn), . . . ϕn(xn)). For any optimal estimator q and sequence xny such that
ϕ̄(xn) = ϕ̄n and ny(xn) = t , let

q′′y(xn) =

∑
wnz:ϕ̄(wn)=ϕ̄n,nz=t qz(w

n)∑
unv:ϕ̄(un)=ϕ̄n,nv=t 1

.

q′′ is a natural estimator as if for any sequence xn, ny(xn) = ny′(x
n), then q′′y(xn) = q′′y′(x

n).
We show that q′′ is an optimal estimator. Observe that for any P ∈ Pσ

rn(q, P )
(a)

≥ 1

k!

∑
p∈P

rn(q, p)
(b)

≥ 1

k!

∑
p∈P

rn(q′′, p)
(c)
= rn(q′′, P ). (7)
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Maximum is larger than average and hence (a). Every distribution in P has the same KL loss for q′′
and hence (c). To prove (b), observe that∑
p∈P

rn(q, p) =
∑
p∈P

∑
xn∈Xn

∑
y∈X

p(xny) log
1

qy(xn)
−H(p)

=
∑

xn∈Xn

∑
y∈X

∑
p∈P

p(xny) log
1

qy(xn)
−H(p)

=
∑
ϕ̄n,t

∑
xn:ϕ̄(xn)=ϕ̄n

∑
y:ny=t

∑
p∈P

p(xny) log
1

qy(xn)
−H(p)

(d)

≥
∑
ϕ̄n,t

∑
xn:ϕ̄(xn)=ϕ̄n

∑
y:ny=t

∑
p∈P

p(xny) log

∑
un,v:ϕ̄(un)=ϕ̄n,nv=t 1∑

wn,z:ϕ̄(wn)=ϕ̄n,nz=t qz(w
n)
−H(p)

=
∑
ϕ̄n,t

∑
xn:ϕ̄(xn)=ϕ̄n

∑
y:ny=t

∑
p∈P

p(xny) log
1

q′′y(xn)
−H(p)

=
∑
p∈P

rn(q′′, p),

For all sequences xny with the same ϕ̄(xn) and ny(xn),
∑
p∈P p(x

ny) is the same. Hence, applying
log-sum inequality results in (d). By Lemma 10, every p ∈ P has the same rnat

n (p), hence subtracting
rnat
n (p) from both sides of Equation (7) results in

max
p∈P

(rn(q, p)− rnat
n (p)) ≥ max

p∈P
(rn(q′′, p)− rnat

n (p)) .

Hence for the optimal estimator q,

rnat
n (∆k) = max

p∈∆k

(rn(q, p)− rnat
n (p))

= max
P∈Pσ

(
max
p∈P

(rn(q, p)− rnat
n (p))

)
≥ max
P∈Pσ

(
max
p∈P

(rn(q′′, p)− rnat
n (p))

)
= max
p∈∆k

(rn(q′′, p)− rnat
n (p))

= rn(q′′,∆k).

Thus q′′ is an optimal estimator and furthermore it is natural, hence the lemma.

C Regret bounds on the Good-Turing estimator

C.1 Preliminaries

In practice, often the Good-Turing estimator is used for small multiplicities and empirical estimators
are used for large multiplicities. We analyze this estimator and bound its regret. For a symbol
appearing t times, we assign probability q′x = Ŝt/ϕt, where Ŝt = Ct/N . N is the normalization
factor to ensure that

∑∞
t=0 Ŝt = 1 and

Ct =

{
ϕt · tn if t ≥ t0,
(ϕt+1 + 1) · t+1

n else.

We set t0 ∝ n1/3 later. Similar to our experiments, we have modified the Good-Turing estimator
to (ϕt+1 + 1) · t+1

n , thus ensuring that we never assign a non-zero probability. However, unlike
our experiments, where we decided between empirical and Good-Turing estimators depending on
if ϕt+1 ≥ t, for our proofs we just decide it based on t for convenience. We remark that in our
experiments the estimator in Section 4 performed better than the one above.
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Ideally we would like to analyze this estimator when the number of samples is n. However, such
analysis is complicated as the number of times symbols appear are dependent, for example, they add
to n. A standard approach to overcome the dependence, e.g., [29], samples the distribution a random
number of times ∼ poi(n), the Poisson distribution with parameter n. Some useful properties of
Poisson sampling include: (i) A symbol with probability p appears poi(np) times, (ii) The numbers
of times different symbols appear are independent of each other, (iii) For any fixed n0, conditioned
on the length poi(n) ≥ n0, the distribution of the first n0 elements is identical to sampling p i.i.d.
exactly n0 times. Thus, to simplify the analysis of the estimator, we assume that the number of
samples is a Poisson random variable with mean n. A similar result holds with n samples.

We first relate the KL regret to a chi-squared like distance between S and C.
Lemma 12. For any distribution p ∈ ∆k,

E[D(S||Ŝ)] ≤
t0−1∑
t=0

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
+

∞∑
t=t0

E
[

(St − tΦt/n)2

Φtt/n

]
.

Proof. Since log(1 + y) ≤ y,
∑∞
t=0 St = 1, and

∑∞
t=0 Ct = N ,

D(S||Ŝ) =

∞∑
t=0

St log
St

Ŝt

=

∞∑
t=0

St log
NSt
Ct

=

∞∑
t=0

St log
St
Ct

+

∞∑
t=0

St logN

=

∞∑
t=0

St log

(
1 +

St − Ct
Ct

)
+ logN

≤
∞∑
t=0

St

(
St − Ct
Ct

)
+ logN

=

∞∑
t=0

(St − Ct)
(
St − Ct
Ct

)
+

∞∑
t=0

Ct

(
St − Ct
Ct

)
+ logN

=

∞∑
t=0

(St − Ct)
(
St − Ct
Ct

)
+

∞∑
t=0

(St − Ct) + logN

=

∞∑
t=0

(St − Ct)2

Ct
+ 1−N + logN

≤
∞∑
t=0

(St − Ct)2

Ct

=

t0−1∑
t=0

(St − Ct)2

Ct
+

∞∑
t=t0

(St − Ct)2

Ct
.

Taking expectations on both sides and substituting Ct results in the lemma.

C.2 Empirical estimators

All of our results including the next lemma hold for all distributions in ∆k and hence stated without
any condition on the underlying distribution. Let Nx

def
= nx(Xn) for a random sequence Xn.

Lemma 13. For any n and t0,
∞∑
t=t0

E
[

(St − tΦt/n)2

tΦt/n

]
≤ 1

t0
.

15



Proof.

∞∑
t=t0

(St − tΦt/n)2

tΦt/n
≤
∞∑
t=t0

(St − tΦt/n)2

Φtt0/n

(a)

≤
∞∑
t=t0

∑
x

1Nx=t
(px − t/n)2

t0/n

=
∑
x

∞∑
t=t0

1Nx=t
(px − t/n)2

t0/n

≤
∑
x

∞∑
t=0

1Nx=t
(px − t/n)2

t0/n
.

(a) follows from the fact that (
∑m
x=1 ax)2

m ≤
∑m
i=1 a

2
x for ax = 1Nx=t(px − t/n) and m = Φt.

Taking expectations on both sides,

∞∑
t=t0

E
[

(St − tΦt/n)2]

Φtt/n

]
≤
∑
x

E[
∑∞
t=0 1Nx=t(px − t/n)2]

t0/n

≤
∑
x

px/n

t0/n

=
1

t0
,

where the second inequality follows from observing that E[
∑∞
t=0 1Nx=t(px− t/n)2] is the variance

of a Poisson random variable with mean npx.

C.3 Good-Turing estimators

To bound the regret corresponding to the Good-Turing estimator, we need few auxiliary results. The
next set of equations follow from results in [13], For any n and t,

E[St] =
t+ 1

n
· E[Φt+1]. (8)

Var(St) ≤
(t+ 1)(t+ 2)

n2
· E[Φt+2]. (9)

E

[(
St −

(t+ 1)Φt+1

n

)2
]
≤ (t+ 1)(t+ 2)E[Φt+2]

n2
+

(t+ 1)2E[Φt+1]

n2
. (10)

The next lemma relates E[Φt+1] to E[Φt].

Lemma 14. For any n and t ≥ 1,

E[Φt+1] ≤ E[Φt]

(
2

t
log n+

t

t+ 1

)
+

1

t+ 1
.
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Proof. Let r ≥ t
t+1 .

E[Φt+1] = E

[∑
x

1Nx=t+1

]

=
∑
x

e−npx
(npx)t+1

(t+ 1)!

=
∑
x

n

t+ 1
· e−npx (npx)t

t!
px

=
∑

x:npx≤r(t+1)

n

t+ 1
· e−npx (npx)t

t!
px +

∑
x:npx>r(t+1)

n

t+ 1
· e−npx (npx)t

t!
px

(a)

≤ r
∑

x:npx≤r(t+1)

e−npx
(npx)t

t!
+

∑
x:npx>r(t+1)

n

t+ 1
e−r(t+1) (r(t+ 1))t

t!
px

≤ r
∑
x

e−npx
(npx)t

t!
+
∑
x

n

t+ 1
e−r(t+1) (r(t+ 1))t

t!
px

(b)

≤ r
∑
x

e−npx
(npx)t

t!
+
∑
x

n

t+ 1
e−rt/2px

≤ rE[Φt] +
n

t+ 1
e−

rt
2 .

(a) follows from the fact that second term is a decreasing as a function of npx in the range [r(t +
1),∞). (b) follows from the fact that

e−r(t+1) (r(t+ 1))t

t!
= e−rtrt · e−t (t+ 1)t

t!
≤ e−rtrt ≤ e−rt/2.

Choosing r = 2
t log n+ t

t+1 , yields

E[Φt+1] ≤ E[Φt]

(
2

t
log n+

t

t+ 1

)
+

1

t+ 1
.

The final auxiliary lemma bounds the inverse moment of Poisson binomial distributions.

Lemma 15. Let Xi for 1 ≤ i ≤ n be Bernoulli random variables, then

E
[

1∑n
i=1Xi + 1

]
≤ 1∑n

i=1 E[Xi]
.

Proof. Let si = E[Xi]. We show that of all tuples s1, s2, . . . , sn such that
∑n
i=1 si = ns, the

one that maximizes the expectation is si = s,∀i. Suppose for some i, j, si > sj , we show that
if we decrease si and increase sj keeping the sum same, then the expectation increases. Let Y =
1 +

∑
k/∈{i,j}Xk. For any instance of Xn, taking expectation with respect to only Xi and Xj .

E
[

1

Xi +Xj + Y
| Y
]

=
(1− si)(1− sj)

Y
+
si(1− sj) + (1− si)sj

Y + 1
+

sisj
Y + 2

=
1

Y
+ (si + sj)

(
1

Y + 1
− 1

Y

)
+ sisj

2

Y (Y + 1)(Y + 2)
.

Thus if we decrease si and increase sj (keeping si + sj fixed), then sisj increases and hence the
expectation increases. Hence the maximum occurs when si = sj for all i, j and

E
[

1∑n
i=1Xi + 1

]
≤ E

[
1

Z + 1

]
,

17



where Z is a binomial random variable with parameters n and s =
∑n
i=1 E[Xi]/n.

The expectation can be bounded as

E
[

1

Z + 1

]
=

n∑
j=0

1

j + 1

(
n

j

)
sj(1− s)n−j

=
1

(n+ 1)s

n∑
j=0

(
n+ 1

j + 1

)
sj+1(1− s)n+1−(j+1)

≤ 1

(n+ 1)s

≤ 1

ns

=
1∑n

i=1 E[Xi]
.

Using the above lemma, we first bound the expectation of S2
t /(Φt+1 + 1).

Lemma 16. For any n and t, if E[Φt+1] > 2, then

E
[

S2
t

Φt+1 + 1

]
≤ E[S2

t ]

E[Φt+1]− 1
.

Proof. We first observe that for any x,

E[1Nx=t+1] = e−npx
(npx)t+1

(t+ 1)!
≤ e−t−1 (t+ 1)t+1

(t+ 1)!
≤ 1

e
. (11)

Since St =
∑
x px1Nx=t and Φt+1 =

∑
x 1Nx=t+1,

S2
t

Φt+1 + 1
=

∑
x

∑
y pxpy1Nx=t1Ny=t∑
z 1Nz=t+1 + 1

=
∑
x

∑
y

pxpy1Nx=t1Ny=t∑
z:z 6=x,z 6=y 1Nz=t+1 + 1

,

where the equality follows from the fact that symbol cannot appear both t and t+ 1 times thus only
one of 1Nx=t and 1Nx=t+1 can be 1. The numerator and the denominator of the terms on RHS are
independent of each other, hence

E
[
pxpy1Nx=t1Ny=t∑

z 1Nz=t+1 + 1

]
= E

[
pxpy1Nx=t1Ny=t∑

z:z 6=x,z 6=y 1Nz=t+1 + 1

]

= E
[
pxpy1Nx=t1Ny=t

]
E

[
1∑

z:z 6=x,z 6=y 1Nz=t+1 + 1

]
(a)

≤
E
[
pxpy1Nx=t1Ny=t

]∑
z:z 6=x,z 6=y E[1Nz=t+1]

(b)

≤
E
[
pxpy1Nx=t1Ny=t

]
E[Φt+1 − 1]

,

(a) follows from Lemma 15 and (b) follows from Equation (11) as∑
z:z 6=x,z 6=y

E[1Nz=t+1] =
∑
z

E[1Nz=t+1]− E[1Nx=t+1]− E[1Ny=t+1] ≥ E[Φt+1]− 1.

Summing over x and y results in the lemma.

We now have all the tools to bound the error of the Good-Turing estimator. We divide the set of
values into two groups, depending on the value of E[Φt+1].
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Lemma 17. For any n and t if E[Φt+1] ≤ 2, then

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
≤ 5t

n
+

4 log n

n

(
t+ 2

t+ 1

)
+

6

n
.

Proof. Let Z = St − (t+ 1)Φt+1/n.

E

[(
Z − t+ 1

n

)2
]

(a)
= E[Z2] +

(t+ 1)2

n2

(b)

≤ (t+ 1)(t+ 2)E[Φt+2]

n2
+

(t+ 1)2E[Φt+1]

n2
+

(t+ 1)2

n2

(c)

≤ 2
(t+ 1)(t+ 2)

n2
·
(

2 log n

t+ 1
+
t+ 1

t+ 2

)
+

(t+ 1)(t+ 2)

n2(t+ 2)
+

3(t+ 1)2

n2
.

Equation (8) implies Z is a zero mean random variable and hence (a). Equation (10) implies (b)
and (c) follows by Lemma 14 and the fact that E[Φt+1] ≤ 2. Hence,

E
[

(Z − (t+ 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
≤ E[(Z − (t+ 1)/n)2]

(t+ 1)/n

≤ 2(t+ 2)

n
·
(

2 log n

t+ 1
+
t+ 1

t+ 2

)
+

1

n
+

3(t+ 1)

n

=
5t

n
+

4 log n(t+ 2)

n(t+ 1)
+

6

n
.

Lemma 18. For any n and t if E[Φt+1] > 2, then

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
≤ 5t

n
+

4 log n

n

(
t+ 2

t+ 1

)
+

6

n
.

Proof.

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n
=

S2
t

(Φt+1 + 1)(t+ 1)/n
+

(t+ 1)(Φt+1 + 1)

n
− 2St.

Thus by Equation (8),

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
= E

[
S2
t

(Φt+1 + 1)(t+ 1)/n

]
− (t+ 1)E[Φt+1]

n
+
t+ 1

n
. (12)

By Lemma 16 and Equations (8), (9),

E
[

S2
t

(Φt+1 + 1)(t+ 1)/n

]
≤ E[S2

t ]

E[Φt+1 − 1](t+ 1)/n

≤ t+ 1

n

E[Φt+1]2

E[Φt+1 − 1]
+
t+ 2

n

E[Φt+2]

E[Φt+1 − 1]
.

Substituting the above equation in Equation (12) and simplifying,

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
≤ (t+ 1)E[Φt+1] + (t+ 2)E[Φt+2]

nE[Φt+1 − 1]
+
t+ 1

n

(a)

≤ 2
(t+ 1)E[Φt+1] + (t+ 2)E[Φt+2]

nE[Φt+1]
+
t+ 1

n

(b)

≤ 2

(
t+ 1

n
+
t+ 2

n

(
2 log n

t+ 1
+
t+ 1

t+ 2
+

1

2(t+ 2)

))
+
t+ 1

n

=
5t

n
+

4 log n

n

(
t+ 2

t+ 1

)
+

6

n
.

Since E[Φt+1] ≥ 2, E[Φt+1]− 1 ≥ E[Φt+1]/2 and hence (a). Lemma 14 implies (b).
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Combining the above two lemmas results in
Lemma 19. For any t0 ≥ 1,

t0−1∑
t=0

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
≤ 5t20

2n
+

4 log n

n
(t0 + log t0 + 1) +

7t0
2n

.

Proof. By Lemmas 17 and 18, regardless of the value of E[Φt+1],

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
≤ 5t

n
+

4 log n

n

(
t+ 2

t+ 1

)
+

6

n
.

Summing the above expression for 0 ≤ t ≤ t0 − 1 results in the lemma.

Substituting the results from Lemmas 13 and 19 in Lemma 12,

E[D(S||Ŝ)] ≤ 1

t0
+

5t20
2n

+
4 log n

n
(t0 + log t0 + 1) +

7t0
2n

.

Substituting t0 = n1/3/51/3 results in Theorem 1.

rnat
poi(n)(q

′,∆k) ≤ max
p∈∆k

E[D(S||Ŝ)] ≤ 2.6

n1/3
+

2.4 log n(n1/3 + log n+ 1)

n
+

2.1

n2/3
≤ 3 + on(1)

n1/3
.

D Proof of Theorem 3

To lower bound rPσn (∆k) it is sufficient to lower bound rPσn (P) for any subset P ⊆ ∆k. We
construct a subset P by considering a set of distributions {pv̄ : v̄ ∈ {−1, 1}m−1} and all their
possible permutations. The lower bound argument uses Fano’s inequality and Gilbert Varshamov
bounds.

We chooseP to be the set of distributions whose probability multiset are close to that of a distribution
p0, where p0 is defined as follows.

Let c be a sufficiently large constant. Let m be the largest odd number less than
min(k, (n/(c2 log2 n))1/3). Let p0 be the following distribution. For 1 ≤ i ≤ m− 1,

p0
i =

log n

6n

√
c2n

m

(√
n

c2m log2 n
+ i

)
and p0

m = 1 −
∑m−1
i=1 p0

i . Observe that for all 1 ≤ i ≤ m − 1, 1/(6m) ≤ p0
i ≤ 1/(3m) and

p0
m ≥ 2/3.

We choose the close-by distributions as follows. Let ε =
√

c∗

mn , where c∗ is some sufficiently small

constant. For a binary vector v̄ ∈ {−1, 1}m−1, let pv̄ be the distribution such that pv̄i = p0
i + v̄iε

for 1 ≤ i ≤ m − 1 and pv̄(m) = 1 −
∑m−1
i=1 pv̄i . Note that by the properties of p0 and ε, pv̄ is a

valid distribution for every v̄. Let C be the largest subset of {−1, 1}m−1 such that for every v̄ ∈ C,∑
i v̄i = 0 and for every pair v̄, v̄′ ∈ C,

∑
i |v̄i−v̄′i| ≥ c′(m−1) for some constant c′. The following

variation of Gilbert Varshamov lemma lower bounds size of C.
Lemma 20. There exists a set of vectors C over {−1, 1}m−1 of size 2c

′′·(m−1) such that the minimum
hamming distance between any two vectors is≥ c′(m−1) for some universal constants c′ > 0, c′′ >
0 and

∑
i v̄i = 0 for all v̄ ∈ C.

Let P ′ = {pv̄ : v̄ ∈ C} and Pv̄ = {pv̄(σ(·)) : σ ∈ Σm−1} be the set of all permutations of a
distribution pv̄ , i.e., all distributions with the same multiset as pv̄ . Let

P = ∪v̄∈CPv̄.

We first bound the regret of the induced permutation class Pv̄ that contains all permutations of a
distribution pv̄ .
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Lemma 21. For every induced permutation class Pv̄ ,

rn(Pv̄) ≤
1

n
.

Proof. We prove the bound by constructing an estimator q. Consider the estimator q which sorts the
multiplicities and assigns the ith-frequently occurred symbol probability pv̄i . Since this is a natural
estimator, it occurs the same loss for all distributions in Pv̄ and hence,

rn(Pv̄) ≤ max
p∈Pv̄

E[D(p||q)]

= E[D(pv̄||q)]
(a)

≤ Pr(∃i, j : Ni > Nj , p
v̄
i < pv̄j ) log n

(b)

≤
(
m

2

)
e−2 logn log n

≤ 1

n
.

(a) follows from the fact that the estimator makes an error only if two multiplicities cross over and
if it does make an error, the maximum KL divergence is at most log(pmax/pmin) ≤ log n. Since

probabilities for any two symbols i and j differ by at least logn
6n ·

√
c2n
m and the probabilities them-

selves lie between 1/(6m) and 1/(3m), by choosing a sufficiently large c, the cross over probability
can be bounded by e−2 logn using the Chernoff bound and hence (b).

We now lower bound the KL divergence between pv̄ and pv̄
′

for every pair of vectors v̄ and v̄′. Let
the Hamming distance between two vectors v̄ and v̄′ be ||v̄ − v̄′||1 =

∑m−1
i=1 |v̄i − v̄′i|.

Lemma 22. For two distributions pv̄ and pv̄
′

in P ′,

1

8

(
c′
√
mc∗

n

)2

≤ 1

2
||pv̄ − pv̄

′
||21 ≤ D(pv̄||pv̄

′
) ≤ 48mc∗

n
.

Proof.

D(pv̄||pv̄ ′)
(a)

≤
m∑
i=1

(pv̄i − pv̄i
′
)2

pv̄i
′

(b)

≤ 2

m∑
i=1

(pv̄i − pv̄i
′
)2

p0
i

≤ 2

m−1∑
i=1

(v̄i − v̄′i)2(
√
c∗/nm)2

1/(6m)

≤ 12

m−1∑
i=1

(v̄i − v̄′i)2c∗

n

≤ 24

m−1∑
i=1

|v̄i − v̄′i|c∗

n

=
24||v̄ − v̄′||1c∗

n

≤ 48mc∗

n
.
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(a) follows from bounding the KL divergence by the Chi-squared distance and (b) follows from the
fact that ε� 1/m. For the lower bound,

D(pv̄||pv̄
′
)

(a)

≥ 1

2
||pv̄ − pv̄

′
||21

=
1

2

(
||v̄ − v̄′||1

√
c∗√

mn

)2

(b)

≥ 1

2

(
c′(m− 1)

√
c∗√

mn

)2

(c)

≥ 1

8

(
c′
√
mc∗

n

)2

,

where (a) follows from Pinsker’s inequality, (b) follows by construction, and m− 1 ≥ 2 and hence
(c).

We now state Fano’s inequality for distribution estimation.
Lemma 23. Let p1, p2, . . . pr+1 be distributions such that D(pi||pj) ≤ β and ||pi − pj ||1 ≥ α, for
all i, j. For any estimator q,

sup
i

Ei[||pi − q||1] ≥ α

2

(
1− nβ + log 2

log r

)
.

We now have all the tools for the lower bound.

Proof of Theorem 3. For every permutation subclass Pv̄ in P , by Lemma 21

rn(Pv̄) ≤
1

n
.

Thus,

rPσn (P) = min
q

max
v̄

(
max
p∈Pv̄

rn(q, p)− rn(Pv̄)
)

≥ min
q

max
v̄

(
max
p∈Pv̄

rn(q, p)− 1

n

)
= min

q
max
p∈P

rn(q, p)− 1

n

= min
q

max
p∈P

E[D(p||q)]− 1

n
(a)

≥ min
q

max
p∈P′

E[D(p||q)]− 1

n
(b)

≥ min
q

max
p∈P′

E
[
||p− q||21

2

]
− 1

n

(c)

≥ min
q

max
p∈P′

1

2
E [||p− q||1]

2 − 1

n
(d)

≥ Ω
(m
n

)
− 1

n

≥ Ω
(m
n

)
.

P ′ ⊂ P , hence (a). (b) follows from Pinsker’s inequality and (c) follows from convexity. By
construction, for every pair of distributions in P ′, β = D(p||p′) ≤ 48c∗m/n and α = ||p− p′||1 ≥
Ω(
√
m/n) (Lemma 22). Furthermore by Lemma 20, P ′ has r+1 = 2c

′′(m−1) distributions. Setting
c∗ to be a sufficiently small constant and applying Lemma 23 to P ′ with the above values of α, β,
and r results in (d). Substituting the value of m in the above equation results in the Theorem.
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