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Abstract

The paper studies transition phenomena in information cascades observed along
a diffusion process over some graph. We introduce the Laplace Hazard matrix
and show that its spectral radius fully characterizes the dynamics of the conta-
gion both in terms of influence and of explosion time. Using this concept, we
prove tight non-asymptotic bounds for the influence of a set of nodes, and we
also provide an in-depth analysis of the critical time after which the contagion be-
comes super-critical. Our contributions include formal definitions and tight lower
bounds of critical explosion time. We illustrate the relevance of our theoretical re-
sults through several examples of information cascades used in epidemiology and
viral marketing models. Finally, we provide a series of numerical experiments for
various types of networks which confirm the tightness of the theoretical bounds.

1 Introduction

Diffusion networks capture the underlying mechanism of how events propagate throughout a com-
plex network. In marketing, social graph dynamics have caused large transformations in business
models, forcing companies to re-imagine their customers not as a mass of isolated economic agents,
but as customer networks [1]. In epidemiology, a precise understanding of spreading phenomena
is heavily needed when trying to break the chain of infection in populations during outbreaks of
viral diseases. But whether the subject is a virus spreading across a computer network, an innova-
tive product among early adopters, or a rumor propagating on a network of people, the questions
of interest are the same: how many people will it infect? How fast will it spread? And, even more
critically for decision makers: how can we modify its course in order to meet specific goals? Sev-
eral papers tackled these issues by studying the influence maximization problem. Given a known
diffusion process on a graph, it consists in finding the top-k subset of initial seeds with the high-
est expected number of infected nodes at a certain time distance 7'. This problem being NP-hard
[2]], various heuristics have been proposed in order to obtain scalable suboptimal approximations.
While the first algorithms focused on discrete-time models and the special case T' = +o0 [3} 4],
subsequent papers [} 16] brought empirical evidences of the key role played by temporal behavior.
Existing models of continuous-time stochastic processes include multivariate Hawkes processes [[7]]
where recent progress in inference methods [8, 9] made available the tools for the study of activity
shaping [[10], which is closely related to influence maximization. However, in the most studied case
in which each node of the network can only be infected once, the most widely used model remains
the Continuous-Time Information Cascade (CTIC) model [5]. Under this framework, successful
inference [l as well as influence maximization algorithms have been developed [[11} [12].

However, if recent works [13| [14] provided theoretical foundations for the inference problem, as-
sessing the quality of influence maximization remains a challenging task, as few theoretical results
exist for general graphs. In the infinite-time setting, studies of the SIR diffusion process in epidemi-
ology [15]] or percolation for specific graphs [16] provided a more accurate understanding of these
processes. More recently, it was shown in [[17] that the spectral radius of a given Hazard matrix



played a key role in influence of information cascades. This allowed the authors to derive closed-
form tight bounds for the influence in general graphs and characterize epidemic thresholds under
which the influence of any set of nodes is at most O(y/n).

In this paper, we extend their approach in order to deal with the problem of anytime influence bounds
for continuous-time information cascades. More specifically, we define the Laplace Hazard matrices
and show that the influence at time 7" of any set of nodes heavily depends on their spectral radii.
Moreover, we reveal the existence and characterize the behavior of critical times at which super-
critical processes explode. We show that before these times, super-critical processes will behave
sub-critically and infect at most o(n) nodes. These results can be used in various ways. First, they
provide a way to evaluate influence maximization algorithms without having to test all possible set
of influencers, which is intractable for large graphs. Secondly, critical times allow decision makers
to know how long a contagion will remain in its early phase before becoming a large-scale event,
in fields where knowing when to act is nearly as important as knowing where to act. Finally, they
can be seen as the first closed-form formula for anytime influence estimation for continuous-time
information cascades. Indeed, we provide empirical evidence that our bounds are tight for a large
family of graphs at the beginning and the end of the infection process.

The rest of the paper is organized as follows. In Section[2] we recall the definition of Information
Cascades Model and introduce useful notations. In Section[3} we derive theoretical bounds for the
influence. In Sectionfd] we illustrate our results by applying them on specific cascade models. In
Section[5] we perform experiments in order to show that our bounds are sharp for a family of graphs
and sets of initial nodes. All proof details are provided in the supplementary material.

2 Continuous-Time Information Cascades

2.1 Information propagation and influence in diffusion networks

We describe here the propagation dynamics introduced in [5]. Let G = (V, £) be a directed network
of n nodes. We equip each directed edge (i,7) € £ with a time-varying probability distribution
pi;(t) over Ry U {400} (p;; is thus a sub-probability measure on R ) and define the cascade
behavior as follows. At time ¢t = 0, only a subset A C V of influencers is infected. Each node 4
infected at time 7; may transmit the infection at time 7; + 7;; along its outgoing edge (4, j) € £ with
probability density p;;(7;;), and independently of other transmission events. The process ends for a
given T' > 0.

For each node v € V, we will denote as 7, the (possibly infinite) time at which it is reached by the
infection. The influence of A at time T', denoted as o 4(7), is defined as the expected number of
nodes reached by the contagion at time 7" originating from A, i.e.

oa(T) =E[>_ 1, <1y, 1)
veEVY
where the expectation is taken over cascades originating from A (i.e. 7, = 0 < L,ca}).

Following the percolation literature, we will differentiate between sub-critical cascades whose size
is o(n) and super-critical cascades whose size is proportional to n, where n denotes the size of
the network. This work focuses on upper bounding the influence o 4(7T') for any given time T and
characterizing the critical times at which phase transitions occur between sub-critical and super-
critical behaviors.

2.2 The Laplace Hazard Matrix

We extend here the concept of hazard matrix first introduced in [17] (different from the homonym
notion of [[13]]), which plays a key role in the influence of the information cascade.
Definition 1. Ler G = (V, &) be a directed graph, and p;; be integrable edge transmission prob-

abilities such that f0+oo pij(t)dt < 1. For s > 0, let LH(s) be the n x n matrix, denoted as the
Laplace hazard matrix, whose coefficients are

LH(s) = { ;ﬁij(S) (fo+oo Pz‘j(t)dt) In (1 - Pz‘j(t)dt) ifi,j)e€ (o

otherwise



where p;;(s) denotes the Laplace transform of p;; defined for every s > 0 by p;;(s) =
0+O° pij(t)e *'dt. Note that the long term behavior of the cascade is retrieved when s = 0 and

coincides with the concept of hazard matrix used in [17].

We recall that for any square matrix M of size n, its spectral radius p(M) is the maximum of the

L . . [T
absolute values of its eigenvalues. If M is moreover real and positive, we also have p(%) =

.
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2.3 Existence of a critical time of a contagion

In the following, we will derive critical times before which the contagion is sub-critical, and above
which the contagion is super-critical. We now formalize this notion of critical time via limits of
contagions on networks.

Theorem 1. Let (Gn)nen be a sequence of networks of size n, and (p;};)nen be transmission proba-

bility functions along the edges of G,,. Let also o,,(t) be the maximum influence in G,, at time t from
a single influencer. Then there exists a critical time T¢ € R U {400} such that, for every sequence
of times (T )nen:

e Iflimsup, T, <T¢ then 0,(T},) = o(n),

b Ifo—n (Tn) = O(TL), then lim infn—H—oo T, <T¢.
Moreover, such a critical time is unique.

In other words, the critical time is a time before which the regime is sub-critical and after which no
contagion can be sub-critical. The next proposition shows that, after the critical time, the contagion
is super-critical.

Proposition 1. If (T},),¢n is such that liminf,,_, o T,, > T¢, then lim inf,_, | o % > 0 and

the contagion is super-critical. Conversely, if (T}, )nen is such that liminf,_, 4 @ > 0, then
limsup,, ,,Tn > T

In order to simplify notations, we will omit in the following the dependence in n of all the variables
whenever stating results holding in the limit n — +o0.

3 Theoretical bounds for the influence of a set of nodes

We now present our upper bounds on the influence at time 7" and derive a lower bound on the critical
time of a contagion.

3.1 Upper bounds on the maximum influence at time 7'

The next proposition provides an upper bound on the influence at time 7" for any set of influencers A
such that |A| = ng. This result may be valuable for assessing the quality of influence maximization
algorithms in a given network.

Proposition 2. Define p(s) = p(w) Then, for any A such that |A| = ng < n, denoting

by 0 A(T) the expected number of nodes reached by the cascade starting from A at time T':
oa(T) < ng+ (n—ng) mig’y(s)eﬂ. 3)

where y(s) is the smallest solution in [0, 1] of the following equation:

1 texp (—p(s)y(s) — — Lm0 _
() =1+ exp (=plon (o) - HE ) @



Corollary 1. Under the same assumptions:

/ p(S) sT
< mo + {s>0lp s)<1} < 7)6 > ’ ©®)

1—p(s

Note that the long-term upper bound in [17] is a corollary of Proposition 2] using s = 0. When
p(0) < 1, Corollary I 1] with s = 0 implies that the regime is sub-critical for all 7 > 0. When
p(0) > 1, the long-term behaV10r may be super-critical and the influence may reach linear values in
n. However, at a cost growing exponentially with 7', it is always possible to choose a s such that
p(s) < 1 and retrieve a O(y/n) behavior. While the exact optimal parameter s is in general not
explicit, two choices of s derive relevant results: either simplifying e*7 by choosing s = 1/7, or
keeping v(s) sub-critical by choosing s s.t. p(s) < 1. In particular, the following corollary shows

that the contagion explodes at most as e? (1=97 for any € € [0, 1].
Corollary 2. Let € € [0,1] and p(0) > 1. Under the same assumptions:

oa(T) <no+ mo(n ~ no) no)epil(l_e)? (6)
€

Remark. Since this section focuses on bounding o4 (T') for a given T' > 0, all the aforementioned
results also hold for pj;(t) = py;(t )]l{t<T} This is equivalent to integrating everything on [0, T

instead of R, i.e. LH;;(s) = —In(1 fo pij(t dt)(fOT pij(t fo pi;(t)e~s'dt. This choice
of LH is particularly useful when some edges are transmitting the contagion W1th probability 1, see
for instance the SI epidemic model in Section4.3).

3.2 Lower bound on the critical time of a contagion

The previous section presents results about how explosive a contagion is. These findings suggest
that the speed at which a contagion explodes is bounded by a certain quantity, and thus that the
process needs a certain amount of time to become super-critical. This intuition is made formal in
the following corollary:

—1
Corollary 3. Assume Vn > 0, p,(0) > 1 and lim,,_, 4 oo %ﬁd‘)ﬁ) = 1. If the sequence (T},)neN
is such that

20-Y(1)T,,

imsup 2P DT %)

n——+o0 Inn
Then,

oa(T,) = o(n). 8)
In other words, the regime of the contagion is sub-critical before 2{)13{2 ) and
1
T¢ > liminf _an ©)]

oo 2071 (1)

pr'(1=¢)

P (1)
verges sufficiently fast to 1 so that p,; (l — ;) has the same behavior than p; *(1). This condition
is not very restrictive, and is met for the different case studies considered in Sectionfd]

= 1 imposes that, for large n, lim,_,o 2=

The technical condition lim,, 4 o con-

This result may be valuable for decision makers since it provides a safe time region in which the
contagion has not reached a macroscopic scale. It thus provides insights into how long do decision
makers have to prepare control measures. After 7, the process can explode and immediate action
is required.

4 Application to particular contagion models

In this section, we provide several examples of cascade models that show that our theoretical bounds
are applicable in a wide range of scenarios and provide the first results of this type in many areas,
including two widely used epidemic models.



4.1 Fixed transmission pattern

When the transmission probabilities are of the form p;; (t) = a;;p(¢) s.t. O+°° p(t) =land oy; < 1,
LHij(s) = —In(1 — ai;)p(s), (10)

and
p(s) = pap(s), (11)

where po = p(0) = p(—2U= O‘”)Hn(l 25i) is the long-term hazard matrix defined in [17].

these networks, the temporal and structural behaviors are clearly separated. While p,, summarizes
the structure of the network and how connected the nodes are to one another, () captures how fast
the transmission probabilities are fading through time.

When p,, > 1, the long-term behavior is super-critical and the bound on the critical times is given
by inverting p(s)
Inn
7° > liminf ——— 12

W 251 (1/p) 2
where p—t (1 /Po) exists and is unique since p(s) is decreasing from 1 to 0. In general, it is not
possible to give a more explicit version of the critical time of Corollary [3] or of the anytime influence
bound of Proposition I 2l However, we investigate in the rest of this section specific p(t) which lead
to explicit results.

4.2 Exponential transmission probabilities

A notable example of fixed transmission pattern is the case of exponential probabilities p;;(t) =
aijAe” M for A > 0 and a; € [0, 1[. Influence maximization algorithms under this specific choice
of transmission functions have been for instance developed in [L1]. In such a case, we can calculate

the spectral radii explicitly:

A

where p, = p(—2U= a”)“n(l 23i) ) is again the long term hazard matrix. When p, > 1, this
leads to a critical time lower bounded by
1
T¢ > liminf ———— (14)

n—=+o0 2\(pa — 1)

The influence bound of Corollary [I|can also be reformulated in the following way:

Corollary 4. Assume p, > 1, or else \T'(1 — p,) < % Then the minimum in Eq. is met for
5 = 37 + AMpa — 1) and Corollaryrewrites:

oA(T) < ng + /no(n — no)\/2eT ApaeTPa=b), (15)
If po. < Land XT(1 — py,) > %, the minimum in Eq.is met for s = 0 and Corollaryrewrites:

T) <ng+ vno(n—ngp)

— (16)

Note that, in particular, the condition of Corollary []is always met 1n the super-critical case where
Po > 1. Moreover, we retrieve the O(y/n) behavior when T' < ﬁ Concerning the behavior
in T', the bound matches exactly the infinite-time bound when T’ is very large in the sub-critical case.
However, for sufficiently small 7", we obtain a greatly improved result with a very instructive growth

in O(VT).
4.3 SI and SIR epidemic models
Both epidemic models SI and SIR are particular cases of exponential transmission probabilities.

SIR model ([[18])) is a widely used epidemic model that uses three states to describe the spread of an
infection. Each node of the network can be either : susceptible (S), infected (I), or removed (R). At



t = 0, a subset A of ng nodes is infected. Then, each node 7 infected at time 7; is removed at an
exponentially-distributed time 6; of parameter §. Transmission along its outgoing edge (i,5) € &
occurs at time 7; + 7;; with conditional probability density /5 exp(—/7;;), given that node ¢ has not
been removed at that time. When the removing events are not observed, SIR is equivalent to CTIC,
except that transmission along outgoing edges of one node are positively correlated. However, our
results still hold in case of such a correlation, as shown in the following result.

Proposition 3. Assume the propagation follow a SIR model of transmission parameter [3 and re-
moval parameter 0. Define p;;(t) = Bexp(—(6 + B)t) for (i,j) € £ Let A = (]l{(i’j)eg})ij
be the adjacency matrix of the underlying undirected network. Then, results of Proposition 2] and
subsequent corollaries still hold with p(s) given by:

o(8) = 5 (LH(S) +2£H(5)T) N <1 N ?) %pw (17

From this proposition, the same analysis than in the independent transmission events case can be
derived, and the critical time for the SIR model is

.. Inn
T¢ > liminf 5 .
n=+oe 200 + B)(In(1 + 5)p(A) — 1)

Proposition 4. Consider the SIR model with transmission rate (3, recovery rate 0 and adjacency
matrix Ay,. Assume liminf,, . In(1 + g)p(.An) > 1, and the sequence (Ty,)nen is such that

lim sup 200 + p)(In(1 + %)P(»An) - 1T,

n—+oo Inn

(18)

<1 (19)

Then,
oa(T,) = o(n). (20)

This is a direct corollary of Corollarywith pH(1) = (6 + B)(In(1 + £)p(A,) — 1).

The SI model is a simpler model in which individuals of the network remain infected and contagious
through time (i.e. 6 = 0). Thus, the network is totally infected at the end of the contagion and
lim,,—, 100 4 (T") = n. For this reason, the previous critical time for the more general SIR model is
of no use here, and a more precise analysis is required. Following the remark of Section[3.1] we can
integrate p;; on [0, T instead of R, which leads to the following result:

Proposition 5. Consider the SI model with transmission rate 3 and adjacency matrix A,,. Assume
liminf, 4. p(Ay) > 0 and the sequence (T),)nen is such that

. BT
lim sup < 1. 2n
_ Inn
a1 - o)
Then,
oa(T,) = o(n). (22)

In other words, the critical time for the SI model is lower bounded by

.1 Inn _ [ dnn
T >1 f—y ) ———(1— 20(An) 23
2B g e T .

If p(A,,) = o(Inn) (e.g. for sparse networks with a maximum degree in O(1)), the critical time

resumes to 7, > liminf,, 4 % 2;?} 5- However, when the graph is denser and p(A,,)/Inn —

n

—+00, then Tc Z lim infn%Jroo %

4.4 Discrete-time Information Cascade

A final example is the discrete-time contagion in which a node infected at time ¢ makes a unique
attempt to infect its neighbors at a time ¢ + 7j. This defines the Information Cascade model, the
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Figure 1: Empirical maximum influence w.r.t. the spectral radius p,, defined in Section for vari-
ous network types. Simulation parameters: n = 1000, ng = 1 and A = 1.

discrete-time diffusion model studied by the first works on influence maximization [2, 19,3} 4]]. In
this setting, p;;(t) = «;;67, (t) where d7, is the Dirac distribution centered at Tj. The spectral radii
are given by

p(s) = pae™, (24)
and the influence bound of Corollary [I|simplifies to:

Corollary 5. Let po, > 1, orelse T < ﬁ. If T < Ty, then o A(T) = ng. Otherwise,

ca(T) < ng+ v/no(n —np) 2eT I (25)

T, @
Moreover, the critical time is lower bounded by

Inn

T°¢ > liminf To. (26)

n—+oo 21n py
A notable difference from the exponential transmission probabilities is that 7' is here inversely
proportional to In p,, instead of p, in Eq.[.2] which implies that, for the same long-term influ-
ence, a discrete-time contagion will explode much slower than one with a constant infection rate.
This is probably due to the existence of very small infection times for contagions with exponential
transmission probabilities.

5 Experimental results

This section provides an experimental validation of our bounds, by comparing them to the empirical
influence simulated on several network types. In all our experiments, we simulate a contagion
with exponential transmission probabilities (see Section|d.2)) on networks of size n = 1000 and
generated random networks of 5 different types (for more information on the respective random
generators, see e.g [20]): Erdos-Rényi networks, preferential attachment networks, small-world
networks, geometric random networks ([21]) and totally connected networks with fixed weight b €
[0, 1] except for the ingoing and outgoing edges of a single node having, respectively, weight 0
and a > b. The reason for simulating on such totally connected networks is that the influence
over these networks tend to match our upper bounds more closely, and plays the role of a best case
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scenario. More precisely, the transmission probabilities are of the form p;; (¢) = ae™* for each edge
(i,7) € & where a € [0, 1] (and A = 1 in the formulas of Section4.2).

We first investigate the tightness of the upper bound on the maximum influence given in Propo-
sition 2} Figure[l] presents the empirical influence w.rt. po = —In(1 — a)p(A) (where A is the
adjacency matrix of the network) for a large set of network types, as well as the upper bound in
Proposition[2} Each point in the figure corresponds to the maximum influence on one network. The
influence was averaged over 100 cascade simulations, and the best influencer (i.e. whose influence
was maximal) was found by performing an exhaustive search. Our bounds are tight for all values
of T € {0.1,1, 5,100} for totally connected networks in the sub-critical regime (p, < 1). For the
super-critical regime (p, > 1), the behavior in T is very instructive. For T € {0.1,5,100}, we are
tight for most network types when p,, is high. For T' = 1 (the average transmission time for the
(7ij) (s,j)ee)» the maximum influence varies a lot across different graphs. This follows the intuition
that this is one of the times where, for a given final number of infected node, the local structure of
the networks will play the largest role through precise temporal evolution of the infection. Because
pa €xplains quite well the final size of the infection, this discrepancy appears on our graphs at p,,
fixed. While our bound does not seem tight for this particular time, the order of magnitude of the
explosion time is retrieved and our bounds are close to optimal values as soon as T = 5.

In order to further validate that our bounds give meaningful insights on the critical time of explosion
for super-critical graphs, Figure[2] presents the empirical influence with respect to the size of the
network n for different network types and values of 7', with p, fixed to p, = 4. In this setting, the
critical time of Corollaryis given by T¢* = 2(;57_"1)/\ = 1.15. We see that our bounds are tight
for totally connected networks for all values of 7' € {0.2,2,5}. Moreover, the accuracy of critical
time estimation is proved by the drastic change of behavior around 7' = T°°*, with phase transitions
having occurred for most network types as soon as T' = 57°¢".

6 Conclusion

In this paper, we characterize the phase transition in continuous-time information cascades between
their sub-critical and super-critical behavior. We provide for the first time general influence bounds
that apply for any time horizon, graph and set of influencers. We show that the key quantities
governing this phenomenon are the spectral radii of given Laplace Hazard matrices. We prove the
pertinence of our bounds by deriving the first results of this type in several application fields. Finally,
we provide experimental evidence that our bounds are tight for a large family of networks.
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