
Online Appendix To: Is Approval Voting Optimal Given Approval Votes?

A Calculations for the Counterexamples in Theorem 1

Recall from Equation (1) that the likelihood of an alternative a given n (k-approval) votes V is
proportional to

L(V, a) ,
∑

σ∗:σ∗(1)=a

∑
π:π→V

ϕd(π,σ
∗) =

∑
σ∗:σ∗(1)=a

n∏
i=1

[ ∑
πi:πi→Vi

ϕd(πi,σ
∗)

]
.

In this section, we illustrate how to use this formula to verify the counterexamples used in the proof
of Theorem 1. We show the detailed procedure in the case of the counterexample used for distances
dMD , dCY , and dHM . The counterexample for dFR can be verified similarly.

Recall the counterexample for d ∈ {dMD , dCY , dHM }. We have 5 voters providing 2-approval
votes over the set of 4 alternatives A = {a, b, c, d}, where

V1 = V2 = {b, c}, V3 = {a, d}, V4 = {a, b}, V5 = {a, c}.

We want to verify that under the Mallows model with d ∈ {dMD , dCY , dHM }, an approval winner
(in particular, a) is not an MLE best alternative for any value of ϕ ∈ (0, 1) by showing that a
different alternative b has greater likelihood. Let T ∗a (resp. T ∗b ) denote the set of rankings of A that
place a (resp. b) in the first position, i.e.,

T ∗a =
{
a � b � c � d, a � b � d � d,
a � c � b � d, a � c � d � b,
a � d � b � c, a � d � c � b

}
,

T ∗b =
{
b � a � c � d, b � a � d � d,
b � c � a � d, b � c � d � a,
b � d � a � c, b � d � c � a

}
.

For i ∈ [5], let Ti = {πi ∈ L(A)|πi → Vi} denote the set of rankings that could generate the
k-approval vote Vi, i.e.,

T1 = T2 = {b � c � a � d, b � c � d � a, c � b � a � d, c � b � d � a},
T3 = {a � d � b � c, a � d � c � b, d � a � b � c, d � a � c � b},
T4 = {a � b � d � c, a � b � c � d, b � a � d � c, b � a � c � d},
T5 = {a � c � d � b, a � c � b � d, c � a � d � b, c � a � b � d}.

Using these, we can now evaluate the likelihoods

L(V, a) =
∑
σ∗∈T∗a

5∏
i=1

[ ∑
πi∈Ti

ϕd(πi,σ
∗)

]
, L(V, b) =

∑
σ∗∈T∗b

5∏
i=1

[ ∑
πi∈Ti

ϕd(πi,σ
∗)

]
.

Using a computer program, it can be verified that for d ∈ {dMD , dHM , dCY }, the difference in
likelihoods L(V, b) − L(V, a), which is a polynomial in ϕ, has no roots in (0, 1), and is positive at
ϕ = 0.5. Hence, due to the intermediate value theorem, it must be positive in the entire interval.
Hence, a is not an MLE best alternative for any value of ϕ ∈ (0, 1), as required.

B Mildness of the Conditions in Theorem 2

In this section, we want to prove that the conditions in Theorem 2 are mild, by showing that they hold
for popular distance metrics. Let Ti,j(σ∗) = {σ ∈ L(A)|σ−1(σ∗(i)) ≤ j} be the set of rankings
where alternative in position i in σ∗ appears among the top j positions. Caragiannis et al. [9] study
three of our distance metrics: the Kendall tau distance, the footrule distance, and the maximum
displacement distance. Combining their Lemma 5.5 and Theorem 5.9, one gets the following lemma.
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Lemma 1 ([9]). For d ∈ {dKT , dFR, dMD}, σ∗ ∈ L(A), i, i′ ∈ [m] with i < i′, and j ∈ [m − 1],
there exists a bijection f : Ti,j(σ

∗) → Ti′,j(σ
∗) such that d(f(σ), σ∗) ≥ d(σ, σ∗) for all σ ∈

Ti,j(σ
∗), and d(f(σ), σ∗) > d(σ, σ∗) for at least one σ ∈ Ti,j(σ∗).

That is, rankings placing a less preferred alternative among the top positions are generally farther
away from σ∗; this is highly intuitive. We use this property to establish our required conditions
for the three distance metrics {dKT , dFR, dMD}. For the Cayley and the Hamming distances, un-
fortunately, Caragiannis et al. [9] give an example demonstrating that they violate the property in
Lemma 1. For these metrics, we give a different result that is sufficient for our purpose. First, we
need the following characterization (see, e.g., [9]) of the Cayley distance.

The Cayley distance: Given two rankings σ1 and σ2, suppose we want to convert σ1 to σ2 by
pairwise swaps of alternatives. We create a directed graph (let us call it the conversion graph) over
the alternatives where each alternative a points to the alternative σ1(σ−12 (a)), that is, the alternative
whose position in σ1 matches the position of a in σ2. This indicates that we need to move a to the
position of this alternative in σ1. It can be checked that this graph is a collection of disjoint directed
cycles, and the Cayley distance between the two rankings is m minus the number of cycles.

We are now ready to prove two useful results.

Lemma 2. Let d ∈ {dCY , dHM }, σ1, σ2 ∈ L(A), and i, j ∈ [m]. For t ∈ [2], let σ̂t =
(σt)σt(i)↔σt(j) denote the ranking obtained by swapping alternatives at positions i and j in σt.
Then, d(σ1, σ2) = d(σ̂1, σ̂2).

Proof. For the Hamming distance, this follows immediately from the definition. For the Cayley dis-
tance, the result follows directly from the definition of the conversion graph. Indeed, when we swap
alternatives in positions i and j in two rankings σ1 and σ2, for every alternative a the alternative in
position σ−12 (a) in σ1 is the same, before or after the swap. In other words, the function σ1(σ−12 (·)),
which induces the conversion graph, remains intact. Hence, the Cayley distance remains intact, as
required. � (Proof of Lemma 2)

Note that swapping alternatives in two fixed positions in two rankings is different from swapping
two fixed alternatives. Hence, Lemma 2 is not satisfied by all neutral distance metrics.

Lemma 3. For d ∈ {dCY , dHM }, σ ∈ L(A), and i ∈ [m − 1], there exists a bijection f :
Ti,1(σ

∗)→ Ti+1,1(σ
∗) such that

1. for i ≥ 2, d(f(σ), σ∗) = d(σ, σ∗) for all σ ∈ Ti,1(σ∗), and

2. for i = 1, d(f(σ), σ∗) > d(σ, σ∗) for all σ ∈ T1,1(σ∗).

Proof. The Hamming distance, i ≥ 2: Let d = dHM . Fix rankings σ∗ ∈ L(A) and σ ∈ Ti,1(σ∗).
Let ai = σ∗(i) = σ(1) and ai+1 = σ∗(i + 1). Next, let σ̂ and σ̂∗ denote the rankings obtained by
swapping the alternatives in positions i and i + 1 in σ and σ∗, respectively. Lemma 2 implies that
d(σ, σ∗) = d(σ̂, σ̂∗). Further, i ≥ 2 implies that σ̂(1) = σ(1) = ai. Also, σ̂∗(i + 1) = ai and
σ̂∗(i) = ai+1. Finally, we exchange the labels of alternatives ai and ai+1. Applying this operation
on σ̂∗ yields σ∗ back. Let σ̃ denote the ranking obtained by applying this operation to σ̂. Then,
clearly, σ̃(1) = ai+1 = σ∗(i + 1). Hence, σ̃ ∈ Ti+1,1(σ

∗). Due to the neutrality of the Hamming
distance, d(σ̃, σ∗) = d(σ̂, σ̂∗) = d(σ, σ∗). The proof is complete by assigning f(σ) = σ̃ for
every σ ∈ Ti,1(σ∗). The fact that f is a bijection follows from the observation that its two parts —
swapping alternatives in columns i and i+ 1, and exchanging the labels of alternatives ai and ai+1

— are bijections themselves.

The Cayley distance, i ≥ 2: Let d = dCY . For the Cayley distance, we use the same bijection
that we used for the Hamming distance. Once again, the first operation (swapping alternatives in
positions i and i + 1) keeps the Cayley distance intact due to Lemma 2, and the second operation
(exchanging labels of alternatives ai and ai+1) keeps the Cayley distance intact due to the neutrality
of the metric. Hence, we get that d(f(σ), σ∗) = d(σ, σ∗), as required.

The Hamming distance, i = 1: Let d = dHM . Let σ∗ ∈ L(A) and σ ∈ T1,1(σ
∗). Again, let

a1 = σ∗(1) = σ(1) and a2 = σ∗(2). Let t = σ−1(a2). Let f(σ) = σa1↔a2 . Observe that not only
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f(σ) ∈ T2,1(σ∗), but f is a bijection from T1,1(σ
∗) to T2,1(σ∗). Next, note that only positions 1 and

t are affected when we swap alternatives a1 and a2 in σ. Hence, to show d(f(σ), σ∗) > d(σ, σ∗),
we only need to establish that

I[f(σ)(1) 6= σ∗(1)] + I[f(σ)(t) 6= σ∗(t)] > I[σ(1) 6= σ∗(1)] + I[σ(t) 6= σ∗(t)]. (4)

However, in the LHS, we have I[f(σ)(1) 6= σ∗(1)] = I[a2 6= a1] = 1 and I[f(σ)(t) 6= σ∗(t)] =
I[a1 6= σ∗(t)] = 1, whereas in the RHS, we have I[σ(1) 6= σ∗(1)] = I[a1 6= a1] = 0. Hence,
Equation (4) holds, as required.

The Cayley distance, i = 1: Let d = dCY . Let σ∗ ∈ L(A) and σ ∈ T1,1(σ
∗). Again, let

a1 = σ∗(1) = σ(1) and a2 = σ∗(2). Define f(σ) = σa1↔a2 . Once again, f is a bijection from
T1,1(σ

∗) to T2,1(σ∗). Next, let us compare two conversion graphs: graph G1 for converting σ to
σ∗, and graph G2 for converting f(σ) to σ∗. It can be checked that G2 is identical to G1 except
that, instead of having a self-loop at a1 as in G1, a1 has an incoming edge that was originally
incoming to a2 in G1, and a1 has an outgoing edge to a2. In other words, G1 has a self-loop at
a1, which, in G2, is absorbed into the loop that contains a2. Thus, G2 has one less cycle than
G1, i.e., d(f(σ), σ∗) > d(σ, σ∗), as required. Note that this is also true in the special case where
σ(2) = a2. In that case, G1 has self-loops at both a1 and a2, whereas G2 has a 2-cycle between a1
and a2. � (Proof of Lemma 3)

We are now ready to analyze the conditions for plurality and veto votes in Theorem 2.
Theorem 4. For i ∈ [m], let pi and qi denote the probabilities of the alternative in position i in the
true ranking σ∗ appearing in the first and the last positions, respectively, under the Mallows model
with distance metric d. Then,

1. For d ∈ {dKT , dFR, dMD}, we have p1 > pi > 0 and 0 < q1 < qi for i ∈ {2, . . . ,m}.

2. For d ∈ {dCY , dHM }, we have p1 > pi > 0 for i ∈ {2, . . . ,m}.

Proof. Note that pi, qi > 0 holds trivially for all i ∈ [m] because under the Mallows model (with any
distance metric and ϕ > 0), every ranking has a positive probability. For d ∈ {dKT , dFR, dMD},
we directly leverage Lemma 1. Fix σ∗ ∈ L(A). Let f denote the bijection established in Lemma 1
from Ti,1(σ

∗) to Ti+1,1(σ
∗). For i ∈ [m− 1], under the Mallows model we have

pi − pi+1 =
1

Zmϕ
·

 ∑
σ∈Ti,1(σ∗)

ϕd(σ,σ
∗) −

∑
σ∈Ti+1,1(σ∗)

ϕd(σ,σ
∗)


=

1

Zmϕ
·

∑
σ∈Ti,1(σ∗)

[
ϕd(σ,σ

∗) − ϕd(f(σ),σ
∗)
]

> 0,

where the last inequality follows because Lemma 1 ensures d(f(σ, σ∗)) ≥ d(σ, σ∗) for every σ ∈
Ti,1(σ

∗), and d(f(σ, σ∗)) > d(σ, σ∗) for at least one σ ∈ Ti,1(σ
∗). Hence, pi > pi+1 for all

i ∈ [m− 1], which directly implies p1 > maxi∈{2,...,m} pi.

Using a similar argument, we can also see that for i ∈ [m− 1],

(1− qi)− (1− qi+1) =
1

Zmϕ
·

 ∑
σ∈Ti,m−1(σ∗)

ϕd(σ,σ
∗) −

∑
σ∈Ti+1,m−1(σ∗)

ϕd(σ,σ
∗)

 > 0.

Hence, we have that qi < qi+1 for all i ∈ [m−1]; it follows that q1 < mini∈{2,...,m} qi, as required.

The argument for the Hamming and the Cayley distances, i.e., for d ∈ {dHM , dCY }, is similar, but
we use Lemma 3 instead of Lemma 1. It can be checked that this leads to p1 > p2 and pi = pi+1 for
i ∈ {2, . . . ,m− 1}. This still implies p1 > maxi∈{2,...,m} pi, as required. � (Proof of Theorem 4)

Caragiannis et al. [9] show (in Appendix D.4 in the full version of their paper) that in the case of
the Cayley distance (resp., the Hamming distance) with m = 3, both σ∗(1) and σ∗(2) appear last
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in exactly two rankings: one at distance 1 (resp., 3) from σ∗, and another at distance 2 from σ∗.
Hence, under any noise model where the probability of a ranking is a function of its distance from
σ∗ (e.g., under the Mallows model), we have q1 = q2, which violates the condition for veto votes in
Theorem 2.

C Continued Proof of Theorem 3

While for the footrule distance we could show that only approval winners minimize L0(V, a), for the
Cayley and the Hamming distances it can be shown that even alternatives with suboptimal approval
score might sometimes minimize L0(V, a). In many cases, several higher orders of tie-breaking do
not help distinguish approval winners from other alternatives. Hence, we devise a way to completely
avoid the analysis of multiple levels of tie-breaking.

First, we say that a set S1 is lexicographically smaller than another set S2 if, after sorting their ele-
ments in non-decreasing order and comparing from the lowest to the highest, when they differ for the
first time S1 has a smaller element than S2. Recall that in theϕ→ 0 case, we can determine the MLE
best alternative as follows. We consider the set of distances Da = {d(π, σ∗)}σ∗:σ∗(1)=a,π:π→V for
each alternative a. Then, the alternative whose set is lexicographically smallest is the MLE best
alternative. There may be multiple tied MLE best alternatives whose sets are identical. We are now
ready to prove the following simple and useful lemma.

Lemma 4. Let distance metric d ∈ {dCY , dHM }. For alternatives a, b ∈ A, define

ma,−b = min
σ∗:σ∗(1)=a∧(σ∗)−1(b)>k

π:π→V

d(π, σ∗).

Then, there exists ϕ∗ > 0 such that for all 0 < ϕ ≤ ϕ∗, alternative a has higher likelihood than
alternative b if ma,−b < mb,−a.

Proof. Let La,b(A) = {σ∗ ∈ L(A)|σ∗(1) = a ∧ (σ∗)−1(b) ≤ k (i.e., the set of rankings that put
a first and b among the top k positions), and π = {π|π → V }. For σ∗ ∈ La,b(A) and π ∈ π,
let σ̂∗ and π̂ denote the ranking and the profile obtained by swapping alternatives at positions 1
and (σ∗)−1(b) in σ∗ and in every πi ∈ π, respectively. Then, it can be checked that (σ∗, π) ↔
(σ̂∗, π̂) is a bijection from La,b(A)× π to Lb,a(A)× π. Further, Lemma 2 implies that d(π, σ∗) =
d(π̂, σ̂∗). Hence, when comparingDa toDb, rankings that put a first and b among the top k positions
cancel out with rankings that put b first and a among the top k positions. The result now follows
immediately. � (Proof of Lemma 4)

We now use Lemma 4 to analyze the Cayley and the Hamming distances.

ϕ→ 0, the Cayley and the Hamming distances: We show that if alternative a is an approval
winner while alternative b is not, then there exists ϕ∗ > 0 such that for all 0 < ϕ ≤ ϕ∗, alternative a
has a higher likelihood of being the best alternative than b. Due to Lemma 4, it is sufficient to show
that ma,−b < mb,−a.

Fix a ranking σ∗ ∈ L(A). We can show that the profile π with π → V that minimizes the distance
from σ∗ must also satisfy condition X in the proof for the footrule distance. For i ∈ [n], define
Ai = (Vi ∩ σ∗([k]))∪ ((A \ Vi)∩ σ∗([m] \ [k])). In words, Ai is the set of alternatives that we can
place in the same position in πi as in σ∗ given the restriction πi → Vi. Condition X says that πi and
σ∗ would indeed agree on the positions of the alternatives in Ai, for each i ∈ [n].

For the Hamming distance, observe that the restriction π → V ensures that dHM (πi, σ
∗) ≥ |A\Ai|.

The lower bound is achieved by satisfying conditionX , i.e., putting all alternatives inAi in the same
positions in πi as they are in σ∗.

For the Cayley distance, note that

dCY (πi, σ
∗) ≥ 1

2
· dHM (πi, σ

∗) ≥ 1

2
· |A \Ai|.

Once again, to achieve this lower bound, we must align πi with σ∗ on the alternatives inAi, and pair
up alternatives from A \ Ai in πi such that for every a ∈ A \ Ai, there exists a unique b ∈ A \ Ai
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with πi((σ∗)−1(a)) = b and πi((σ∗)−1(b)) = a. The pairing is possible because the number of
alternatives from A \ Ai on each side of the boundary in πi must be equal. Therefore, the lower
bound on the distance can indeed be achieved by swapping these paired alternatives.

Define

P (σ∗) =

n∑
i=1

|A \Ai| =
k∑
t=1

(n− SCAPP(σ∗(t))) +

m∑
t=k+1

SCAPP(σ∗(t)).

Then, we have established that for the Hamming distance, minπ:π→V dHM (σ∗, π) = P (σ∗), and
for the Cayley distance, minπ:π→V dCY (σ∗, π) = (1/2) · P (σ∗). Further, note that P (σ∗) =

C −
∑k
t=1 SCAPP(σ∗(t)), where C is independent of σ∗. Hence, minimizing minπ:π→V d(σ

∗, π)

reduces to, in both cases, maximizing
∑k
t=1 SCAPP(σ∗(t)).

We are not done yet, because a ranking can maximize the sum of approval scores of its top k
alternatives while not placing the alternative with the maximum approval score at the top. However,
Lemma 4 comes to our rescue. Let

wa,−b = max
σ∗:σ∗(1)=a∧(σ∗)−1(b)>k

k∑
t=1

SCAPP(σ∗(t)).

Then, we only need to show that wa,−b > wb,−a for any two alternatives a, b ∈ A such that a is an
approval winner, while b is not.

By the choice of a and b, SCAPP(a) > SCAPP(b). For i ∈ [m], let Si denote the sum of the i highest
approval scores. If the approval score of b is among the k highest approval scores, then clearly
wa,−b = Sk+1 − SCAPP(b) and wb,−a = Sk+1 − SCAPP(a). Hence, wa,−b > wb,−a, as required.

If the approval score of b is not among the k highest approval scores, then there are two cases.

1. There are at most k approval winners. In this case, we can see that wa,−b = Sk while
wb,−a < Sk (because in the latter case, we need to find a ranking that does not put a among
the top k positions).

2. There are t approval winners, where t > k. In this case, while wa,−b = wb,−a = Sk,
and thus the exponents ma,−b and mb,−a in the likelihood expression — Equation (1) —
are equal, the number of terms achieving this exponent in the likelihood function of b is
proportional to

(
t
k

)
, while the number of terms achieving this exponent in the likelihood

function of a is proportional to
(
t−1
k

)
(because in the latter case, an approval winner — a

— is not allowed to be among the top k positions). Hence, the tie is broken in favor of a.

ϕ→ 0, the maximum displacement distance:

Consider the following vote profile V over the set of alternatives A = {a, b, c, d, e}.
V1 = {a, b} V2 = {a, c} V3 = {b, c} V4 = {c, d} V5 = {c, e} V6 = V7 = {d, e}.

Note that alternative c is the unique approval winner with an approval score of 4. However, it can
be checked that L0(V, d) = L0(V, e) = 11 < 13 = L0(V, c). Hence, neither of the two MLE best
alternatives (d and e) is an approval winner, as required.

ϕ→ 1, all five distances: The case of ϕ → 1 is easier because, as we will show, the analysis of
L1(V, ·) is sufficient to differentiate approval winners from other alternatives for all five distance
metrics. Let the distance metric be denoted d ∈ {dKT , dFR, dCY , dHM , dMD}. Note that for an
alternative a ∈ A,

L1(V, a) =
∑

σ∗:σ∗(1)=a

∑
π:π→V

d(π, σ∗)

=
∑

σ∗:σ∗(1)=a

n∑
i=1

∑
πi:πi→Vi

d(πi, σ
∗)

=

n∑
i=1

∑
πi:πi→Vi

 ∑
σ∗:σ∗(1)=a

d(πi, σ
∗)

 . (5)
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Now, define St(πi) =
∑
σ∗∈L(A):σ∗(1)=πi(t)

d(σ∗, πi). That is, St(πi) is the sum of distances of πi
from all rankings that put its tth ranked alternative first. Due to neutrality of the distance metric d,
this quantity is independent of the ranking πi. Substituting this into Equation (5), we get

L1(V, a) =

n∑
i=1

∑
πi:πi→Vi

S
π−1
i (a)

=

n∑
i=1

I[a ∈ Vi] ·

[
k! · (m− k − 1)! ·

k∑
j=1

Sj

]
+ I[a /∈ Vi] ·

(k − 1)! · (m− k)! ·
m∑

j=k+1

Sj


= k! · (m− k)! ·

[
SCAPP(a) ·

∑k
j=1 Sj

k
+ (n− SCAPP(a)) ·

∑m
j=k+1 Sj

m− k

]

= k! · (m− k)! · n ·
∑m
j=k+1 Sj

m− k + k! · (m− k)! · SCAPP(a) ·

[∑k
j=1 Sj

k
−
∑m
j=k+1 Sj

m− k

]
.

To show that this quantity is minimized when a is an approval winner, we need to show that

Pk =

∑k
j=1 Sj

k
−
∑m
j=k+1 Sj

m− k
(6)

satisfies Pk < 0 for all k ∈ [m− 1]. To that end, we show the following lemma.
Lemma 5. The following statements hold.

1. For distance d ∈ {dKT , dFR, dMD}, we have Si < Si+1 for all i ∈ [m− 1].

2. For distance d ∈ {dCY , dHM }, we have S1 < S2 and Si = Si+1 for all i ∈ {2, . . . ,m−1}.

Proof. Consider a bijection f from Ti,1(σ
∗) to Ti+1,,1(σ

∗). Then, for i ∈ [m− 1],

Si+1 − Si =
∑

σ∈Ti+1,1(σ∗)

d(σ, σ∗)−
∑

σ∈Ti,1(σ∗)

d(σ, σ∗)

=
∑

σ∈Ti,1(σ∗)

d(f(σ), σ∗)− d(σ, σ∗).

Now, for d ∈ {dKT , dFR, dMD}, Lemma 1 ensures the existence of a bijection f for which
d(f(σ), σ∗) ≥ d(σ, σ∗) for all σ ∈ Ti,1(σ

∗), and d(f(σ), σ∗) > d(σ, σ∗) for at least one
σ ∈ Ti,1(σ∗). Hence, it follows that Si+1 > Si for all i ∈ [m− 1], as required.

For d ∈ {dCY , dHM }, Lemma 3 ensures the existence of a bijection f such that for all σ ∈ Ti,1(σ∗),
we have d(f(σ), σ∗) = d(σ, σ∗) if i ≥ 2, and d(f(σ), σ∗) > d(σ, σ∗) if i = 1. Hence, it follows
that S2 > S1 and Si+1 = Si for all i ∈ {2, . . . ,m− 1}. � (Proof of Lemma 5)

Using Lemma 5, it is easy to check that Pk < 0 in Equation (6), as required.� (Proof of Theorem 3)
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