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Abstract

Supplementary material for the Embed to Control paper. We provide additional
details for the derivation of the E2C model in Section 1 . Section 2 exhaustively
details our experimental setup, while Section 3 provides additional evaluations
and visualizations of planned trajectories and latent spaces.

1 Supplementary to the E2C description

1.1 State transition matrix factorization and KL Divergence

As alluded to in the main paper, estimation of the full local state transition matrix At ∈ Rnz×nz

from Equation (8) requires the transition network to predict nz × nz parameters. Using an arbitrary
state transition matrix also – inconveniently – requires inversion of said matrix for computing the KL
divergence penalty from Equation (11) (through which it is hard to backpropagate). We started our
experiments using a full matrix (and only approximating all KL divergence terms), but quickly found
that a rank one pertubation of the identity matrix could be used instead without loss of performance
in any of our benchmarks. To the contrary, the resulting networks have fewer parameters and are
thus easier to train. We here give the derivation of this process and how the KL divergence from
Equation (11) can be computed. For the reformulation we represent At as At = I+vtr

T
t , therefore

only vt and rt need to be estimated by the transition network, reducing the number of outputs for
At from n2z to 2nz .

The KL divergence between two multivariate Gaussians is given by

KL(N0||N1) =
1

2

(
Tr
(
Σ−1

1 Σ0

)
+ (µ1 − µ0)

TΣ−1
1 (µ1 − µ0)− k + log

(
detΣ1

detΣ0

))
. (1)

For a simplified notation, such that KL(N0||N1) = KL(Q̂||Q), let us assume

N0 = N (µ0,AΣ0A
T ) = N (µt,AtΣtA

T
t ) = Q̂,

N1 = N (µ1,Σ1) = N (µt+1,Σt+1) = Q.

The main point behind the derivation presented in the following, is to make partial derivatives of the
above KL divergence efficiently computable. To this end, we cannot take the trace or the determinant
via numerical algorithms, because we have to be able to take the gradients in symbolic form. Aside
from that, we like to process a batch of samples, so the computation should have a convenient form
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and not require excessive amounts of tensor products in between. We start our simplification with
the trace term which results in
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The last equation is easy to implement and only requires summing over the non-batch dimension.
The difference of means can be derived very quickly with the same summing scheme:

(µ1 − µ0)
TΣ−1

1 (µ1 − µ0) =
∑
i

(µ1 − µ0)
2
i

σ2
1,i

.

It remains the ratio of determinants, which we will simplify with the matrix determinant lemma
giving

log

(
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detAΣ0AT

)
= log detΣ1 − log det
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T
)

= log
∏
i

σ2
1,i − log

(
detA · detΣ0 · detAT

)
detAT = detA

= 2
∑
i

log σ1,i − log

(
(detA)2

∏
i

σ2
0,i

)
Matrix determinant lemma
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Putting the above to formulas together finally yields
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2 Supplementary to the experimental setup

2.1 Up-convolution

We used convolutional inference networks for the cart-pole and three-link arm task. While these
networks help us overcome the problem of large input dimensionalities (i.e. 2 × 128 × 128 pixel
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images in the three-link arm task), we still have to generate full resolution images with the decoder
network. For high-dimensional images generation fully connected neural networks are simply not an
option. We thus decided to use up-convolutional networks, which were recently show to be powerful
models for image generation [1, 2, 3].

To set-up these models we basically “mirror” the convolutional architecture used for the encoder.
More specifically for each 5 × 5 convolution followed by 2 × 2 max-pooling step in the encoder
network, we introduce a 2 × 2 up-sampling and 5 × 5 convolution step in the decoder network.
The complete network architecture is given below. It is similar to the up-convolution networks used
in Dosovitskiy et al. [2]. The upsampling strategy we use is simple “perforated” upsampling as
described in [4].

2.2 Variational Autoencoder with slowness

Enforcing temporal slowness during learning has previously been found to be a good proxy for
learning representations in reinforcement learning [5, 6] and representation learning from videos
[7]. We also consider a VAE variant with a slowness term on the latent representation by enforcing
similarity of the encodings of temporally close images. This can be achieved by augmenting the
standard VAE objective Lbound with an additional KL divergence term on the latent posterior Qφ:

Lslow(xt,xt+1) = KL(Qφ(zt+1|xt+1)‖Qφ(zt|xt)). (3)

Indeed there seems to be a slightly better coherence of similar states in the latent spaces, as e.g.
depicted in Figure 4 in the main paper. Yet, our experiments show that a slowness term alone does
not suffice to structure the latent space, such that locally linear predictions and control become
feasible.

2.3 Evaluation criteria

For comparing the performance of all variants of E2C and the baselines, the following criteria are of
importance:

• Autoencoding. Being able to reconstruct the given observations is the basic necessity for
a model to work. The reconstruction cost drives a model to identify single states from its
observations.

• Decoding the next state. For any planning to be possible at all, the decoder must be able
to generate the correct images from transitions the dynamics model performed. If this is
not the case, we know that the latent states of the encoding and the transition model do not
coincide, thus preventing any planning.

• Optimizing latent trajectory costs. The action sequences for achieving a specified goal
will be determined completely by locally linearized dynamics in the latent space. Therefore
minimizing trajectory costs in latent space is, again, a necessity for successful control.

• Optimizing real trajectory costs. While the action sequence has been determined for
the latent dynamics, the deciding criterion is whether this reflects the true state trajectory
costs. Therefore carrying out the ”dreamed” plans in reality is the optimality criterion for
every model. To make the different models comparable, we use the same cost matrices for
evaluation, which are not necessarily the same as for optimization.

We reflected these four criteria in the evaluation table in the paper. For the reconstruction of the
current and next state we specified the mean log loss, which is in case of the Bernoulli distributions
the cross entropy error function:

log p(x|x̂) = 1

N

N∑
n=1

nx∑
i=0

xn,i log x̂n,i + (1− xn,i) log(1− x̂n,i). (4)

For the costs a model imagines and truly achieves, we sample from different starting states and
accumulate the distances in latent and true state space according to the SOC method.
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2.4 The three-link robot arm

The robot arm we used in the last experiment in the main paper was simulated using dynamics gen-
erated by the MapleSim http://www.maplesoft.com/products/maplesim/ simulator
wrapped in Python and visualized for producing inputs to E2C using PyGame. We simulated a fairly
standard robot arm with three links. The length of the links were set to 2, 1.2 and 0.7 (units were set
to meters). The masses of the corresponding links were all set to 10kg.

2.5 Evaluating the true system model

To compare the efficacy of different models when combined with optimal control algorithms, we
always reported the cost in latent space (as used by the optimal control algorithm) as well as the
“real” trajectory cost. To compute this real cost, we evaluated the same cost function as in the latent
space (quadratic costs on the deviation from a given goal state), but using the real system states
during execution and different cost matrices for a fair comparison.

As an upper bound on the performance achievable for control by any of the models, we also com-
puted the true system cost by applying iLQR/AICO to a model of the real system dynamics. We
have this model available since all experiments were performed in simulation.

2.6 Neural Network training

2.6.1 Experimental Setup

All the datasets were created in advance as D = {(x1,u1,x2), . . . , (xT−1,uT−1,xT )} for the
training, validation and test split. While the E2C models were trained on D, the ones that do not in-
corporate any transition information (i.e. AE, VAE) were trained on imagesDimages = {x1, . . . ,xT }
extracted from the original dataset D. The slowness VAE was trained on the pairs of images subset
Dpairs = {(x1,x2), . . . , (xT−1,xT )} and our E2C models on the full D.

In order to learn dynamics predictions for the image-only autoencoders, we extracted
the latent representations and combined them with the actions from D into Ddynamics =
{(z1,u1, z2), . . . , (zT−1,uT−1, zT )}. On these low-dimensional representations we trained the
dynamics MLPs, thus ensuring that all methods were trained on exactly the same data.

2.6.2 Implementation details

We used orthogonal weight initialization for every layer [8]. As described in the main paper, Adam
[9] was used as the learning rule for all networks. We found both these techniques to be fundamen-
tally important for stabilizing training and achieving good reconstructions for all methods. Both
methods also clearly helped to cut the hyperparameter search needed for all methods to a minimum.
In the process of training, we could make out three phases: the unfolding of the latent space, the
overcoming of the trivial solution (the average image of the dataset) and the minimization of the
latent KL term. The architectures used for our experiments were as follows (where ReLU stands for
rectified linear units [10] and conv. for convolutions):

Plane

• Input: 402 image dimensions, 2 action dimensions
• Latent Space dimensionality: 2
• Encoder: 150 ReLU - 150 ReLU - 150 ReLU - 4 Linear (2 for AE)
• Decoder: 200 ReLU - 200 ReLU - 1600 Linear (Sigmoid for AE)
• Dynamics: 100 ReLU - 100 ReLU + Output layer (except Global E2C)

– AE, VAE, VAE with slowness, Non-linear E2C: 2 Linear
– E2C: 8 Linear (2 · 2 for At, 2 · 1 for Bt, 2 for ot), λ = 0.25

• Adam: α = 10−4, β2 = 0.1
• Evaluation costs: Rz = 0.1 · I, Ru = I, Ro = I

Pendulum swing-up
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• Input: 2 · 482 image dimensions, 1 action dimension
• Latent Space dimensionality: 3
• Encoder: 800 ReLU - 800 ReLU - 6 Linear (3 for AE)
• Decoder: 800 ReLU - 800 ReLU - 4608 Linear (Sigmoid for AE)
• Dynamics: 100 ReLU - 100 ReLU + Output layer (except Global E2C)

– AE, VAE, VAE with slowness, Non-linear E2C: 3 Linear
– E2C: 12 Linear (2 · 3 for At = (I + vtr

T
t ), 3 · 1 for Bt, 3 for bt), λ = 0.25

• Adam: α = 3 · 10−4, β2 = 0.1
• Evaluation costs: Rz = I, Ru = 0.1I, Ro = I

Cart-Pole balancing

• Input: 2 · 802 image dimensions, 1 action dimension
• Latent Space dimensionality: 8
• Encoder: 32× 5× 5 ReLU - 32× 5× 5 ReLU - 32× 5× 5 ReLU - 512 ReLU - 512 ReLU
• Decoder: 512 ReLU - 512 ReLU - 2×2 up-sampling - 32×5×5 ReLU - 2×2 up-sampling

- 32× 5× 5 ReLU - 2× 2 up-sampling - 32× 5× 5 conv. ReLU
• Dynamics: 200 ReLU - 200 ReLU + 32 Linear (2 · 8 for At = (I + vtr

T
t ), 8 · 1 for Bt, 8

for bt), λ = 1
• Adam: α = 10−4, β2 = 0.1
• Evaluation costs: Rz = I, Ru = I

Three-link arm

• Input: 2 · 1282 image dimensions, 3 action dimensions
• Latent Space dimensionality: 8
• Encoder: 64 × 5 × 5 conv. ReLU - 2 × 2 max-pooling - 32 × 5 × 5 conv. ReLU - 2 × 2

max-pooling - 32× 5× 5 conv. ReLU - 2× 2 max-pooling - 512 ReLU - 512 ReLU
• Decoder: 512 ReLU - 512 ReLU - 2×2 up-sampling - 32×5×5 ReLU - 2×2 up-sampling

- 32× 5× 5 ReLU - 2× 2 up-sampling - 64× 5× 5 conv. ReLU
• Dynamics: 200 ReLU - 200 ReLU + 48 Linear (2 · 8 for At = (I + vtr

T
t ), 8 · 3 for Bt, 8

for bt), λ = 1
• Adam: α = 10−4, β2 = 0.1
• Evaluation costs: Rz = I, Ru = 0.001I

True State

AE

VAE

VAE with slowness

Non-linear E2C

Global E2C

E2C

Figure 1: Generated “dreamed” trajectories of different models for the plane task (from left to right).
The opacity of the obstacles has been lowered in this depiction for better visibility of the agent.
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3 Supplementary evaluations

3.1 Trajectories for plane and pendulum

To qualitatively measure the predictive accuracy, the starting state for a trajectory is encoded and the
actions are applied on the latent representation. After each transition, the predicted latent position
is decoded and visualized. In this manner, multi-step predictions can be generated for the planar
system in Figure 1 and for the inverted pendulum in Figures 2 and 3.

True State

AE

VAE

VAE with slowness

Non-linear E2C

Global E2C

E2C

Figure 2: Generated “dreamed” trajectories (from left to right) for passive dynamics: the pendulum
starts with angle θ = −π2 without velocity. The models have to predict the dynamics, while no force
is applied.

True State

AE

VAE

VAE with slowness

Non-linear E2C

Global E2C

E2C

Figure 3: Dreamed trajectories (from left to right) for controlled dynamics: the pendulum starts
with angle θ = π

2 without velocity. For 6 timesteps, full force is applied to the right, followed by 4
timesteps of full force to the left.

3.2 Inverted pendulum latent space

Encoding the pendulum depictions into a 3-dimensional latent space allows for a visual comparison
in Figure 4 .
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Figure 4: Latent spaces of all baseline models and E2C variants for the inverted pendulum.

3.3 Trajectories for cart-pole and three-link arm

Finally – similar to the images in Section 3.1 – Figure 5 shows multi-step predictions for the cart-
pole system. We depict important cases: (1) a long-term prediction with the cart-pole standing
still (essentially the unstable fix-point of the underlying dynamics); (2) the cart-pole moving to the
right, changing the direction of the poles angular velocity (middle column); (3) and the pole moving
farthest to the right. The long-term predictions by the E2C model are all of high quality. Note that
for the uncontrolled dynamics the predictions show a slight bias of the pole moving to the right (an
effect that we consistently saw in trained models for the cart-pole). We attribute this problem to the
fact that discretization errors in the image rendering process of the pole angle make it hard to predict
small velocities accurately.

3.4 Exemplary trajectory taken for three-link arm task

Figure 6 shows a segment of a controlled trajectory for the three-link arm as executed by the E2C
system. Note that, in contrast to other figures in this supplementary material, it does not show a
long-term prediction but rather 10 steps of a trajectory (together with one-step-ahead predictions)
that was taken by the E2C system when combined with model predictive control. For additional
visualizations and controlled trajectories for all tasks we refer to the supplementary video.

3.5 Comparison of different models for cart-pole and robot arm

In Table 1 we compare our variety of models in terms of real trajectory cost and task success per-
centage on the cart-pole and the robot arm. All results are averaged over 30 different starting states
with a fixed goal state.

The cart-pole always starts in the goal state (zero angle and zero velocity) with small additive Gaus-
sian noise (σ = 0.01). Success is defined as preventing the pole from falling below an angle of
±0.85 rad. The three-link arm system begins in a random configuration and the goal is to to unroll
all joints (e.g. make all angles zero) and stay ε-close to that position.

The results show that only E2C and its non-linear variant can perform this task successfully, although
there is still a large performance gap between the two. We conclude, that the error of linearizing
non-linear dynamics after training the corresponding model grows to the point of no longer allowing
accurate control for the system.
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No Control Moving leftMoving right
Real Generated

E2C
Real Generated

E2C
Real Generated

E2C

Figure 5: Dreamed trajectories (top to bottom) for uncontrolled (left column) and controlled (mid-
dle/right column) dynamics in the cart-pole system. The red image shows the initial configuration,
which is encoded resulting in z1. The images in the right half of each column are then generated
without additional input by following the dynamics in latent space. The left column depicts the un-
controlled case (u = 0 for all steps). The middle column shows a controlled trajectory with torque
−20 applied in each step and the right column a trajectory with torque 20 applied in each step.
Prediction of the history image is omitted in these depictions.

Table 1: Comparison between trajectory costs of different approaches for the cart-pole and three-
link task. The standard Autoencoder, Variational Autoencoder and Global E2C model are omitted
from the table as they failed on this task (performance similar to VAE with slowness).

Algorithm True model VAE + slownes E2C no latent KL Non-linear E2C E2C
Cart-Pole balance

Traj. Cost 15.33 ± 7.70 49.12 ± 16.94 48.90 ± 17.88 31.96 ± 13.26 22.23 ± 14.89
Success % 100 % 0 % 0 % 63 % 93 %

Three-link arm
Traj. Cost 59.46 1275.53 ± 864.66 1246.69 ± 262.6 460.40 ± 82.18 90.23 ± 47.38
Success % 100 % 0 % 0 % 40 % 90 %
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Table 2: Comparison between AICO and iLQR based on the “real” cost for controlling the cart-pole
and three-link robot arm using convolutional networks.

Method iLQR AICO
Cart-Pole

E2C 14.56± 4.12 12.56± 2.47
True model 7.45± 1.22 7.03± 1.07

Three-Link Robot Arm
E2C 93.78± 32.98 92.99± 20.12
True model 53.59± 9.74 56.34± 10.82

3.6 Comparison of trajectory optimizers for cart-pole and robot arm

To compare how well AICO deals with the covariance matrices estimated in latent space we per-
formed an additional experiment on the cart-pole and three-link robot arm task comparing it to iLQR.
We performed model predictive control using the locally linear E2C model starting in 10 different
start states each. The remaining settings are as given in Section 3.5.

As reported in Table 2, both methods performed about the same for these tasks, indicating that the
covariance matrices estimated by our model do not “hurt” planning, but considering them does not
improve performance either.

Real Image Predicted
History Image Current Image

Figure 6: Frames extracted from a trajectory (top to bottom) as executed by the Embed to Control
system. The left column shows the real images corresponding to transitions taken in the MDP.
Middle and right column show the prediction of history image and current image based on the
previous two images.
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