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Abstract

We propose an original particle-based implementation of the Loopy Belief Prop-
agation (LPB) algorithm for pairwise Markov Random Fields (MRF) on a con-
tinuous state space. The algorithm constructs adaptively efficient proposal distri-
butions approximating the local beliefs at each note of the MRF. This is achieved
by considering proposal distributions in the exponential family whose parameters
are updated iterately in an Expectation Propagation (EP) framework. The pro-
posed particle scheme provides consistent estimation of the LBP marginals as the
number of particles increases. We demonstrate that it provides more accurate re-
sults than the Particle Belief Propagation (PBP) algorithm of [1] at a fraction of
the computational cost and is additionally more robust empirically. The compu-
tational complexity of our algorithm at each iteration is quadratic in the number
of particles. We also propose an accelerated implementation with sub-quadratic
computational complexity which still provides consistent estimates of the loopy
BP marginal distributions and performs almost as well as the original procedure.

1 Introduction

Undirected Graphical Models (also known as Markov Random Fields) provide a flexible framework
to represent networks of random variables and have been used in a large variety of applications in
machine learning, statistics, signal processing and related fields [2]. For many applications such as
tracking [3, 4], sensor networks [5, 6] or computer vision [7, 8, 9] it can be beneficial to define MRF
on continuous state-spaces.

Given a pairwise MRF, we are here interested in computing the marginal distributions at the nodes
of the graph. A popular approach to do this is to consider the Loopy Belief Propagation (LBP) algo-
rithm [10, 11, 2]. LBP relies on the transmission of messages between nodes. However when deal-
ing with continuous random variables, computing these messages exactly is generally intractable.
In practice, one must select a way to tractably represent these messages and a way to update these
representations following the LBP algorithm. The Nonparametric Belief Propagation (NBP) algo-
rithm [12] represents the messages with mixtures of Gaussians while the Particle Belief Propagation
(PBP) algorithm [1] uses an importance sampling approach. NBP relies on restrictive integrability
conditions and does not offer consistent estimators of the LBP messages. PBP offers a way to cir-
cumvent these two issues but the implementation suggested proposes sampling from the estimated
beliefs which need not be integrable. Moreover, even when they are integrable, sampling from
the estimated beliefs is very expensive computationally. Practically the authors of [1] only sample
approximately from those using short MCMC runs, leading to biased estimators.

In our method, we consider a sequence of proposal distributions at each node from which one can
sample particles at a given iteration of the LBP algorithm. The messages are then computed using
importance sampling. The novelty of the approach is to propose a principled and automated way
of designing a sequence of proposals in a tractable exponential family using the Expectation Prop-
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agation (EP) framework [13]. The resulting algorithm, which we call Expectation Particle Belief
Propagation (EPBP), does not suffer from restrictive integrability conditions and sampling is done
exactly which implies that we obtain consistent estimators of the LBP messages. The method is em-
pirically shown to yield better approximations to the LBP beliefs than the implementation suggested
in [1], at a much reduced computational cost, and than EP.

2 Background

2.1 Notations

We consider a pairwise MRF, i.e. a distribution over a set of p random variables indexed by a set
V = {1, . . . , p}, which factorizes according to an undirected graph G = (V,E) with

p(xV ) ∝
∏
u∈V

ψu(xu)
∏

(u,v)∈E

ψuv(xu, xv). (1)

The random variables are assumed to take values on a continuous, possibly unbounded, space X .
The positive functions ψu : X 7→ R+ and ψuv : X × X 7→ R+ are respectively known as the node
and edge potentials. The aim is to approximate the marginals pu(xu) for all u ∈ V . A popular
approach is the LBP algorithm discussed earlier. This algorithm is a fixed point iteration scheme
yielding approximations called the beliefs at each node [10, 2]. When the underlying graph is a tree,
the resulting beliefs can be shown to be proportional to the exact marginals. This is not the case in
the presence of loops in the graph. However, even in these cases, LBP has been shown to provide
good approximations in a wide range of situations [14, 11]. The LBP fixed-point iteration can be
written as follows at iteration t:

mt
uv(xv) =

∫
ψuv(xu, xv)ψu(xu)

∏
w∈Γu\v

mt−1
wu (xu)dxu

Btu(xu) = ψu(xu)
∏
w∈Γu

mt
wu(xu)

, (2)

where Γu denotes the neighborhood of u i.e., the set of nodes {w | (w, u) ∈ E}, muv is known as
the message from node u to node v and Bu is the belief at node u.

2.2 Related work

The crux of any generic implementation of LBP for continuous state spaces is to select a way to rep-
resent the messages and design an appropriate method to compute/approximate the message update.

In Nonparametric BP (NBP) [12], the messages are represented by mixtures of Gaussians. In theory,
computing the product of such messages can be done analytically but in practice this is impractical
due to the exponential growth in the number of terms to consider. To circumvent this issue, the
authors suggest an importance sampling approach targeting the beliefs and fitting mixtures of Gaus-
sians to the resulting weighted particles. The computation of the update (2) is then always done over
a constant number of terms.

A restriction of “vanilla” Nonparametric BP is that the messages must be finitely integrable for the
message representation to make sense. This is the case if the following two conditions hold:

sup
xv

∫
ψuv(xu, xv)dxu < ∞, and

∫
ψu(xu)dxu < ∞. (3)

These conditions do however not hold in a number of important cases as acknowledged in [3]. For
instance, the potential ψu(xu) is usually proportional to a likelihood of the form p(yu|xu) which
need not be integrable in xu. Similarly, in imaging applications for example, the edge potential can
encode similarity between pixels which also need not verify the integrability condition as in [15].
Further, NBP does not offer consistent estimators of the LBP messages.

Particle BP (PBP) [1] offers a way to overcome the shortcomings of NBP: the authors also consider
importance sampling to tackle the update of the messages but without fitting a mixture of Gaussians.
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For a chosen proposal distribution qu on node u and a draw of N particles {x(i)
u }Ni=1 ∼ qu(xu), the

messages are represented as mixtures:

m̂PBP
uv (xv) :=

N∑
i=1

ω(i)
uvψuv(x

(i)
u , xv), with ω(i)

uv :=
1

N

ψu(x
(i)
u )

qu(x
(i)
u )

∏
w∈Γu\v

m̂PBP
wu (x(i)

u ). (4)

This algorithm has the advantage that it does not require the conditions (3) to hold. The authors
suggest two possible choices of sampling distributions: sampling from the local potential ψu, or
sampling from the current belief estimate. The first case is only valid if ψu is integrable w.r.t. xu
which, as we have mentioned earlier, might not be the case in general and the second case implies
sampling from a distribution of the form

B̂PBP
u (xu) ∝ ψu(xu)

∏
w∈Γu

m̂PBP
wu (xu) (5)

which is a product of mixtures. As in NBP, naı̈ve sampling of the proposal has complexityO(N |Γu|)
and is thus in general too expensive to consider. Alternatively, as the authors suggest, one can run
a short MCMC simulation targeting it which reduces the complexity to order O(|Γu|N2) since the
cost of each iteration, which requires evaluating B̂PBP

u point-wise, is of order O(|Γu|N), and we
need O(N) iterations of the MCMC simulation. The issue with this approach is that it is still com-
putationally expensive, and it is unclear how many iterations are necessary to get N good samples.

2.3 Our contribution

In this paper, we consider the general context where the edge and node-potentials might be non-
normalizable and non-Gaussian. Our proposed method is based on PBP, as PBP is theoretically
better suited than NBP since, as discussed earlier, it does not require the conditions (3) to hold, and,
provided that one samples from the proposals exactly, it yields consistent estimators of the LBP
messages while NBP does not. Further, the development of our method also formally shows that
considering proposals close to the beliefs, as suggested by [1], is a good idea. Our core observation
is that since sampling from a proposal of the form (5) using MCMC simulation is very expensive,
we should consider using a more tractable proposal distribution instead. However it is important that
the proposal distribution is constructed adaptively, taking into account evidence collected through
the message passing itself, and we propose to achieve this by using proposal distributions lying in a
tractable exponential family, and adapted using the Expectation Propagation (EP) framework [13].

3 Expectation Particle Belief Propagation

Our aim is to address the issue of selecting the proposals in the PBP algorithm. We suggest using
exponential family distributions as the proposals on a node for computational efficiency reasons,
with parameters chosen adaptively based on current estimates of beliefs and EP. Each step of our
algorithm involves both a projection onto the exponential family as in EP, as well as a particle
approximation of the LBP message, hence we will refer to our method as Expectation Particle
Belief Propagation or EPBP for short.

For each pair of adjacent nodes u and v, we will use muv(xv) to denote the exact (but unavailable)
LBP message from u to v, m̂uv(xv) to denote the particle approximation of muv , and ηuv an expo-
nential family projection of m̂uv . In addition, let η◦u denote an exponential family projection of the
node potential ψu. We will consider approximations consisting of N particles. In the following, we
will derive the form of our particle approximated message m̂uv(xv), along with the choice of the
proposal distribution qu(xu) used to construct m̂uv . Our starting point is the edge-wise belief over
xu and xv , given the incoming particle approximated messages,

B̂uv(xu, xv) ∝ ψuv(xu, xv)ψu(xu)ψv(xv)
∏

w∈Γu\v

m̂wu(xu)
∏

ν∈Γv\u

m̂νv(xv). (6)

The exact LBP message muv(xv) can be derived by computing the marginal distribution B̂uv(xv),
and constructing muv(xv) such that

B̂uv(xv) ∝ muv(xv)M̂vu(xv), (7)
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where M̂vu(xv) = ψv(xv)
∏
ν∈Γv\u m̂νv(xv) is the (particle approximated) pre-message from v to

u. It is easy to see that the resulting message is as expected,

muv(xv) ∝
∫
ψuv(xu, xv)ψu(xu)

∏
w∈Γu\v

m̂wu(xu)dxu. (8)

Since the above exact LBP belief and message are intractable in our scenario of interest, the idea
is to use an importance sampler targeting B̂uv(xu, xv) instead. Consider a proposal distribution
of the form qu(xu)qv(xv). Since xu and xv are independent under the proposal, we can draw
N independent samples, say {x(i)

u }Ni=1 and {x(j)
v }Nj=1, from qu and qv respectively. We can then

approximate the belief using a N ×N cross product of the particles,

B̂uv(xu, xv) ≈
1

N2

N∑
i,j=1

B̂uv(x
(i)
u , x

(j)
v )

qu(x
(i)
u )qv(x

(j)
v )

δ
(x

(i)
u ,x

(j)
v )

(xu, xv) (9)

∝ 1

N2

N∑
i,j=1

ψuv(x
(i)
u , x

(j)
v )ψu(x

(i)
u )M̂vu(x

(j)
v )

∏
w∈Γu\v m̂wu(x

(i)
u )

qu(x
(i)
u )qv(x

(j)
v )

δ
(x

(i)
u ,x

(j)
v )

(xu, xv)

Marginalizing onto xv , we have the following particle approximation to B̂uv(xv),

B̂uv(xv) ≈
1

N

N∑
j=1

m̂uv(x
(j)
v )M̂vu(x

(j)
v )

qv(x
(j)
v )

δ
x
(j)
v

(xv) (10)

where the particle approximated message m̂uv(xv) from u to v has the form of the message repre-
sentation in the PBP algorithm (4).

To determine sensible proposal distributions, we can find qu and qv that are close to the target B̂uv .
Using the KL divergence KL(B̂uv‖quqv) as the measure of closeness, the optimal qu required for the
u to v message is the node belief,

B̂uv(xu) ∝ ψu(xu)
∏
w∈Γu

m̂wu(xu) (11)

thus supporting the claim in [1] that a good proposal to use is the current estimate of the node belief.
As pointed out in Section 2, it is computationally inefficient to use the particle approximated node
belief as the proposal distribution. An idea is to use a tractable exponential family distribution for
qu instead, say

qu(xu) ∝ η◦u(xu)
∏
w∈Γu

ηwu(xu) (12)

where η◦u and ηwu are exponential family approximations of ψu and m̂wu respectively. In Section
4 we use a Gaussian family, but we are not limited to this. Using the framework of expectation
propogation (EP) [13], we can iteratively find good exponential family approximations as follows.
For each w ∈ Γu, to update the ηwu, we form the cavity distribution q\wu ∝ qu/ηwu and the corre-
sponding tilted distribution m̂wuq

\w
u . The updated η+

wu is the exponential family factor minimising
the KL divergence,

η+
wu = arg min

η∈exp.fam.
KL
[
m̂wu(xu)q\wu (xu)

∥∥∥ η(xu)q\wu (xu)
]
. (13)

Geometrically, the update projects the tilted distribution onto the exponential family manifold.
The optimal solution requires computing the moments of the tilted distribution through numeri-
cal quadrature, and selecting ηwu so that ηwuq

\w
u matches the moments of the tilted distribution. In

our scenario the moment computation can be performed crudely on a small number of evaluation
points since it only concerns the updating of the importance sampling proposal. If an optimal η in
the exponential family does not exist, e.g. in the Gaussian case that the optimal η has a negative
variance, we simply revert ηwu to its previous value [13]. An analogous update is used for η◦u.

In the above derivation, the expectation propagation steps for each incoming message into u and for
the node potential are performed first, to fit the proposal to the current estimated belief at u, before
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it is used to draw N particles, which can then be used to form the particle approximated messages
from u to each of its neighbours. Alternatively, once each particle approximated message m̂uv(xv)
is formed, we can update its exponential family projection ηuv(xv) immediately. This alternative
scheme is described in Algorithm 1.

Algorithm 1 Node update

1: sample {x(i)
u } ∼ qu( · )

2: compute B̂u(x
(i)
u ) = ψu(x

(i)
u )
∏
w∈Γu

m̂wu(x
(i)
u )

3: for v ∈ Γu do
4: compute M̂uv(x

(i)
u ) := B̂u(x

(i)
u )/m̂vu(x

(i)
u )

5: compute the normalized weights w(i)
uv ∝ M̂uv(x

(i)
u )/qu(x

(i)
u )

6: update the estimator of the outgoing message m̂uv(xv) =
∑N
i=1 w

(i)
uvψuv(x

(i)
u , xv)

7: compute the cavity distribution q\◦v ∝ qv/η◦v , get η+
◦v in the exponential family such that

η+
◦vq
\◦
v approximates ψvq

\◦
v , update qv ∝ η+

◦v and let η◦v ← η+
◦v

8: compute the cavity distribution q\uv ∝ qv/ηuv , get η+
uv in the exponential family such that

η+
uvq
\u
v approximates m̂uvq

\u
v , update qv ∝ η+

uv and let ηuv ← η+
uv

9: end for

3.1 Computational complexity and sub-quadratic implementation

Each EP projection step costsO(N) computations since the message m̂wu is a mixture ofN compo-
nents (see (4)). Drawing N particles from the exponential family proposal qu costs O(N). The step
with highest computational complexity is in evaluating the particle weights in (4). Indeed, evaluating
the mixture representation of a message on a single point is O(N), and we need to compute this for
each of N particles. Similarly, evaluating the estimator of the belief on N sampling points at node
u requires O(|Γu|N2). This can be reduced since the algorithm still provides consistent estimators
if we consider the evaluation of unbiased estimators of the messages instead. Since the messages
have the form m̂uv(xv) =

∑N
i=1 w

i
uvψ

i
uv(xv), we can follow a method presented in [16] where

one draws M indices {i?`}M`=1 from a multinomial with weights {wiuv}Ni=1 and evaluates the corre-
sponding M components ψi

?
`
uv . This reduces the cost of the evaluation of the beliefs to O(|Γu|MN)

which leads to an overall sub-quadratic complexity if M is o(N). We show in the next section how
it compares to the quadratic implementation when M = O(logN).

4 Experiments

We investigate the performance of our method on MRFs for two simple graphs. This allows us
to compare the performance of EPBP to the performance of PBP in depth. We also illustrate the
behavior of the sub-quadratic version of EPBP. Finally we show that EPBP provides good results in
a simple denoising application.

4.1 Comparison with PBP

We start by comparing EPBP to PBP as implemented by Ihler et al. on a 3 × 3 grid (figure 1)
with random variables taking values on R. The node and edge potentials are selected such that the
marginals are multimodal, non-Gaussian and skewed with{

ψu(xu) = α1N (xu − yu;−2, 1) + α2G(xu − yu; 2, 1.3)
ψuv(xu, xv) = L(xu − xv; 0, 2)

, (14)

where yu denotes the observation at node u, N (x;µ, σ) ∝ exp(−x2/2σ2) (density of a Normal
distribution), G(x;µ, β) ∝ exp(−(x−µ)/β+exp(−(x−µ)/β)) (density of a Gumbel distribution)
and L(x;µ, β) ∝ exp(−|x − µ|/β) (density of a Laplace distribution). The parameters α1 and α2

are respectively set to 0.6 and 0.4. We compare the two methods after 20 LBP iterations.1

1The scheduling used alternates between the classical orderings: top-down-left-right, left-right-top-down,
down-up-right-left and right-left-down-up. One “LBP iteration” implies that all nodes have been updated once.
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Figure 1: Illustration of the grid (left) and tree (right) graphs used in the experiments.

PBP as presented in [1] is implemented using the same parameters than those in an implementation
code provided by the authors: the proposal on each node is the last estimated belief and sampled with
a 20-step MCMC chain, the MH proposal is a normal distribution. For EPBP, the approximation of
the messages are Gaussians. The ground truth is approximated by running LBP on a deterministic
equally spaced mesh with 200 points. All simulations were run with Julia on a Mac with 2.5 GHz
Intel Core i5 processor, our code is available online.2

Figure 2 compares the performances of both methods. The error is computed as the mean L1 error
over all nodes between the estimated beliefs and the ground truth evaluated over the same deter-
ministic mesh. One can observe that not only does PBP perform worse than EPBP but also that the
error plateaus with increasing number of samples. This is because the secondampling within PBP
is done approximately and hence the consistency of the estimators is lost. The speed-up offered by
EPBP is very substantial (figure 4 left). Hence, although it would be possible to use more MCMC
(Metropolis-Hastings) iterations within PBP to improve its performance, it would make the method
prohibitively expensive to use. Note that for EPBP, one observes the usual 1/

√
N convergence of

particle methods.
Figure 3 compares the estimator of the beliefs obtained by the two methods for three arbitrarily
picked nodes (node 1, 5 and 9 as illustrated on figure 1). The figure also illustrates the last proposals
constructed with our approach and one notices that their supports match closely the support of the
true beliefs. Figure 4 left illustrates how the estimated beliefs converge as compared to the true
beliefs with increasing number of iterations. One can observe that PBP converges more slowly and
that the results display more variability which might be due to the MCMC runs being too short.

We repeated the experiments on a tree with 8 nodes (figure 1 right) where we know that, at con-
vergence, the beliefs computed using BP are proportional to the true marginals. The node and edge
potentials are again picked such that the marginals are multimodal with{

ψu(xu) = α1N (xu − yu;−2, 1) + α2N (xu − yu; 1, 0.5)
ψuv(xu, xv) = L(xu − xv; 0, 1)

, (15)

with α1 = 0.3 and α2 = 0.7. On this example, we also show how “pure EP” with normal distribu-
tions performs. We also try using the distributions obtained with EP as proposals for PBP (referred
to as “PBP after EP” in figures). Both methods underperform compared to EPBP as illustrated vi-
sually in Figure 5. In particular one can observe in Figure 3 that “PBP after EP” converges slower
than EPBP with increasing number of samples.

4.2 Sub-quadratic implementation and denoising application

As outlined in Section 3.1, in the implementation of EPBP one can use an unbiased estimator of
the edge weights based on a draw of M components from a multinomial. The complexity of the
resulting algorithm is O(MN). We apply this method to the 3 × 3 grid example in the case where
M is picked to be roughly of order log(N): i.e., for N = {10, 20, 50, 100, 200, 500}, we pick
M = {5, 6, 8, 10, 11, 13}. The results are illustrated in Figure 6 where one can see that the N logN
implementation compares very well to the original quadratic implementation at a much reduced
cost. We apply this sub-quadratic method on a simple probabilistic model for an image denoising
problem. The aim of this example is to show that the method can be applied to larger graphs and still
provide good results. The model underlined is chosen to showcase the flexibility and applicability
of our method in particular when the edge-potential is non-integrable. It is not claimed to be an
optimal approach to image denoising.3 The node and edge potentials are defined as follows:{

ψu(xu) = N (xu − yu; 0, 0.1)
ψuv(xu, xv) = Lλ(xu − xv; 0, 0.03)

, (16)

2https://github.com/tlienart/EPBP.
3In this case in particular, an optimization-based method such as [17] is likely to yield better results.
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where Lλ(x;µ, β) = L(x;µ, β) if |x| ≤ λ and L(λ;µ, β) otherwise. In this example we set
λ = 0.2. The value assigned to each pixel of the reconstruction is the estimated mean obtained over
the corresponding node (figure 7). The image has size 50 × 50 and the simulation was run with
N = 30 particles per nodes, M = 5 and 10 BP iterations taking under 2 minutes to complete. We
compare it with the result obtained with EP on the same model.
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Figure 2: (left) Comparison of the mean L1 error for PBP and EPBP for the 3 × 3 grid example.
(right) Comparison of the mean L1 error for “PBP after EP” and EPBP for the tree example. In both
cases, EPBP is more accurate for the same number of samples.
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Figure 3: Comparison of the beliefs on node 1, 5 and 9 as obtained by evaluating LBP on a deter-
ministic mesh (true belief ), with PBP and with EPBP for the 3× 3 grid example. The proposal used
by EPBP at the last step is also illustrated. The results are obtained with N = 100 samples on each
node and 20 BP iterations. One can observe visually that EPBP outperforms PBP.
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Figure 4: (left) Comparison of the convergence in L1 error with increasing number of BP iterations
for the 3× 3 grid example when using N = 30 particles. (right) Comparison of the wall-clock time
needed to perform PBP and EPBP on the 3× 3 grid example.

5 Discussion

We have presented an original way to design adaptively efficient and easy-to-sample-from proposals
for a particle implementation of Loopy Belief Propagation. Our proposal is inspired by the Expec-
tation Propagation framework.

We have demonstrated empirically that the resulting algorithm is significantly faster and more ac-
curate than an implementation of PBP using the estimated beliefs as proposals and sampling from
them using MCMC as proposed in [1]. It is also more accurate than EP due to the nonparametric
nature of the messages and offers consistent estimators of the LBP messages. A sub-quadratic ver-
sion of the method was also outlined and shown to perform almost as well as the original method on
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mildly multi-modal models, it was also applied successfully in a simple image denoising example
illustrating that the method can be applied on graphical models with several hundred nodes.

We believe that our method could be applied successfully to a wide range of applications such as
smoothing for Hidden Markov Models [18], tracking or computer vision [19, 20]. In future work,
we will look at considering other divergences than the KL and the “Power EP” framework [21], we
will also look at encapsulating the present algorithm within a sequential Monte Carlo framework
and the recent work of Naesseth et al. [22].
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Figure 5: Comparison of the beliefs on node 1, 3 and 8 as obtained by evaluating LBP on a deter-
ministic mesh, using EPBP, PBP, EP and PBP using the results of EP as proposals. This is for the
tree example with N = 100 samples on each node and 20 LBP iterations. Again, one can observe
visually that EPBP outperforms the other methods.
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Figure 6: Comparison of the mean L1 error for PBP and EPBP on a 3 × 3 grid (left). For the
same number of samples, EPBP is more accurate. It is also faster by about two orders of magnitude
(right). The simulations were run several times for the same observations to illustrate the variability
of the results.

Figure 7: From left to right: comparison of the original (first), noisy (second) and recovered image
using the sub-quadratic implementation of EPBP (third) and with EP (fourth).

Acknowledgments

We thank Alexander Ihler and Drew Frank for sharing their implementation of Particle Belief Prop-
agation. TL gratefully acknowledges funding from EPSRC (grant 1379622) and the Scatcherd Eu-
ropean scholarship scheme. YWT’s research leading to these results has received funding from
EPSRC (grant EP/K009362/1) and ERC under the EU’s FP7 Programme (grant agreement no.
617411). AD’s research was supported by the EPSRC (grant EP/K000276/1, EP/K009850/1) and
by AFOSR/AOARD (grant AOARD-144042).

8



References

[1] Alexander T. Ihler and David A. McAllester. Particle belief propagation. In Proc. 12th AIS-
TATS, pages 256–263, 2009.

[2] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Found. and Tr. in Mach. Learn., 1(1–2):1–305, 2008.

[3] Erik B. Sudderth, Alexander T. Ihler, Michael Isard, William T. Freeman, and Alan S. Willsky.
Nonparametric belief propagation. Commun. ACM, 53(10):95–102, 2010.

[4] Jeremy Schiff, Erik B. Sudderth, and Ken Goldberg. Nonparametric belief propagation for
distributed tracking of robot networks with noisy inter-distance measurements. In IROS ’09,
pages 1369–1376, 2009.

[5] Alexander T. Ihler, John W. Fisher, Randolph L. Moses, and Alan S. Willsky. Nonparametric
belief propagation for self-localization of sensor networks. In IEEE Sel. Ar. Comm., volume 23,
pages 809–819, 2005.

[6] Christopher Crick and Avi Pfeffer. Loopy belief propagation as a basis for communication in
sensor networks. In Proc. 19th UAI, pages 159–166, 2003.

[7] Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo matching using belief propaga-
tion. In IEEE Trans. Patt. An. Mach. Int., volume 25, pages 787–800, 2003.

[8] Andrea Klaus, Mario Sormann, and Konrad Karner. Segment-based stereo matching using
belief propagation and a self-adapting dissimilarity measure. In Proc. 18th ICPR, volume 3,
pages 15–18, 2006.

[9] Nima Noorshams and Martin J. Wainwright. Belief propagation for continuous state spaces:
Stochastic message-passing with quantitative guarantees. JMLR, 14:2799–2835, 2013.

[10] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, 1988.
[11] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Constructing free energy approxi-

mations and generalized belief propagation algorithms. MERL Technical Report, 2002.
[12] Erik B. Sudderth, Alexander T. Ihler, William T. Freeman, and Alan S. Willsky. Nonparametric

belief propagation. In Procs. IEEE Comp. Vis. Patt. Rec., volume 1, pages 605–612, 2003.
[13] Thomas P. Minka. Expectation propagation for approximate Bayesian inference. In Proc. 17th

UAI, pages 362–369, 2001.
[14] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate

inference: an empirical study. In Proc. 15th UAI, pages 467–475, 1999.
[15] Mila Nikolova. Thresholding implied by truncated quadratic regularization. IEEE Trans. Sig.

Proc., 48(12):3437–3450, 2000.
[16] Mark Briers, Arnaud Doucet, and Sumeetpal S. Singh. Sequential auxiliary particle belief

propagation. In Proc. 8th ICIF, volume 1, pages 705–711, 2005.
[17] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise re-

moval algorithms. Physica D, 60(1):259–268, 1992.
[18] M. Briers, A. Doucet, and S. Maskell. Smoothing algorithms for state-space models. Ann. Inst.

Stat. Math., 62(1):61–89, 2010.
[19] Erik B. Sudderth, Michael I. Mandel, William T. Freeman, and Alan S. Willsky. Visual hand

tracking using nonparametric belief propagation. In Procs. IEEE Comp. Vis. Patt. Rec., 2004.
[20] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image segmentation.

Int. Journ. Comp. Vis., 59(2), 2004.
[21] Thomas P. Minka. Power EP. Technical Report MSR-TR-2004-149, 2004.
[22] Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. Sequential monte carlo for

graphical models. In Proc. 27th NIPS, pages 1862–1870, 2014.

9


