
Appendix: Proofs of Propositions

Proposition 1 (Correctness) The likelihood maximization problem as defined in Eq. 1 with the
mixture models as given in Fig. 1 is equivalent to the problem of solving the original I-POMDPi,l

of discounted infinite horizon whose solution assumes the form of a finite state controller.
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The infinite-horizon value function for I-POMDPi,l given a FSC, πi,l, is:
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Subsequently,
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Consequently, value function of I-POMDPi,l is proportional to the likelihood, and maximizing the
latter is equivalent to finding the policy with the optimal value function.

Propostion 2 (Sufficiency) Distributions, Pr(atj |st) across actions, atj ∈ Aj , for each state st is
sufficient predictive information about the other agent j over all time steps in order to infer the most
likely policy of agent i. Here,
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Proof. Let z0:Ti ={st, oti, nt
i,l, a

t
i,m

t
j,l−1, o

t
j , a

t
j} be a trajectory consisting of the latent state, agent

i’s FSC node, j’s hidden model, and both agents’ actions and observations. We use it to expand on
the likelihood maximization as given in Eq. 1:
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For simplicity of notation, we focus on l = 1 and note that the proof holds inductively for any level,
l ≥ 1. Next, we expand the term, Pr(rTi = 1, z0:Ti |T ;πi,1):
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Grouping all terms related to each agent, we get:
�

z0:T
i

Pr(rTi = 1, z0:Ti |T ;πi,1) =
�

n0
i,l

Vi(n
0
i,1)

�
s0
b0i,1(s

0)
�

a0
i

Li(n
0
i,1, a

0
i )

×
�

m0
j,0

b0i,1(m
0
j,0|s0)

�
a0
j

Pr(a0j |m0
j,0)

�T

t=1

�
st
Ti(s

t−1, at−1
i , at−1

j , st)

×
�

oti
Oi(s

t, at−1
i , at−1

j , oti)
�

nt
i,1

Ti(nt−1
i,1 , at−1

i , oti, n
t
i,1)

�
at
i

Li(n
t
i,1, a

t
i)

�
mt

j,0,o
t
j

Pr(mt
j,0|

at−1
j , otj ,m

t−1
j,0 ) Oj(s

t, at−1
j , otj)

�
at
j

Pr(atj |mt
j,0) Pr(rTi = 1|aTi , aTj , sT )

=
�

n0
i,l

Vi(n
0
i,1)

�
s0
b0i,1(s

0)
�

a0
i

Li(n
0
i,1, a

0
i )

�
a0
j

Pr(a0j |s0)
�T

t=1

�
st
Ti(s

t−1, at−1
i , at−1

j , st)

×
�

oti
Oi(s

t, at−1
i , at−1

j , oti)
�

nt
i,1

Ti(nt−1
i,1 , at−1

i , oti, n
t
i,1)

�
at
i

Li(n
t
i,1, a

t
i)

×
�

mt
j,0,o

t
j

Pr(mt
j,0|at−1

j , otj ,m
t−1
j,0 ) Oj(s

t, at−1
j , otj)

�
at
j

Pr(atj |mt
j,0) Pr(rTi = 1|aTi , aTj , sT )

=
�

n0
i,l

Vi(n
0
i,1)

�
s0
b0i,1(s

0)
�

a0
i

Li(n
0
i,1, a

0
i )

�
a0
j

Pr(a0j |s0)
�T

t=1

�
st
Ti(s

t−1, at−1
i , at−1

j , st)

×
�

oti
Oi(s

t, at−1
i , at−1

j , oti)
�

nt
i,1

Ti(nt−1
i,1 , at−1

i , oti, n
t
i,1)

�
at
i

Li(n
t
i,1, a

t
i)

×
�

at
j

Pr(atj |st) Pr(rTi = 1|aTi , aTj , sT )

where, Pr(a0j |s0) =
�

m0
j,0

Pr(a0j |m0
j,0) bi,1(mj,0|s0), and Pr(atj |st) =

�
mt

j,0,o
t
j

Pr(mt
j,0|at−1

j , otj ,m
t−1
j,0 ) Oj(s

t, at−1
j , otj) Pr(atj |mt

j,0).

In the last equation above, the only distributions pertaining to j are those over its actions given the
state at the initial time step and across time steps up to T .

Propostion 3 (E-step speed up) Each E-step at level 1 using the forward-backward pass as shown
previously results in a net speed up of O((|M ||N−i,0|)2K(|Ω−i|K)) over the formulation that as-
cribes |M | FSCs each to K other agents with each having |N−i,0| nodes.

Proof. In the E-step, we compute αt and βh, which are then used in the M -step. Each of these has
complexity, O(TmaxS

2|Ni,1|2), where Tmax is a bound on T in practice. In order to compute �α and
�β, we need the transition function of the DBN for given current and next states in the E-step, which
has complexity of O(S2|N 2

i,1||Ai||A−i|K |Ωi|), where there are K other agents in the environment.
E-step’s net complexity is given by O(S2|Ni,1|2(Tmax + |Ai||A−i|K |Ωi|).
A naive formulation infers an FSC for each of |M | level 0 models ascribed to K other agents.
Nodes of these controllers are included in the state space of the DBN. The complexity of com-
puting �α and �β is, O(TmaxS

2|Ni,1|2(|M ||N−i,0|)2K). In order to compute �α and �β, we need the
transition function of the Markov model for given current and next states, which has complexity of

11



O(S2|N 2
i,1|(|M ||N−i,0|)2K |Ai||A−i|K |Ωi||Ω−i|K). E-step’s net complexity for this approach is,

O(S2|Ni,1|2(|M ||N−i,0|)2K(Tmax + |Ai||A−i|K |Ωi||Ω−i|K).

The speed up due to our approach is the ratio of the above net complexity of the E-step to the
complexity of our E-step:

Speedup =
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Propostion 4 (E-step ratio at level 0) E-steps in the EMs for obtaining φ−i,0 of K agents exhibits

a ratio of complexity, O(
|N−i,0|2

|M | ), compared to the E-steps when |M | FSCs are obtained for K
agents.

Proof. In the E-step presented in this paper, we compute �α and �β (Eq. 4) first. Each of these has
complexity, O(TmaxS

2|M |2), where Tmax is a bound on T in practice. In order to compute �α
and �β, the transition function of the DBN for given current and next states in the E-step has a
complexity of O(S2|M |2|A−i||Ω−i|). E-step’s net complexity is then given by O(S2|M |2(Tmax +
|A−i||Ω−i|)). For K other agents, we perform K EMs and the net complexity for K agents is,
O(S2|M |2K(Tmax + |A−i||Ω−i|)).
The naive approach iteratively improves a FSC for each level 0 model. The complexity of computing
�α and �β in this case is, O(TmaxS

2|N−i,0|2). We need the transition function of the DBN for given
current and next states to compute �α and �β, which has complexity of O(S2|N−i,0|2|A−i||Ω−i|).
The net complexity of the E-step is given by, O(S2|N−i,0|2(Tmax+ |A−i||Ω−i|). For K agents and
|M | model each, this becomes, O(S2|N−i,0|2|M |K(Tmax + |A−i||Ω−i|).
The ratio of the complexity of the nai1ve approach to the one presented in this paper is,

Ratio =
O(S2|N−i,0|2|M |K(Tmax + |A−i||Ω−i|)

O(S2|M |2K(Tmax + |A−i||Ω−i|))

= O(
|N−i,0|2
|M | )

This ratio is typically less than 1 because smaller-sized controllers are preferred while the number
of models, |M |, could get large.
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