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1 Proof of Stationary Distribution

In this section, we provide a proof for Theorem 1. To prove the theorem, we first show when f(z)
satisfies Eq. (3) in the main paper, then the following Fokker-Planck equation of the dynamics:

∂tp(z, t) =−
∑
i

∂

∂zi

(
fi(z)p(z, t)

)
+
∑
i,j

∂2

∂zi∂zj

(
Dij(z)p(z, t)

)
,

is equivalent to the following compact form [7, 5]:

∂tp(z, t) =∇T ·
(

[D(z) + Q(z)] [p(z, t)∇H(z) +∇p(z, t)]
)
. (S.1)

Proof. The proof is a re-writing of Eq. (S.1):

∂tp(z, t) =∇T ·
(

[D(z) + Q(z)] [p(z, t)∇H(z) +∇p(z, t)]
)

=
∑
i=1

∂

∂zi

∑
j

[Dij(z) + Qij(z)]

[
p(z, t)

∂

∂zj
H(z) +

∂

∂zj
p(z, t)

]

=
∑
i

∂

∂zi

∑
j

[Dij(z) + Qij(z)] p(z, t)
∂

∂zj
H(z)

+
∑
i

∂

∂zi
[Dij(z) + Qij(z)]

∑
j

∂

∂zj
p(z, t).

We can further decompose the second term as follows∑
i

∂

∂zi
Dij(z)

∑
j

∂

∂zj
p(z, t) =

∑
ij

∂

∂zi

∂

∂zj
[Dij(z)p(z, t)]−

∑
i

∂

∂zi

p(z, t)
∑

j

∂

∂zj
Dij(z)


∑
i

∂

∂zi
Qij(z)

∑
j

∂

∂zj
p(z, t) =−

∑
i

∂

∂zi

p(z, t)
∑

j

∂

∂zj
Qij(z)

 .

The second equality follows because
∑
ij

∂

∂zi

∂

∂zj
[Qij(z)p(z, t)] = 0 due to anti-symmetry of Q.

Putting these back into the formula, we get

∂tp(z, t) =
∑
i

∂

∂zi


∑

j

[Dij(z) + Qij(z)]
∂

∂zj
H(z)−

∑
j

[
∂

∂zj
Dij(z) +

∂

∂zj
Qij(z)]

 p(z, t)


+
∑
ij

∂2

∂zi∂zj
[Dij(z)p(z, t)]

=−
∑
i

∂

∂zi

(
fi(z)p(z, t)

)
+
∑
i,j

∂2

∂zi∂zj

(
Dij(z)p(z, t)

)
.
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We can then verify that p(z | S) ∝ e−H(z) is invariant under the compact form by calculating

[p(z, t)∇H(z) +∇p(z, t)] ∝
[
e−H(z)∇H(z) +∇e−H(z)

]
= 0.

This completes the proof of Theorem 1.

The above proof follows directly from [5] and is provided here for readers’ convenience.

2 Proof of Completeness

In this section, we provide a constructive proof for Theorem 2, the existence of Q(z).

The proof is first outlined as follows:

• We first rewrite Eq. (3) in the main paper and notice that finding matrix Q(z) is equivalent
to finding the matrix Q(z)ps(z) such that∑

j

∂

∂zj

(
Qij(z)ps(z)

)
= fi(z)ps(z)−

∑
j

∂

∂zj

(
Dij(z)ps(z)

)
,

where the right hand side is a divergence-free vector.

• We transform the above equation and its constraint into the frequency domain and obtain a
set of linear equations.

• Then we construct a solution to the linear equations and use inverse Fourier transform to
obtain Q(z).

The complete procedure is:

Proof. Multiplying ps(z) on both sides of Eq. (3) in the main paper, and noting that:

ps(z) = exp (−H(z)) , (S.2)

we arrive at:

fi(z)ps(z) =
∑
j

∂

∂zj

((
Dij(z) + Qij(z)

)
ps(z)

)
. (S.3)

The equation for Qij(z) can now be written as:∑
j

∂

∂zj

(
Qij(z)ps(z)

)
= fi(z)ps(z)−

∑
j

∂

∂zj

(
Dij(z)ps(z)

)
. (S.4)

Recall that the Fokker-Planck equation for the stochastic process, Eq. (2), is:

∂p(z, t)

∂t
= −∇T ·

(
f(z)p(z, t)

)
+∇2 :

(
D(z)p(z, t)

)
= −

∑
i

∂

∂zi

fi(z)p(z, t)−
∑
j

∂

∂zj

(
Dij(z)p(z, t)

) . (S.5)

We can immediately observe that the right hand side of Eq. (S.4) has a divergenceless property by
substituting the stationary probability density function ps(z) into Eq. (S.5):

∑
i

∂

∂zi

fi(z)ps(z)−
∑
j

∂

∂zj

(
Dij(z)ps(z)

) = 0. (S.6)

The nice forms of Eqs. (S.4) and (S.6) imply that the questions can be transformed into a lin-
ear algebra problem once we apply a Fourier transform to them. Denote the Fourier transform of
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Q(z)ps(z) as Q̂(k); and Fourier transform of fi(z)ps(z)−
∑
j

∂

∂zj

(
Dij(z)ps(z)

)
as F̂i(k), where

k = (k1, · · · ,kn)T is the set of the spectral variables. That is:

Q̂ij(k) =

∫
D
Qij(z)ps(z)e−2πi k

T zdz;

F̂i(k) =

∫
D

fi(z)ps(z)−
∑
j

∂

∂zj

(
Dij(z)ps(z)

) e−2πi k
T zdz.

Then,
∂

∂zj

(
Qij(z)ps(z)

)
is transformed to 2πi Q̂ijkj , and Eq. (S.4) becomes the following equiv-

alent form in Fourier space: {
2πi Q̂k = F̂

kT F̂ = 0.
(S.7)

Hence, it is clear that matrix Q̂ must be a skew-symmetric projection matrix from the span of k
to the span of F̂, where k and F̂ are always orthogonal to each other. We thereby construct Q̂ as
combination of two rank 1 projection matrices:

Q̂ = (2πi)−1
F̂kT

kTk
− (2πi)−1

kF̂T

kTk
. (S.8)

We arrive at the final result that matrix Q(z) is equal to ps(z)−1 times the inverse Fourier transform
of Q̂(k):

Qij(z) = ps(z)−1
∫
D

kjF̂i(k)− kiF̂j(k)

(2πi) ·
∑
l

k2
l

e
2πi

∑
l

klxl

dk. (S.9)

Thus, if

(
fi(z)ps(z)−

∑
j

∂

∂zj

(
Dij(z)ps(z)

))
belongs to the space of L1, then any continuous

time Markov process, Eq. (2), can be turned into this new formulation.

Remark 1. Entries in the skew-symmetric projector Qij(z) constructed here are real.

Denote a2i =
∑
l 6=i

k2
l , then the inverse Fourier transform of

ki
(2πi) ·

∑
l

k2
l

along the partial variable

ki is equal to:

gi(z) = −1

2
e−2πaiziH[zi] +

1

2
e2πaiziH[−zi],

whereH[x] is the Heaviside function. Because gi(z) is an even function in kl, l 6= i, its total inverse
Fourier transform is real.

Therefore, the inverse Fourier transform of
kiF̂j(k)

(2πi) ·
∑
l

k2
l

is the convolution of two real functions.

3 2-D Case as a Simple Intuitive Example of the Construction

For 2-dimensional systems, we have:

k1F̂1(k) + k2F̂2(k) = 0, (S.10)
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and hence Eq. (S.9) has a simple form:

Q21(z1, z2) = −Q12(z1, z2)

= ps(z1, z2)−1
∫ z2

z0
2

f1(z1, s)p
s(z1, s)ds

−
∫ z2

z0
2

∂

∂z1

(
D11(z1, s)p

s(z1, s)
)
− ∂

∂s

(
D12(z1, s)p

s(z1, s)
)

ds

= −ps(z1, z2)−1
∫ z1

z0
1

f2(s, z2)ps(s, z2)ds

+

∫ z1

z0
1

∂

∂s

(
D21(s, z2)ps(s, z2)

)
+

∂

∂z2

(
D22(s, z2)ps(s, z2)

)
ds. (S.11)

4 Previous MCMC Algorithms in the Form of Continuous Markov
Processes as Elements in the Current Recipe

This section parallels that of Sec. 3.1 of the main paper, but in terms of the continuous dynamics
underlying the samplers. This allows us to rapidly draw connections with our SDE framework of
Sec. 2.1. Fig. S.1 provides a cartoon visualization of the portion of the product space D(z)×Q(z)
already covered by past methods, after casting these methods in our framework below. Our proposed
gSGRHMC method covers a portion of this space previously not explored.

D(z) 

Q(z) 

SGLD 
SGRLD 

Figure S.1: Cartoon of how previous methods explore the space of possible D(z) and Q(z) matrices,
along with our proposed gSGRHMC method of Sec. 3.2.

Hamiltonian Monte Carlo (HMC) The continuous dynamics underlying Eq. (10) in the main
paper are {

dθ = M−1rdt
dr = −∇U(θ)dt. (S.12)

Again, we see Eq. (S.12) is a special case of our proposed framework with z = (θ, r), H(θ, r) =

U(θ) + 1
2r
TM−1r, Q(θ, r) =

(
0 −I
I 0

)
and D(θ, r) = 0.

Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) As described in [2], replacing
∇U(θ) by the stochastic gradient ∇Ũ(θ) in the ε-discretized HMC system of Eq. (10) (resulting
in Eq. (11)) has a continuous-time representation as:

Naive :

{
dθ = M−1rdt
dr = −∇U(θ)dt+

√
εV(θ)dW(t) ≈ −∇Ũ(θ)dt.

(S.13)
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Analogously to Sec. 3.1, these dynamics do not fit into our framework. Instead, in our framework
we see that the noise term

√
2D(z)dW(t) is paired with a D(z)∇H(z) term, hinting that such a

term must be added to the dynamics of Eq. (S.13). Here, D(θ, r) =

(
0 0
0 εV

)
, which means

we need to add a term of the form D(z)∇H(z) = εV∇rH(θ, r) = εVM−1r. Interestingly, this
is the correction strategy proposed in [2], but through a physical interpretation of the dynamics. In
particular, the term εVM−1r (or, generically, CM−1r) has an interpretation as a friction term and
leads to second order Langevin dynamics:{

dθ = M−1rdt
dr = −∇U(θ)dt−CM−1rdt+

√
2C− εV(θ)dW(t) +

√
εV(θ)dW(t).

(S.14)

This method now fits into our framework with H(θ, r) and Q(θ, r) as in HMC, but here with

D(θ, r) =

(
0 0
0 C

)
.

Stochastic Gradient Langevin Dynamics (SGLD) SGLD [6] proposes to use the following first
order (no momentum) Langevin dynamics to generate samples

dθ = −D∇U(θ)dt+
√

2D dW(t). (S.15)
This algorithm corresponds to taking z = θ with H(θ) = U(θ), D(θ) = D, Q(θ) = 0. As in the
case of SGHMC, the variance of the stochastic gradient can be subtracted from the sampler injected
noise

√
2DW(t) to make the finite stepsize simulation more accurate. This variant of SGLD leads

to the stochastic gradient Fisher scoring algorithm [1].

Stochastic Gradient Riemannian Langevin Dynamics (SGRLD) SGLD can be generalized to
use an adaptive diffusion matrix D(θ). Specifically, it is interesting to take D(θ) = G−1(θ), where
G(θ) is the Fisher information metric. The sampler dynamics is given by

dθ = −G−1(θ)∇U(θ)dt+ Γ(θ) +
√

2G−1(θ)dW(t). (S.16)

Taking D(θ) = G−1(θ) and Q(θ) = 0, the SGRLD method falls into our current framework with

the correction term Γi(θ) =
∑
j

∂Dij(θ)

∂θj
.

Stochastic Gradient Nosé-Hoover Thermostat (SGNHT) Finally, the continuous dynamics un-
derlying the SGNHT [3] algorithm in Sec. 3.1 are

dθ = rdt
dr = −∇U(θ)dt− ξr dt+

√
2A dW(t)

dξ =

(
1

d
rT r − 1

)
rdt.

(S.17)

Again, we see we can take z = (θ, r, ξ), H(θ, r, ξ) = U(θ) +
1

2
rT r +

1

2d
(ξ − A)2, D(θ, r, ξ) =(

0 0 0
0 A · I 0
0 0 0

)
, and Q(θ, r, ξ) =

(
0 −I 0
I 0 r/d

0 −rT /d 0

)
to place these dynamics within our frame-

work.

5 Discussion of Choice of D and Q

A lot of choices of D(z) and Q(z) could potentially result in faster convergence of the samplers than
those previously explored. For example, D(z) determines how much noise is introduced. Hence, an
adaptive diffusion matrix D(z) can facilitate a faster escape from a local mode if ||D(z)|| is larger in
regions of low probability, and can increase accuracy near the global mode if ||D(z)|| is smaller in
regions of high probability. Motivated by the fact that a majority of the parameter space is covered
by low probability mass regions where less accuracy is often needed, one might want to traverse
these regions quickly. As such, an adaptive curl matrix Q(z) with 2-norm growing with the level
set of the distribution can facilitate a more efficient sampler. We explore an example of this in the
gSGRHMC algorithm of the synthetic experiments (see Supp. 6.1).
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6 Parameter Settings in Synthetic and Online Latent Dirichlet Allocation
Experiments

6.1 Synthetic Experiments

In the synthetic experiment using gSGRHMC, we specifically consider G(θ)−1 = D

√
|Ũ(θ) + C|.

The constant C ensures that Ũ(θ) + C is positive in most cases so that the fluctuation is indeed
smaller when the probability density function is higher. Note that we define G(θ) in terms of Ũ(θ)
to avoid a costly full-data computation. We choose D = 1.5 and C = 0.5 in the experiments. The
design of G is motivated by the discussion in Supp. 5, taking Q(θ) to have 2-norm growing with
the level sets of the potential function can lead to faster exploration of the posterior.
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Figure S.2: For two simulated 1D distributions (black) defined by U(θ) = θ2/2 (left) and U(θ) =
θ4−2θ2 (right), comparison of SGLD, SGHMC, the naı̈ve SGRHMC of Eq. (16), and the gSGRHMC
of Eq. (17) in the main paper.

Comparison of SGLD, SGHMC, the naı̈ve implementation of SGRHMC (Eq. (16)), and the gS-
GRHMC methods is shown in Fig. S.2, indicating the incorrectness of the naı̈ve SGRHMC.

6.2 Online Latent Dirichlet Allocation Experiment

In the online latent Dirichlet allocation (LDA) experiment, we used minibatches of 50 documents
and K = 50 topics. Similar to [4], the stochastic gradient of the log posterior of the parameter θ on
a minibatch S̃ is calculated as

∂ log p(θ|x, α, γ)

∂θkw
≈ α− 1

θkw
− 1 +

|S|
|S̃|

∑
d∈S̃

Ez(d)|x(d),θ,γ

[
ndkw
θkw

− ndk·
θk·

]
, (S.18)

where α is the hyper-parameter for the Gamma prior of per-topic word distributions, and γ for the
per-document topic distributions. Here, ndkw is the count of how many times word w is assigned to
topic k in document d (via z(d)j = k for xj = w). The · notation indicates ndk· =

∑
w ndkw. To

calculate the expectation of the latent topic assignment counts ndkw, Gibbs sampling is used on the
topic assignments in each document separately, using the conditional distributions

p(z
(d)
j = k|x(d), θ, γ) =

(
γ + n

\j
dk·

)
θ
kx

(d)
j∑

k

(
γ + n

\j
dk·

)
θ
kx

(d)
j

, (S.19)

where \j represents a count excluding the topic assignment variable z(d)j being updated. See [4] for
further details.

We follow the experimental settings in [4] for Riemmanian samplers (SGRLD and SGRHMC),
taking the hyper-parameters of Dirichlet priors to be γ = 0.01 and α = 0.0001. Since the non-
Riemmanian samplers (SGLD and SGHMC) do not handle distributions with mass concentrated
over small regions as well as the Riemmanian samplers, we found γ = 0.1 and α = 0.01 to
be optimal hyper-parameters for them and use these instead for SGLD and SGHMC. In doing so,
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we are modifying the posterior being sampled, but wished to provide as good of performance as
possible for these baseline methods for a fair comparison. For the SGRLD method, we keep the

stepsize schedule of εt =

(
a ·
(

1 +
t

b

))−c
and corresponding optimal parameters a, b, c used in

the experiment of [4]. For the other methods, we use a constant stepsize because it was easier to
tune. (A constant stepsize for SGRLD performed worse than the schedule described above, so again
we are trying to be as fair to baseline methods as possible when using non-constant stepsize for
SGRLD.) A grid search is performed to find εt = 0.02 for the SGRHMC method; εt = 0.01, D = I
(corresponding to Eq. (13) in the main paper) for the SGLD method; and εt = 0.1, C = M = I
(corresponding to Eq. (12) in the main paper) for the SGHMC method.

For a randomly selected subset of topics, in Table S.1 we show the top seven most heavily weighted
words in the topic learned with the SGRHMC sampler.

“ENGINES” speed product introduced designs fuel quality
“ROYAL” britain queen sir earl died house
“ARMY” commander forces war general military colonel
“STUDY” analysis space program user research developed
“PARTY” act office judge justice legal vote

“DESIGN” size glass device memory engine cost
“PUBLIC” report health community industry conference congress

“CHURCH” prayers communion religious faith historical doctrine
“COMPANY” design production produced management market primary
“PRESIDENT” national minister trial states policy council

“SCORE” goals team club league clubs years

Table S.1: The top seven most heavily weighted words (columns) associated with each of a randomly
selected set of 11 topics (rows) learned with the SGRHMC sampler from 10,000 documents (about
0.3% of the articles in Wikipedia). The capitalized words in the first column represent the most
heavily weighted word in each topic, and are used as the topic labels.
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