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Abstract

Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of ma-
chine learning problems. Researchers and industry have developed several tech-
niques to optimize SGD’s runtime performance, including asynchronous execu-
tion and reduced precision. Our main result is a martingale-based analysis that
enables us to capture the rich noise models that may arise from such techniques.
Specifically, we use our new analysis in three ways: (1) we derive convergence
rates for the convex case (HOGWILD!) with relaxed assumptions on the sparsity
of the problem; (2) we analyze asynchronous SGD algorithms for non-convex
matrix problems including matrix completion; and (3) we design and analyze
an asynchronous SGD algorithm, called BUCKWILD!, that uses lower-precision
arithmetic. We show experimentally that our algorithms run efficiently for a vari-
ety of problems on modern hardware.

1 Introduction

Many problems in machine learning can be written as a stochastic optimization problem

minimize E[f̃(x)] over x ∈ Rn,

where f̃ is a random objective function. One popular method to solve this is with stochastic gradient
descent (SGD), an iterative method which, at each timestep t, chooses a random objective sample f̃t
and updates

xt+1 = xt − α∇f̃t(xt), (1)
where α is the step size. For most problems, this update step is easy to compute, and perhaps
because of this SGD is a ubiquitous algorithm with a wide range of applications in machine learn-
ing [1], including neural network backpropagation [2, 3, 13], recommendation systems [8, 19], and
optimization [20]. For non-convex problems, SGD is popular—in particular, it is widely used in
deep learning—but its success is poorly understood theoretically.

Given SGD’s success in industry, practitioners have developed methods to speed up its computation.
One popular method to speed up SGD and related algorithms is using asynchronous execution.
In an asynchronous algorithm, such as HOGWILD! [17], multiple threads run an update rule such
as Equation 1 in parallel without locks. HOGWILD! and other lock-free algorithms have been
applied to a variety of uses, including PageRank approximations (FrogWild! [16]), deep learning
(Dogwild! [18]) and recommender systems [24]. Many asynchronous versions of other stochastic
algorithms have been individually analyzed, such as stochastic coordinate descent (SGD) [14, 15]
and accelerated parallel proximal coordinate descent (APPROX) [6], producing rate results that are
similar to those of HOGWILD! Recently, Gupta et al. [9] gave an empirical analysis of the effects of
a low-precision variant of SGD on neural network training. Other variants of stochastic algorithms
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have been proposed [5, 11, 12, 21, 22, 23]; only a fraction of these algorithms have been analyzed in
the asynchronous case. Unfortunately, a new variant of SGD (or a related algorithm) may violate the
assumptions of existing analysis, and hence there are gaps in our understanding of these techniques.

One approach to filling this gap is to analyze each purpose-built extension from scratch: an entirely
new model for each type of asynchrony, each type of precision, etc. In a practical sense, this may
be unavoidable, but ideally there would be a single technique that could analyze many models. In
this vein, we prove a martingale-based result that enables us to treat many different extensions as
different forms of noise within a unified model. We demonstrate our technique with three results:

1. For the convex case, HOGWILD! requires strict sparsity assumptions. Using our tech-
niques, we are able to relax these assumptions and still derive convergence rates. Moreover,
under HOGWILD!’s stricter assumptions, we recover the previous convergence rates.

2. We derive convergence results for an asynchronous SGD algorithm for a non-convex matrix
completion problem. We derive the first rates for asynchronous SGD following the recent
(synchronous) non-convex SGD work of De Sa et al. [4].

3. We derive convergence rates in the presence of quantization errors such as those intro-
duced by fixed-point arithmetic. We validate our results experimentally, and show that
BUCKWILD! can achieve speedups of up to 2.3× over HOGWILD!-based algorithms for
logistic regression.

One can combine these different methods both theoretically and empirically. We begin with our
main result, which describes our martingale-based approach and our model.

2 Main Result

Analyzing asynchronous algorithms is challenging because, unlike in the sequential case where there
is a single copy of the iterate x, in the asynchronous case each core has a separate copy of x in its
own cache. Writes from one core may take some time to be propagated to another core’s copy of
x, which results in race conditions where stale data is used to compute the gradient updates. This
difficulty is compounded in the non-convex case, where a series of unlucky random events—bad
initialization, inauspicious steps, and race conditions—can cause the algorithm to get stuck near a
saddle point or in a local minimum.

Broadly, we analyze algorithms that repeatedly update x by running an update step

xt+1 = xt − G̃t(xt), (2)

for some i.i.d. update function G̃t. For example, for SGD, we would have G(x) = α∇f̃t(x). The
goal of the algorithm must be to produce an iterate in some success region S—for example, a ball
centered at the optimum x∗. For any T , after running the algorithm for T timesteps, we say that the
algorithm has succeeded if xt ∈ S for some t ≤ T ; otherwise, we say that the algorithm has failed,
and we denote this failure event as FT .

Our main result is a technique that allows us to bound the convergence rates of asynchronous SGD
and related algorithms, even for some non-convex problems. We use martingale methods, which
have produced elegant convergence rate results for both convex and some non-convex [4] algorithms.
Martingales enable us to model multiple forms of error—for example, from stochastic sampling,
random initialization, and asynchronous delays—within a single statistical model. Compared to
standard techniques, they also allow us to analyze algorithms that sometimes get stuck, which is
useful for non-convex problems. Our core contribution is that a martingale-based proof for the
convergence of a sequential stochastic algorithm can be easily modified to give a convergence rate
for an asynchronous version.

A supermartingale [7] is a stochastic processWt such that E[Wt+1|Wt] ≤Wt. That is, the expected
value is non-increasing over time. A martingale-based proof of convergence for the sequential ver-
sion of this algorithm must construct a supermartingale Wt(xt, xt−1, . . . , x0) that is a function of
both the time and the current and past iterates; this function informally represents how unhappy we
are with the current state of the algorithm. Typically, it will have the following properties.
Definition 1. For a stochastic algorithm as described above, a non-negative processWt : Rn×t → R
is a rate supermartingale with horizon B if the following conditions are true. First, it must be a
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supermartingale; that is, for any sequence xt, . . . , x0 and any t ≤ B,

E[Wt+1(xt − G̃t(xt), xt, . . . , x0)] ≤Wt(xt, xt−1, . . . , x0). (3)

Second, for all times T ≤ B and for any sequence xT , . . . , x0, if the algorithm has not succeeded
by time T (that is, xt /∈ S for all t < T ), it must hold that

WT (xT , xT−1, . . . , x0) ≥ T. (4)

This represents the fact that we are unhappy with running for many iterations without success.

Using this, we can easily bound the convergence rate of the sequential version of the algorithm.

Statement 1. Assume that we run a sequential stochastic algorithm, for which W is a rate super-
martingale. For any T ≤ B, the probability that the algorithm has not succeeded by time T is

P (FT ) ≤ E[W0(x0)]

T
.

Proof. In what follows, we let Wt denote the actual value taken on by the function in a process
defined by (2). That is, Wt = Wt(xt, xt−1, . . . , x0). By applying (3) recursively, for any T ,

E[WT ] ≤ E[W0] = E[W0(x0)].

By the law of total expectation applied to the failure event FT ,

E[W0(x0)] ≥ E[WT ] = P (FT )E[WT |FT ] + P (¬FT )E[WT |¬FT ].

Applying (4), i.e. E[WT |FT ] ≥ T , and recalling that W is nonnegative results in

E[W0(x0)] ≥ P (FT )T ;

rearranging terms produces the result in Statement 1.

This technique is very general; in subsequent sections we show that rate supermartingales can be
constructed for SGD on all convex problems and for some algorithms for non-convex problems.

2.1 Modeling Asynchronicity

The behavior of an asynchronous SGD algorithm depends both on the problem it is trying to solve
and on the hardware it is running on. For ease of analysis, we assume that the hardware has the
following characteristics. These are basically the same assumptions used to prove the original HOG-
WILD! result [17].

• There are multiple threads running iterations of (2), each with their own cache. At any point
in time, these caches may hold different values for the variable x, and they communicate
via some cache coherency protocol.

• There exists a central store S (typically RAM) at which all writes are serialized. This
provides a consistent value for the state of the system at any point in real time.

• If a thread performs a read R of a previously written value X , and then writes another
value Y (dependent on R), then the write that produced X will be committed to S before
the write that produced Y .

• Each write from an iteration of (2) is to only a single entry of x and is done using an atomic
read-add-write instruction. That is, there are no write-after-write races (handling these is
possible, but complicates the analysis).

Notice that, if we let xt denote the value of the vector x in the central store S after t writes have
occurred, then since the writes are atomic, the value of xt+1 is solely dependent on the single thread
that produces the write that is serialized next in S. If we let G̃t denote the update function sample
that is used by that thread for that write, and vt denote the cached value of x used by that write, then

xt+1 = xt − G̃t(ṽt) (5)
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Our hardware model further constrains the value of ṽt: all the read elements of ṽt must have been
written to S at some time before t. Therefore, for some nonnegative variable τ̃i,t,

eTi ṽt = eTi xt−τ̃i,t , (6)
where ei is the ith standard basis vector. We can think of τ̃i,t as the delay in the ith coordinate
caused by the parallel updates.

We can conceive of this system as a stochastic process with two sources of randomness: the noisy up-
date function samples G̃t and the delays τ̃i,t. We assume that the G̃t are independent and identically
distributed—this is reasonable because they are sampled independently by the updating threads. It
would be unreasonable, though, to assume the same for the τ̃i,t, since delays may very well be cor-
related in the system. Instead, we assume that the delays are bounded from above by some random
variable τ̃ . Specifically, if Ft, the filtration, denotes all random events that occurred before timestep
t, then for any i, t, and k,

P (τ̃i,t ≥ k|Ft) ≤ P (τ̃ ≥ k) . (7)

We let τ = E[τ̃ ], and call τ the worst-case expected delay.

2.2 Convergence Rates for Asynchronous SGD

Now that we are equipped with a stochastic model for the asynchronous SGD algorithm, we show
how we can use a rate supermartingale to give a convergence rate for asynchronous algorithms. To
do this, we need some continuity and boundedness assumptions; we collect these into a definition,
and then state the theorem.
Definition 2. An algorithm with rate supermartingale W is (H,R, ξ)-bounded if the following
conditions hold. First, W must be Lipschitz continuous in the current iterate with parameter H; that
is, for any t, u, v, and sequence xt, . . . , x0,

‖Wt(u, xt−1, . . . , x0)−Wt(v, xt−1, . . . , x0)‖≤ H‖u− v‖. (8)

Second, G̃ must be Lipschitz continuous in expectation with parameter R; that is, for any u, and v,

E[‖G̃(u)− G̃(v)‖] ≤ R‖u− v‖1. (9)
Third, the expected magnitude of the update must be bounded by ξ. That is, for any x,

E[‖G̃(x)‖] ≤ ξ. (10)
Theorem 1. Assume that we run an asynchronous stochastic algorithm with the above hardware
model, for which W is a (H,R, ξ)-bounded rate supermartingale with horizon B. Further assume
that HRξτ < 1. For any T ≤ B, the probability that the algorithm has not succeeded by time T is

P (FT ) ≤ E[W (0, x0)]

(1−HRξτ)T
.

Note that this rate depends only on the worst-case expected delay τ and not on any other properties
of the hardware model. Compared to the result of Statement 1, the probability of failure has only
increased by a factor of 1 − HRξτ . In most practical cases, HRξτ � 1, so this increase in
probability is negligible.

Since the proof of this theorem is simple, but uses non-standard techniques, we outline it here.
First, notice that the process Wt, which was a supermartingale in the sequential case, is not in the
asynchronous case because of the delayed updates. Our strategy is to use W to produce a new
process Vt that is a supermartingale in this case. For any t and x·, if xu /∈ S for all u < t, we define

Vt(xt, . . . , x0) = Wt(xt, . . . , x0)−HRξτt+HR

∞∑
k=1

‖xt−k+1 − xt−k‖
∞∑
m=k

P (τ̃ ≥ m) .

Compared with W , there are two additional terms here. The first term is negative, and cancels out
some of the unhappiness from (4) that we ascribed to running for many iterations. We can interpret
this as us accepting that we may need to run for more iterations than in the sequential case. The
second term measures the distance between recent iterates; we would be unhappy if this becomes
large because then the noise from the delayed updates would also be large. On the other hand, if
xu ∈ S for some u < t, then we define

Vt(xt, . . . , xu, . . . , x0) = Vu(xu, . . . , x0).
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We call Vt a stopped process because its value doesn’t change after success occurs. It is straightfor-
ward to show that Vt is a supermartingale for the asynchronous algorithm. Once we know this, the
same logic used in the proof of Statement 1 can be used to prove Theorem 1.

Theorem 1 gives us a straightforward way of bounding the convergence time of any asynchronous
stochastic algorithm. First, we find a rate supermartingale for the problem; this is typically no
harder than proving sequential convergence. Second, we find parameters such that the problem is
(H,R, ξ)-bounded, typically ; this is easily done for well-behaved problems by using differentiation
to bound the Lipschitz constants. Third, we apply Theorem 1 to get a rate for asynchronous SGD.
Using this method, analyzing an asynchronous algorithm is really no more difficult than analyzing
its sequential analog.

3 Applications

Now that we have proved our main result, we turn our attention to applications. We show, for
a couple of algorithms, how to construct a rate supermartingale. We demonstrate that doing this
allows us to recover known rates for HOGWILD! algorithms as well as analyze cases where no
known rates exist.

3.1 Convex Case, High Precision Arithmetic

First, we consider the simple case of using asynchronous SGD to minimize a convex function f(x)

using unbiased gradient samples∇f̃(x). That is, we run the update rule

xt+1 = xt − α∇f̃t(x). (11)

We make the standard assumption that f is strongly convex with parameter c; that is, for all x and y

(x− y)T (∇f(x)−∇f(y)) ≥ c‖x− y‖2. (12)

We also assume continuous differentiability of∇f̃ with 1-norm Lipschitz constant L,

E[‖∇f̃(x)−∇f̃(y)‖] ≤ L‖x− y‖1. (13)

We require that the second moment of the gradient sample is also bounded for some M > 0 by

E[‖∇f̃(x)‖2] ≤M2. (14)

For some ε > 0, we let the success region be

S = {x|‖x− x∗‖2≤ ε}.
Under these conditions, we can construct a rate supermartingale for this algorithm.
Lemma 1. There exists a Wt where, if the algorithm hasn’t succeeded by timestep t,

Wt(xt, . . . , x0) =
ε

2αcε− α2M2
log
(
e ‖xt − x∗‖2 ε−1

)
+ t,

such that Wt is a rate submartingale for the above algorithm with horizon B =∞. Furthermore, it
is (H,R, ξ)-bounded with parameters: H = 2

√
ε(2αcε− α2M2)−1, R = αL, and ξ = αM .

Using this and Theorem 1 gives us a direct bound on the failure rate of convex HOGWILD! SGD.
Corollary 1. Assume that we run an asynchronous version of the above SGD algorithm, where for
some constant ϑ ∈ (0, 1) we choose step size

α =
cεϑ

M2 + 2LMτ
√
ε
.

Then for any T , the probability that the algorithm has not succeeded by time T is

P (FT ) ≤ M2 + 2LMτ
√
ε

c2εϑT
log
(
e ‖x0 − x∗‖2 ε−1

)
.

This result is more general than the result in Niu et al. [17]. The main differences are: that we make
no assumptions about the sparsity structure of the gradient samples; and that our rate depends only
on the second moment of G̃ and the expected value of τ̃ , as opposed to requiring absolute bounds
on their magnitude. Under their stricter assumptions, the result of Corollary 1 recovers their rate.
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3.2 Convex Case, Low Precision Arithmetic

One of the ways BUCKWILD! achieves high performance is by using low-precision fixed-point
arithmetic. This introduces additional noise to the system in the form of round-off error. We consider
this error to be part of the BUCKWILD! hardware model. We assume that the round-off error can
be modeled by an unbiased rounding function operating on the update samples. That is, for some
chosen precision factor κ, there is a random quantization function Q̃ such that, for any x ∈ R, it
holds that E[Q̃(x)] = x, and the round-off error is bounded by |Q̃(x) − x|< ακM . Using this
function, we can write a low-precision asynchronous update rule for convex SGD as

xt+1 = xt − Q̃t
(
α∇f̃t(ṽt)

)
, (15)

where Q̃t operates only on the single nonzero entry of ∇f̃t(ṽt). In the same way as we did in the
high-precision case, we can use these properties to construct a rate supermartingale for the low-
precision version of the convex SGD algorithm, and then use Theorem 1 to bound the failure rate of
convex BUCKWILD!
Corollary 2. Assume that we run asynchronous low-precision convex SGD, and for some ϑ ∈ (0, 1),
we choose step size

α =
cεϑ

M2(1 + κ2) + LMτ(2 + κ2)
√
ε
,

then for any T , the probability that the algorithm has not succeeded by time T is

P (FT ) ≤ M2(1 + κ2) + LMτ(2 + κ2)
√
ε

c2εϑT
log
(
e ‖x0 − x∗‖2 ε−1

)
.

Typically, we choose a precision such that κ � 1; in this case, the increased error compared to the
result of Corollary 1 will be negligible and we will converge in a number of samples that is very
similar to the high-precision, sequential case. Since each BUCKWILD! update runs in less time than
an equivalent HOGWILD! update, this result means that an execution of BUCKWILD! will produce
same-quality output in less wall-clock time compared with HOGWILD!

3.3 Non-Convex Case, High Precision Arithmetic

Many machine learning problems are non-convex, but are still solved in practice with SGD. In this
section, we show that our technique can be adapted to analyze non-convex problems. Unfortunately,
there are no general convergence results that provide rates for SGD on non-convex problems, so it
would be unreasonable to expect a general proof of convergence for non-convex HOGWILD! Instead,
we focus on a particular problem, low-rank least-squares matrix completion,

minimize E[‖Ã− xxT ‖2F ]
subject to x ∈ Rn,

(16)

for which there exists a sequential SGD algorithm with a martingale-based rate that has already
been proven. This problem arises in general data analysis, subspace tracking, principle component
analysis, recommendation systems, and other applications [4]. In what follows, we let A = E[Ã].
We assume that A is symmetric, and has unit eigenvectors u1, u2, . . . , un with corresponding eigen-
values λ1 > λ2 ≥ · · · ≥ λn. We let ∆, the eigengap, denote ∆ = λ1 − λ2.

De Sa et al. [4] provide a martingale-based rate of convergence for a particular SGD algorithm,
Alecton, running on this problem. For simplicity, we focus on only the rank-1 version of the prob-
lem, and we assume that, at each timestep, a single entry of A is used as a sample. Under these
conditions, Alecton uses the update rule

xt+1 = (I + ηn2eĩte
T
ĩt
Aej̃te

T
j̃t

)xt, (17)

where ĩt and j̃t are randomly-chosen indices in [1, n]. It initializes x0 uniformly on the sphere of
some radius centered at the origin. We can equivalently think of this as a stochastic power iteration
algorithm. For any ε > 0, we define the success set S to be

S = {x|(uT1 x)2 ≥ (1− ε) ‖x‖2}. (18)
That is, we are only concerned with the direction of x, not its magnitude; this algorithm only recovers
the dominant eigenvector of A, not its eigenvalue. In order to show convergence for this entrywise
sampling scheme, De Sa et al. [4] require that the matrix A satisfy a coherence bound [10].
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Table 1: Training loss of SGD as a function of arithmetic precision for logistic regression.

Dataset Rows Columns Size 32-bit float 16-bit int 8-bit int
Reuters 8K 18K 1.2GB 0.5700 0.5700 0.5709

Forest 581K 54 0.2GB 0.6463 0.6463 0.6447
RCV1 781K 47K 0.9GB 0.1888 0.1888 0.1879
Music 515K 91 0.7GB 0.8785 0.8785 0.8781

Definition 3. A matrix A ∈ Rn×n is incoherent with parameter µ if for every standard basis vector
ej , and for all unit eigenvectors ui of the matrix, (eTj ui)

2 ≤ µ2n−1.

They also require that the step size be set, for some constants 0 < γ ≤ 1 and 0 < ϑ < (1 + ε)−1 as

η =
∆εγϑ

2nµ4 ‖A‖2F
.

For ease of analysis, we add the additional assumptions that our algorithm runs in some bounded
space. That is, for some constant C, at all times t, 1 ≤ ‖xt‖ and ‖xt‖1 ≤ C. As in the convex
case, by following the martingale-based approach of De Sa et al. [4], we are able to generate a rate
supermartinagle for this algorithm—to save space, we only state its initial value and not the full
expression.
Lemma 2. For the problem above, choose any horizon B such that ηγε∆B ≤ 1. Then there exists
a function Wt such that Wt is a rate supermartingale for the above non-convex SGD algorithm with
parameters H = 8nη−1γ−1∆−1ε−

1
2 , R = ηµ ‖A‖F , and ξ = ηµ ‖A‖F C, and

E [W0(x0)] ≤ 2η−1∆−1 log(enγ−1ε−1) +B
√

2πγ.

Note that the analysis parameter γ allows us to trade off between B, which determines how long we
can run the algorithm, and the initial value of the supermartingale E [W0(x0)]. We can now produce
a corollary about the convergence rate by applying Theorem 1 and setting B and T appropriately.
Corollary 3. Assume that we run HOGWILD! Alecton under these conditions for T timesteps, as
defined below. Then the probability of failure, P (FT ), will be bounded as below.

T =
4nµ4 ‖A‖2F

∆2εγϑ
√

2πγ
log

(
en

γε

)
, P (FT ) ≤

√
8πγµ2

µ2 − 4Cϑτ
√
ε
.

The fact that we are able to use our technique to analyze a non-convex algorithm illustrates its
generality. Note that it is possible to combine our results to analyze asynchronous low-precision
non-convex SGD, but the resulting formulas are complex, so we do not include them here.

4 Experiments

We validate our theoretical results for both asynchronous non-convex matrix completion and BUCK-
WILD!, a HOGWILD! implementation with lower-precision arithmetic. Like HOGWILD!, a BUCK-
WILD! algorithm has multiple threads running an update rule (2) in parallel without locking. Com-
pared with HOGWILD!, which uses 32-bit floating point numbers to represent input data, BUCK-
WILD! uses limited-precision arithmetic by rounding the input data to 8-bit or 16-bit integers. This
not only decreases the memory usage, but also allows us to take advantage of single-instruction-
multiple-data (SIMD) instructions for integers on modern CPUs.

We verified our main claims by running HOGWILD! and BUCKWILD! algorithms on the discussed
applications. Table 1 shows how the training loss of SGD for logistic regression, a convex problem,
varies as the precision is changed. We ran SGD with step size α = 0.0001; however, results are
similar across a range of step sizes. We analyzed all four datasets reported in DimmWitted [25] that
favored HOGWILD!: Reuters and RCV1, which are text classification datasets; Forest, which arises
from remote sensing; and Music, which is a music classification dataset. We implemented all GLM
models reported in DimmWitted, including SVM, Linear Regression, and Logistic Regression, and
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Figure 1: Experiments compare the training loss, performance, and convergence of HOGWILD! and
BUCKWILD! algorithms with sequential and/or high-precision versions.

report Logistic Regression because other models have similar performance. The results illustrate
that there is almost no increase in training loss as the precision is decreased for these problems. We
also investigated 4-bit and 1-bit computation: the former was slower than 8-bit due to a lack of 4-bit
SIMD instructions, and the latter discarded too much information to produce good quality results.

Figure 1(a) displays the speedup of BUCKWILD! running on the dense-version of the RCV1 dataset
compared to both full-precision sequential SGD (left axis) and best-case HOGWILD! (right axis).
Experiments ran on a machine with two Xeon X650 CPUs, each with six hyperthreaded cores, and
24GB of RAM. This plot illustrates that incorporating low-precision arithmetic into our algorithm
allows us to achieve significant speedups over both sequential and HOGWILD! SGD. (Note that we
don’t get full linear speedup because we are bound by the available memory bandwidth; beyond
this limit, adding additional threads provides no benefits while increasing conflicts and thrashing
the L1 and L2 caches.) This result, combined with the data in Table 1, suggest that by doing low-
precision asynchronous updates, we can get speedups of up to 2.3× on these sorts of datasets without
a significant increase in error.

Figure 1(b) compares the convergence trajectories of HOGWILD! and sequential versions of the non-
convex Alecton matrix completion algorithm on a synthetic data matrix A ∈ Rn×n with ten random
eigenvalues λi > 0. Each plotted series represents a different run of Alecton; the trajectories differ
somewhat because of the randomness of the algorithm. The plot shows that the sequential and
asynchronous versions behave qualitatively similarly, and converge to the same noise floor. For this
dataset, sequential Alecton took 6.86 seconds to run while 12-thread HOGWILD! Alecton took 1.39
seconds, a 4.9× speedup.

5 Conclusion

This paper presented a unified theoretical framework for producing results about the convergence
rates of asynchronous and low-precision random algorithms such as stochastic gradient descent. We
showed how a martingale-based rate of convergence for a sequential, full-precision algorithm can
be easily leveraged to give a rate for an asynchronous, low-precision version. We also introduced
BUCKWILD!, a strategy for SGD that is able to take advantage of modern hardware resources for
both task and data parallelism, and showed that it achieves near linear parallel speedup over sequen-
tial algorithms.
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[3] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In J.C. Platt, D. Koller, Y. Singer,
and S. Roweis, editors, NIPS, volume 20, pages 161–168. NIPS Foundation, 2008.

[4] Christopher De Sa, Kunle Olukotun, and Christopher Ré. Global convergence of stochastic gradient
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A Proof of Theorem 1

Proof of Theorem 1. This proof is a more detailed version of the argument outlined in Section 2.2.
First, we restate the definition of the process Vt from the body of the paper. As long as the algorithm
hasn’t succeeded yet,

Vt(xt, . . . , x0) = Wt(xt, . . . , x0)−HRξτt+HR

∞∑
k=1

‖xt−k+1 − xt−k‖
∞∑
m=k

P (τ̃ ≥ m) .

At the next timestep, we will have xt+1 = xt + G̃(ṽt), and so

Vt+1(xt + G̃(ṽt), xt, . . . , x0) = Wt+1(xt + G̃(ṽt), xt, . . . , x0)−HRξτ(t+ 1)

+HR
∥∥∥G̃(ṽt)

∥∥∥ ∞∑
m=1

P (τ̃ ≥ m)

+HR

∞∑
k=2

‖xt−k+2 − xt−k+1‖
∞∑
m=k

P (τ̃ ≥ m) .

Re-indexing the second sum and applying the definition of τ produces

Vt+1(xt + G̃(ṽt), xt, . . . , x0) = Wt+1(xt + G̃(ṽt), xt, . . . , x0)−HRξτ(t+ 1) +HRτ
∥∥∥G̃(ṽt)

∥∥∥
+HR

∞∑
k=1

‖xt−k+1 − xt−k‖
∞∑

m=k+1

P (τ̃ ≥ m) .

Applying the Lipschitz continuity assumption (8) for W results in

Vt+1(xt + G̃(ṽt), xt, . . . , x0) ≤Wt+1(xt + G̃(xt), xt, . . . , x0) +H
∥∥∥G̃(ṽt)− G̃(xt)

∥∥∥
−HRξτ(t+ 1) +HRτ

∥∥∥G̃(ṽt)
∥∥∥

+HR

∞∑
k=1

‖xt−k+1 − xt−k‖
∞∑

m=k+1

P (τ̃ ≥ m) .

Taking the expected value of both sides produces

E
[
Vt+1(xt+ G̃(ṽt), xt, . . . , x0)

]
≤E

[
Wt+1(xt+ G̃(xt), xt, . . . , x0)

]
+HE

[∥∥∥G̃(ṽt)− G̃(xt)
∥∥∥]

−HRξτ(t+ 1) +HRτE
[∥∥∥G̃(ṽt)

∥∥∥]
+HR

∞∑
k=1

‖xt−k+1 − xt−k‖
∞∑

m=k+1

P (τ̃ ≥ m) .

Applying the rate supermartingale property (3) of W ,

E
[
Vt(xt + G̃(ṽt), xt, . . . , x0)

]
≤Wt(xt, . . . , x0) +HE

[∥∥∥G̃(ṽt)− G̃(xt)
∥∥∥]

−HRξτ(t+ 1) +HRτE
[∥∥∥G̃(ṽt)

∥∥∥]
+HR

∞∑
k=1

‖xt−k+1 − xt−k‖
∞∑

m=k+1

P (τ̃ ≥ m) .
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Applying the Lipschitz continuity assumption (9) for G̃,

E
[
Vt(xt + G̃(ṽt), xt, . . . , x0)

]
≤Wt(xt, . . . , x0) +HRE [‖ṽt − xt‖1]

−HRξτ(t+ 1) +HRτE
[∥∥∥G̃(ṽt)

∥∥∥]
+HR

∞∑
k=1

‖xt−k+1 − xt−k‖
∞∑

m=k+1

P (τ̃ ≥ m) .

Finally, applying the update distance bound (10),

E
[
Vt(xt + G̃(ṽt), xt, . . . , x0)

]
≤Wt(xt, . . . , x0) +HRE [‖ṽt − xt‖1]−HRξτ(t+ 1)

+HRξτ +HR

∞∑
k=1

‖xt−k+1 − xt−k‖
∞∑

m=k+1

P (τ̃ ≥ m)

= Wt(xt, . . . , x0)−HRξτt

+HR

∞∑
k=1

‖xt−k+1 − xt−k‖
∞∑
m=k

P (τ̃ ≥ m)

+HRE [‖ṽt − xt‖1]−HR
∞∑
k=1

‖xt−k+1 − xt−k‖P (τ̃ ≥ k)

= Vt(xt, . . . , x0) +HRE [‖ṽt − xt‖1]

−HR
∞∑
k=1

‖xt−k+1 − xt−k‖P (τ̃ ≥ k) .

Now, by the definition of the ṽt,

‖ṽt − xt‖1 =

n∑
i=1

∣∣eTi xt − eTi ṽt∣∣
=

n∑
i=1

∣∣eTi xt − eTi xt−τ̃i,t∣∣
≤

n∑
i=1

τ̃i,t∑
k=1

∣∣eTi xt−k+1 − eTi xt−k
∣∣

Furthermore, using the bound on τ̃i,t from (7) gives us

E [‖ṽt − xt‖1] ≤
n∑
i=1

∞∑
k=1

∣∣eTi xt−k+1 − eTi xt−k
∣∣P (τ̃i,t ≥ k)

≤
n∑
i=1

∞∑
k=1

∣∣eTi xt−k+1 − eTi xt−k
∣∣P (τ̃ ≥ k)

=

∞∑
k=1

‖xt−k+1 − xt−k‖1 P (τ̃ ≥ k)

=

∞∑
k=1

‖xt−k+1 − xt−k‖P (τ̃ ≥ k) ,

where the 1-norm is equal to the 2-norm here because each step only updates a single entry of x.
Substituting this result in to the above equation allows us to conclude that, if the algorithm hasn’t
succeeded by time t,

E
[
Vt(xt + G̃(ṽt), xt, . . . , x0)

]
≤ Vt(xt, . . . , x0). (19)
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On the other hand, if it has succeeded, this statement will be vacuously true, since Vt does not change
after success occurs. Therefore, (19) will hold for all times.

In what follows, as in the proof of Statement 1, we let Vt denote the actual value taken on by the
function during execution of the algorithm. That is, Vt = Vt(xt, xt−1, . . . , x0). By applying (19)
recursively, for any T < B, we can show that

E [VT ] ≤ E [V0] .

Since we assumed as part of our hardware model that xt = x0 for t < 0,
E [V0] = E [W0(x0)] .

Therefore, by the law of total expectation

E [W0(x0)] ≥ E [VT ]

= E [VT |FT ]P (FT ) + E [VT |¬FT ]P (¬FT )

≥ E [VT |FT ]P (FT )

= E

[
WT (xT , . . . , x0)−HRξτT

+HR

∞∑
k=1

‖xT−k+1 − xT−k‖
∞∑
m=k

P (τ̃ ≥ m)

∣∣∣∣∣FT
]
P (FT )

≥ (E [WT (xT , . . . , x0)|FT ]−HRξτT )P (FT ) .

Since Wt is a rate supermartingale, we can apply (4) to get

E [W0(x0)] ≥ (T −HRξτT )P (FT ) ,

and solving for P (FT ) produces

P (FT ) ≤ E [W0(x0)]

(1−HRξτ)T
,

as desired.

B Proofs for Convex Case

First, we state the rate supermartingale lemma for the low-precision convex SGD algorithm.
Lemma 3. There exists a Wt with

W0(x0) ≤ ε

2αcε− α2M2(1 + κ2)
log

(
e ‖x0 − x∗‖2

ε

)
such that Wt is a rate submartingale for the above convex SGD algorithm with horizon B = ∞.
Furthermore, it is (H,R, ξ)-bounded with parameters: R = αL, ξ2 = α2(1 + κ2)M2, and

H =
2
√
ε

2αcε− α2M2(1 + κ2)
.

We note that, including this Lemma, the results in Section 3.1 are the same as the results in Section
3.2, except that the quantization factor is set as κ = 0. It follows that it is sufficient to prove only
the Lemma and Corollary in 3.2; this is what we will do here.

In order to prove the results in this section, we will need some definitions and lemmas, which we
state now.
Definition 4 (Piecewise Logarithm). For the purposes of this document, we define the piecewise
logarithm function to be

log(x) =

{
log(ex) : x ≥ 1
x : x ≤ 1
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Lemma 4. The piecewise logarithm function is differentiable and concave. Also, if x ≥ 1, then for
any ∆,

log(x(1 + ∆)) ≤ log(x) + ∆.

Proof. The first part of the lemma follows from the fact that log(x) is a piecewise function, where the
pieces are both increasing and concave, and the fact that the function is differentiable at x = 1. The
second part of the lemma follows from the fact that a first-order approximation always overestimates
a concave function.

Armed with this definition, we prove Lemma 3.

Proof of Lemma 3. First, we note that, at any timestep t, if we evaluate the distance to the optimum
at the next timestep using (11), then∥∥∥xt + G̃t(xt)− x∗

∥∥∥2 = ‖xt − x∗‖2 − 2(xt − x∗)T Q̃t
(
α∇f̃t(xt)

)
+
∥∥∥Q̃t (α∇f̃t(xt))∥∥∥2

= ‖xt − x∗‖2 − 2(xt − x∗)T Q̃t
(
α∇f̃t(xt)

)
+ α2

∥∥∥α∇f̃t(xt)∥∥∥2 +
∥∥∥Q̃t (α∇f̃t(xt))− α∇f̃t(xt)∥∥∥2 .

Taking the expected value and applying (14), and the bounds on the properties of Q̃t, produces

E

[∥∥∥xt + G̃t(xt)− x∗
∥∥∥2] ≤ ‖xt − x∗‖2 − 2α(xt − x∗)T∇f(xt) + α2M2 + δ2.

Since we assigned δ ≤ ακM ,

E

[∥∥∥xt + G̃t(xt)− x∗
∥∥∥2] ≤ ‖xt − x∗‖2 − 2α(xt − x∗)T∇f(xt) + α2M2(1 + κ2)

= ‖xt − x∗‖2 − 2α(xt − x∗)T (∇f(xt)−∇f(x∗)) + α2M2(1 + κ2).

Applying the strong convexity assumption (12),

E

[∥∥∥xt + G̃t(xt)− x∗
∥∥∥2] ≤ ‖xt − x∗‖2 − 2αc ‖xt − x∗‖2 + α2M2(1 + κ2)

= (1− 2αc) ‖xt − x∗‖2 + α2M2(1 + κ2).

Now, if we haven’t succeeded yet, then ‖xt − x∗‖2 > ε. Under these conditions,

E

[∥∥∥xt + G̃t(xt)− x∗
∥∥∥2] ≤ ‖xt − x∗‖2 (1− 2αc+ α2M2(1 + κ2)ε−1

)
.

Multiplying both sides of the equation by ε−1 and taking the piecewise logarithm, by Jensen’s in-
equality

E

[
log

(
ε−1

∥∥∥xt + G̃t(xt)− x∗
∥∥∥2)] ≤ log

(
E

[
ε−1

∥∥∥xt + G̃t(xt)− x∗
∥∥∥2])

≤ log
(
ε−1 ‖xt − x∗‖2

(
1− 2αc+ α2M2(1 + κ2)ε−1

))
.

Since ε−1 ‖xt − x∗‖2 > 1, we can apply Lemma 4, which gives us

E

[
log

(
ε−1

∥∥∥xt + G̃t(xt)− x∗
∥∥∥2)] ≤ log

(
ε−1 ‖xt − x∗‖2

)
− 2αc+ α2M2(1 + κ2)ε−1.

Now, we define the rate supermartingale Wt such that, if we haven’t succeeded up to time t, then

Wt(xt, . . . , x0) =
ε

2αcε− α2M2(1 + κ2)
log
(
ε−1 ‖xt − x∗‖2

)
+ t;
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otherwise, if u is a time such that xu ∈ S, then for all t > u,

Wt(xt, . . . , x0) = Wu(xu, . . . , x0).

The first rate supermartingale property (3) is true because if success hasn’t occurred,

E
[
Wt+1(xt + G̃t(xt), . . . , x0)

]
= E

[
ε

2αcε− α2M2(1 + κ2)
log

(
ε−1

∥∥∥xt + G̃t(xt)− x∗
∥∥∥2)

+ (t+ 1)

]
=

ε

2αcε− α2M2(1 + κ2)
E

[
log

(
ε−1

∥∥∥xt + G̃t(xt)− x∗
∥∥∥2)]

+ (t+ 1)

≤ ε

2αcε− α2M2(1 + κ2)

(
log
(
ε−1 ‖xt − x∗‖2

)
− 2αc

+ α2M2(1 + κ2)ε−1
)

+ (t+ 1)

=
ε

2αcε− α2M2(1 + κ2)
log
(
ε−1 ‖xt − x∗‖2

)
− 1 + (t+ 1)

= Wt(xt, . . . , x0);

it is vacuously true if success has occurred because the value of Wt does not change after xu ∈ S
for u < t. The second rate supermartingale property (4) holds because, if success hasn’t occurred
by time T ,

WT (xT , . . . , x0) =
ε

2αcε− α2M2(1 + κ2)
log
(
ε−1 ‖xT − x∗‖2

)
+ T ≥ T ;

this follows from the non-negativity of the log function for non-negative arguments.

We have now shown that Wt is a rate supermartingale for this algorithm. Next, we verify that the
bound on W0 given in the lemma statement holds. At time 0, by the definition of the log function,
since we assume that success has not occurred yet,

W0(x0) =
ε

2αcε− α2M2(1 + κ2)
log
(
ε−1 ‖x0 − x∗‖2

)
=

ε

2αcε− α2M2(1 + κ2)
log

(
e ‖x0 − x∗‖2

ε

)
;

this is the bound given in the lemma statement.

Next, we show that this rate supermartingale is (H,R, ξ)-bounded, for the values of H , R, and ξ
given in the lemma statement. First, for any x, t, and sequence xt−1, . . . , x0,

∇xWt(x, xt−1, . . . , x0) = ∇x
(

ε

2αcε− α2M2(1 + κ2)
log
(
ε−1 ‖x− x∗‖2

))
=

ε

2αcε− α2M2(1 + κ2)
2ε−1(x− x∗)

′
log
(
ε−1 ‖x− x∗‖2

)
.

Now, by the definition of log, we can conclude that log′(u) = min
(
1, u−1

)
. Therefore,

∇xWt(x, xt−1, . . . , x0) =
2

2αcε− α2M2(1 + κ2)
(x− x∗) min

(
1, ε ‖x− x∗‖−2

)
,

and taking the norm of both sides,

∇xWt(x, xt−1, . . . , x0) =
2

2αcε− α2M2(1 + κ2)
min

(
‖x− x∗‖ , ε ‖x− x∗‖−1

)
.
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Clearly, this expression is maximized when ‖x− x∗‖2 = ε. Therefore,

∇xWt(x, xt−1, . . . , x0) ≤ 2
√
ε

2αcε− α2M2(1 + κ2)
.

The Lipschitz continuity expression with H in the lemma statement now follows from the mean
value theorem.

Next, we bound the Lipschitz continuity expression for R. We have that, for any x and y, if the
single non-zero entry of∇f̃ is at index i, then

E
[∥∥∥G̃(x)− G̃(y)

∥∥∥] = E
[∥∥∥Q̃(α∇f̃(x))− Q̃(α∇f̃(y))

∥∥∥]
= E

[∣∣∣Q̃(αeTi ∇f̃(x))− Q̃(αeTi ∇f̃(y))
∣∣∣]

Without loss of generality, we assume that Q̃ is non-decreasing, and that eTi ∇f̃(x) ≥ eTi ∇f̃(y).
Thus, by the unbiased quality of Q̃,

E
[∥∥∥G̃(x)− G̃(y)

∥∥∥] = E
[
Q̃(eTi α∇f̃(x))− Q̃(eTi α∇f̃(y))

]
= E

[
eTi α∇f̃(x)− eTi α∇f̃(y)

]
= αE

[∥∥∥∇f̃(x)−∇f̃(y)
∥∥∥] .

Finally, applying (13),

E
[∥∥∥G̃(x)− G̃(y)

∥∥∥] ≤ αL.
Finally, we bound the update expression with ξ. We have,

E
[∥∥∥G̃(x)

∥∥∥]2 = E
[∥∥∥Q̃(α∇f̃(x))

∥∥∥]2
≤ E

[∥∥∥Q̃(α∇f̃(x))
∥∥∥2]

= E

[
α2
∥∥∥∇f̃(x)

∥∥∥2 + 2α(∇f̃(x))T
(
Q̃(α∇f̃(x))− α∇f̃(x)

)
+
∥∥∥Q̃(α∇f̃(x))− α∇f̃(x)

∥∥∥2] .
Applying the bounds on the rounding error,

E
[∥∥∥G̃(x)

∥∥∥]2 ≤ E

[
α2
∥∥∥∇f̃(x)

∥∥∥2 + 2α(∇f̃(x))T
(
Q̃(α∇f̃(x))− α∇f̃(x)

)
+ δ2

]
.

Taking the expected value and applying (14) and the unbiased quality of Q̃,

E
[∥∥∥G̃(x)

∥∥∥]2 ≤ α2M2 + δ2.

Applying the assignment δ = ακM results in

E
[∥∥∥G̃(x)

∥∥∥]2 ≤ α2M2(1 + κ2),

which is the desired expression.

So, we have proved all the statements in the lemma.
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Proof of Corollary 2. Applying Theorem 1 directly to the result of Lemma 1 produces

P (FT ) ≤ E [W0(x0)]

(1−HRξτ)T

=
ε

2αcε− α2M2(1 + κ2)
log

(
e ‖x0 − x∗‖2

ε

)((
1

−
(

2
√
ε

2αcε− α2M2(1 + κ2)

)
(αL)(αM

√
1 + κ2)τ

)
T

)−1
=

ε(
2αcε− α2

(
M2(1 + κ2)− 2LMτ

√
1 + κ2

√
ε
))
T

log

(
e ‖x0 − x∗‖2

ε

)

≤ ε

(2αcε− α2 (M2(1 + κ2)− LMτ(2 + κ2)
√
ε))T

log

(
e ‖x0 − x∗‖2

ε

)
Substituting the chosen value of α,

P (FT ) ≤ ε

T

(
2cε

(
cεϑ

M2(1 + κ2) + LMτ(2 + κ2)
√
ε

)
−
(
M2(1 + κ2)

− LMτ(2 + κ2)
√
ε
)( cεϑ

M2(1 + κ2) + LMτ(2 + κ2)
√
ε

)2
)−1

log

(
e ‖x0 − x∗‖2

ε

)

=
ε(

2c2ε2ϑ
M2(1+κ2)+LMτ(2+κ2)

√
ε
− c2ε2ϑ2

M2(1+κ2)+LMτ(2+κ2)
√
ε

)
T

log

(
e ‖x0 − x∗‖2

ε

)

≤ ε
c2ε2ϑ

M2(1+κ2)+LMτ(2+κ2)
√
ε
T

log

(
e ‖x0 − x∗‖2

ε

)

=
M2(1 + κ2) + LMτ(2 + κ2)

√
ε

c2εϑT
log

(
e ‖x0 − x∗‖2

ε

)
,

as desired.

C Proofs for Non-Convex Case

In order to accomplish this proof, we make use of some definitions and lemmas that appear in De Sa
et al. [4]. We state them here before proceeding to the proof.

First, we define a function

τ(x) =
(uT1 x)2

(1− γn−1)(uT1 x)2 + γn−1 ‖x‖2
.

Clearly, 0 ≤ τ(x) ≤ 1. Using this function, De Sa et al. [4] prove the following lemma. While
their version of the lemma applies to higher-rank problems and multiple distributions, we state here
a version that is specialized for the rank-1, entrywise sampling case we study in this paper. (This is
a combination of Lemma 2 and Lemma 12 from De Sa et al. [4].)
Lemma 5 (τ -bound). If we run the Alecton update rule using entrywise sampling under the condi-
tions in Section 3.3, including the incoherence and step size assignment, then for any x /∈ S,

E
[
τ(x+ ηÃx)

]
≥ τ(x) (1 + η∆(1− τ(x))) .

We also use another lemma from De Sa et al. [4]. This is a combination of their Lemmas 1 and 7.
Lemma 6 (Expected value of τ(x0)). If we initialize x0 with a uniform random angle (as done in
Alecton), then

E [1− τ(x0)] ≤
√
πγ

2
.
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Now, we prove Lemma 2.

Proof of Lemma 2. First, if x /∈ S, then (uT1 x)2 ≤ (1− ε) ‖x‖2. Therefore,

τ(x) =
(uT1 x)2

(1− γn−1)(uT1 x)2 + γn−1 ‖x‖2

≤ 1− ε
(1− γn−1)(1− ε) + γn−1

=
1− ε

1− ε+ γn−1ε,

and so

1− τ(x) ≥ γn−1ε

1− ε+ γn−1ε,
> γn−1ε.

From the result of Lemma 5, for any x /∈ S,

E
[
τ(x+ ηÃx)

]
≥ τ(x) (1 + η∆(1− τ(x))) .

Therefore,
E
[
1− τ(x+ ηÃx)

]
≤ (1− τ(x)) (1− η∆τ(x))

Therefore, by Jensen’s inequality and Lemma 4, since γ−1nε(1− τ(x)) > 1,

E
[
log
(
γ−1nε−1

(
1− τ(x+ ηÃx)

))]
≥ log

(
E
[
γ−1nε−1

(
1− τ(x+ ηÃx)

)])
≥ log

(
γ−1nε−1(1− τ(x)) (1− η∆τ(x))

)
≥ log

(
γ−1nε−1(1− τ(x))

)
− η∆τ(x).

Now, we define our rate supermartingale. First, define

Z =

{
x

∣∣∣∣τ(x) ≥ 1

2

}
,

and let B > 0 be any constant. Let Wt be defined such that, if xu /∈ S ∪ Z for all u ≤ t, then

Wt(xt, . . . , x0) =
2

η∆
log
(
γ−1nε−1(1− τ(xt))

)
+ 2B(1− τ(xt)) + t.

On the other hand, if xu ∈ S ∪ Z for some u, then for all t > u, we define

Wt(xt, . . . , x0) = Wu(xu, . . . , x0).

That is, once xt enters S ∪ Z, the process W stops changing.

We verify that Wt is a rate supermartingale. First, (3) is true because, in the case that the process
has stopped it is true vacuously, and in the case that it hasn’t stopped (i.e. xi /∈ S ∪Z for all u ≤ t),

E
[
Wt+1(xt + ηÃtxt, xt, . . . , x0

]
= E

[
2

η∆
log
(
γ−1nε−1(1− τ(xt + ηÃtxt))

)
+ 2B(1− τ(xt + ηÃtxt)) + t+ 1

]
=

2

η∆
E
[
log
(
γ−1nε−1(1− τ(xt + ηÃtxt))

)]
+ 2BE

[
1− τ(xt + ηÃtxt)

]
+ t+ 1 ≤ 2

η∆

(
log
(
γ−1nε−1(1− τ(xt))

)
− η∆τ(xt)

)
+ 2B(1− τ(xt)) + t+ 1 = Wt(xt, . . . , x0)− 2τ(xt) + 1.

Since xt /∈ Z, it follows that 2τ(xt) ≥ 1. Therefore,

E
[
Wt+1(xt + ηÃtxt, xt, . . . , x0

]
≤Wt(xt, . . . , x0).

And so (3) holds in all cases.
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The second rate supermartingale property (4) holds because, if success hasn’t occurred by time
T < B, then there are two possibilities: either the process hasn’t stopped yet, or it stopped at a
timestep where xt ∈ Z. In the former case, by the non-negativity of the log function,

WT (xT , . . . , x0) =
2

η∆
log
(
γ−1nε−1(1− τ(xT ))

)
+ 2B(1− τ(xT )) + T ≥ T.

In the latter case,

WT (xT , . . . , x0) =
2

η∆
log
(
γ−1nε−1(1− τ(xT ))

)
+ 2B(1− τ(xT )) + T

≥ B.

Therefore (4) holds.

We have now shown that Wt is a rate supermartingale for Alecton. Next, we show that our bound
on the initial value of the supermartingale holds. At time 0,

W0(x0) =
2

η∆
log
(
γ−1nε−1(1− τ(x0))

)
+ 2B(1− τ(x0))

≤ 2

η∆
log
(
γ−1nε−1

)
+ 2B(1− τ(x0))

=
2

η∆
log

(
en

γε

)
+ 2B(1− τ(x0)).

Therefore, applying Lemma 6,

E [W0(x0)] ≤ 2

η∆
log

(
en

γε

)
+ 2BE [1− τ(x0)]

≤ 2

η∆
log

(
en

γε

)
+B

√
2πγ.

This is the value given in the lemma.

Now, we show that Wt is (H,R, ξ)-bounded. First, we give the H bound. To do so, we first
differentiate τ(x).

∇τ(x) =
2u1u

T
1 x
(

(1− γn−1)(uT1 x)2 + γn−1 ‖x‖2
)
− 2(uT1 x)2

(
(1− γn−1)u1u

T
1 x+ γn−1x

)
(

(1− γn−1)(uT1 x)2 + γn−1 ‖x‖2
)2

=
2u1u

T
1 xγn

−1 ‖x‖2 − 2(uT1 x)2γn−1x(
(1− γn−1)(uT1 x)2 + γn−1 ‖x‖2

)2

= 2γn−1
u1u

T
1 x ‖x‖

2 − x(uT1 x)2(
(1− γn−1)(uT1 x)2 + γn−1 ‖x‖2

)2 .
18



Therefore,

‖∇τ(x)‖2 = 4γ2n−2
(uT1 x)2 ‖x‖4 − (uT1 x)4 ‖x‖2(

(1− γn−1)(uT1 x)2 + γn−1 ‖x‖2
)4

≤ 4γ2n−2
‖x‖4 − (uT1 x)2 ‖x‖2(

(1− γn−1)(uT1 x)2 + γn−1 ‖x‖2
)3

≤ 4γn−1
‖x‖2 (1− τ(x))(

(1− γn−1)(uT1 x)2 + γn−1 ‖x‖2
)2

≤ 4(1− τ(x))(
(1− γn−1)(uT1 x)2 + γn−1 ‖x‖2

)

≤ 4n(1− τ(x))

γ ‖x‖2
.

Applying the assumption that ‖x‖2 ≥ 1,

‖∇τ(x)‖ ≤

√
4n(1− τ(x))

γ
.

Now, differentiating Wt with respect to τ produces

dW

dτ
= − 2n

ηγε∆

′
log
(
γ−1nε−1(1− τ)

)
− 2B.

So, it follows that

‖∇xWt(x, xt−1, . . . , x0)‖ ≤
∣∣∣∣dWdτ

∣∣∣∣ ‖∇τ(x)‖

≤
(

2n

ηγε∆

′
log
(
γ−1nε−1(1− τ)

)
+ 2B

)√
4n(1− τ(x))

γ
.

Applying our assumption that ηγε∆B ≤ 1, it is clear that this function will be maximized when
γ−1nε−1(1− τ) = 1. Therefore,

‖∇xWt(x, xt−1, . . . , x0)‖ ≤
(

2n

ηγε∆
+ 2B

)
2
√
ε

=
8n

ηγ∆
√
ε
,

which is our given value for H .

Next, we give the R bound. For Alecton, we have

G̃(x) = ηÃx = ηn2eie
T
i Aeje

T
j x.
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Therefore,

E
[∥∥∥G̃(x)− G̃(y)

∥∥∥] = ηn2E
[∥∥eieTi AejeTj (x− y)

∥∥]
= ηn2E

[∣∣eTi AejeTj (x− y)
∣∣]

= η

n∑
i=1

n∑
j=1

∣∣eTi Aej∣∣ ∣∣eTj (x− y)
∣∣

= η

n∑
j=1

∣∣eTj (x− y)
∣∣( n∑

i=1

∣∣eTi Aej∣∣
)

≤ η
n∑
j=1

∣∣eTj (x− y)
∣∣√n( n∑

i=1

(eTi Aej)
2

) 1
2

= η

n∑
j=1

∣∣eTj (x− y)
∣∣√n (eTj A2ej

) 1
2

= η

n∑
j=1

∣∣eTj (x− y)
∣∣√n( ∞∑

k=1

λ2j (u
T
k ej)

2

) 1
2

.

Applying the incoherence bound,

E
[∥∥∥G̃(x)− G̃(y)

∥∥∥] ≤ η n∑
j=1

∣∣eTj (x− y)
∣∣√n( ∞∑

k=1

λ2jµ
2n−1

) 1
2

= η

n∑
j=1

∣∣eTj (x− y)
∣∣√n(µ2n−1 ‖A‖2F

) 1
2

= η

n∑
j=1

∣∣eTj (x− y)
∣∣µ ‖A‖F

= ηµ ‖A‖F ‖x− y‖1 .

This agrees with our assignment of R = ηµ ‖A‖F .

Finally, we give our ξ bound on the magnitude of the updates. By the same argument as above, we
will have

E
[∥∥∥G̃(x)

∥∥∥] = ηn2E
[∥∥eieTi AejeTj x∥∥]

= ηµ ‖A‖F ‖x‖1 .

Applying the assumption that ‖x‖21 ≤ C, produces the bound given in the lemma, ξ = ηµ ‖A‖F C.

This completes the proof of the lemma.

Next, we prove the corollary that gives a bound on the failure probability of asynchronous Alecton.

Proof of Corollary 3. By Theorem 1, we know that for the constants defined in Lemma 2,

P (FT ) ≤ E [W (0, x0)]

(1−HRξτ)T
.

If we choose B = T for the horizon in Lemma 2, and substitute in the given constants,

P (FT ) ≤
(

2

η∆
log

(
en

γε

)
+ T

√
2πγ

)(
1−

(
8n

ηγ∆
√
ε

)
(ηµ ‖A‖F ) (ηµ ‖A‖F C) τ

)−1
T−1

=

(
2

η∆T
log

(
en

γε

)
+
√

2πγ

)(
1−

8ηnµ2 ‖A‖2F Cτ
γ∆
√
ε

)−1
.
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Now, for the given value of η, we will have

8ηnµ2 ‖A‖2F Cτ
γ∆
√
ε

=
∆εγϑ

2nµ4 ‖A‖2F

8nµ2 ‖A‖2F Cτ
γ∆
√
ε

=
4Cϑτ

√
ε

µ2
.

Also, for the given values of η and T , we will have

2

η∆T
log

(
en

γε

)
=

2nµ4 ‖A‖2F
∆εγϑ

∆2εγϑ
√

2πγ

4nµ4 ‖A‖2F

2

∆

=
√

2πγ.

Substituting these results in produces

P (FT ) ≤
√

8πγ

(
1− 4Cϑτ

√
ε

µ2

)−1
=

√
8πγµ2

µ2 − 4Cϑτ
√
ε
,

which is the desired result.

D Simplified Convex Result

In this section, we provide a simplified proof for a result similar to our main result that only works
in the convex case. This proof does not use any martingale results, and can therefore be considered
more elementary than the proofs given above; however, it does not generalize to the non-convex
case.

Theorem 2. Under the conditions given in Section 3.1, for any ε > 0, if for some ϑ ∈ (0, 1) we
choose constant step size

α =
cϑε

2LMτ
√
ε+M2

,

then there exists a timestep

T ≤ 2LMτ
√
ε+M2

c2ϑε
log

(
‖x0 − x∗‖2

ε

)
such that

E
[
‖xT − x∗‖2

]
≤ ε.

Proof. Our goal is to bound the square-distance to the optimum by showing that it generally de-
creases at each timestep. We can show algebraically that

‖xt+1 − x∗‖2 = ‖xt − x∗‖2 − 2α(xt − x∗)T∇f̃t(xt)

+ 2α(xt − x∗)T
(
∇f̃t(xt)−∇f̃t(ṽt)

)
+ α2

∥∥∥∇f̃t(ṽt)∥∥∥2 .
We can think of these terms as representing respectively: the current square-distance, the first-order
change, the noise due to delayed updates, and the noise due to random sampling. Taking the expected
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value given ṽt and applying Cauchy-Schwarz, (12), (13), and (14) produces

E
[
‖xt+1 − x∗‖2

∣∣∣Ft, ṽt] ≤ ‖xt − x∗‖2 − 2αc ‖xt − x∗‖2 + 2αL ‖xt − x∗‖ ‖xt − ṽt‖1 + α2M2

= (1−2αc) ‖xt−x∗‖2 +α2M2 +2αL ‖xt−x∗‖
n∑
i=1

∣∣eTi xt−eTi xt−τ̃i,t∣∣
≤ (1− 2αc) ‖xt − x∗‖2 + α2M2

+ 2αL ‖xt − x∗‖
n∑
i=1

τ̃i,t∑
k=1

∣∣eTi xt−k+1 − eTi xt−k
∣∣ .

We can now take the full expected value given the filtration, which produces

E
[
‖xt+1 − x∗‖2

∣∣∣Ft] ≤ (1− 2αc) ‖xt − x∗‖2 + α2M2

+ 2αL ‖xt − x∗‖
n∑
i=1

∞∑
k=1

P (τ̃i,k ≥ k)
∣∣eTi xt−k+1 − eTi xt−k

∣∣ .
Applying (7) results in

E
[
‖xt+1 − x∗‖2

∣∣∣Ft] ≤ (1− 2αc) ‖xt − x∗‖2 + α2M2

+ 2αL ‖xt − x∗‖
n∑
i=1

∞∑
k=1

P (τ̃ ≥ k)
∣∣eTi xt−k+1 − eTi xt−k

∣∣
= (1− 2αc) ‖xt − x∗‖2 + α2M2

+ 2αL ‖xt − x∗‖
∞∑
k=1

P (τ̃ ≥ k) ‖xt−k+1 − xt−k‖1 ,

and since only at most one entry of x changes at each iteration,

E
[
‖xt+1 − x∗‖2

∣∣∣Ft] ≤ (1− 2αc) ‖xt − x∗‖2 + α2M2

+ 2αL

∞∑
k=1

P (τ̃ ≥ k) ‖xt − x∗‖ ‖xt−k+1 − xt−k‖ .

Finally, taking the full expected value, and applying Cauchy-Schwarz again,

E
[
‖xt+1 − x∗‖2

]
≤ (1− 2αc)E

[
‖xt − x∗‖2

]
+ α2M2

+ 2αL

∞∑
k=1

P (τ̃ ≥ k)

√
E
[
‖xt − x∗‖2

]
E
[
‖xt−k+1 − xt−k‖2

]
.

Noticing that, from (14),

E
[
‖xt−k+1 − xt−k‖2

]
= E

[∥∥∥αG̃(ṽt−k)
∥∥∥2] ≤ α2M,

if we let Jt = E
[
‖xt − x∗‖2

]
, we get

Jt+1 ≤ (1− 2αc)Jt + α2M2 + 2α2LM

∞∑
k=1

P (τ̃ ≥ k)
√
Jt

= (1− 2αc)Jt + α2M2 + 2α2LMτ
√
Jt.
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For any ε > 0, as long as Jt ≥ ε,

log Jt+1 ≤ log Jt + log
(

1− 2αc+ α2M2ε−1 + 2α2LMτε−
1
2

)
< log Jt − 2αc+ α2M2ε−1 + 2α2LMτε−

1
2 .

If we substitute the value of α chosen in the theorem statement, then

log Jt+1 < log Jt −
c2ϑε

2LMτ
√
ε+M2

.

Therefore, for any T , if JT ≥ ε for all t < T ,

T <
2LMτ

√
ε+M2

c2ϑε
log

(
J0
JT

)
,

which proves the theorem.
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