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Theorem 1. Let P be any distribution over H, fixed before observing the sample S. Then for any
0 > 0 the following holds uniformly for all distributions QQ over H with probability at least 1 — §:
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Proof. Let f(Q) = er(Q) — é1(Q) = Enng (E(uy)~nl(h(z),y) — %2211 ((h(x;),y:)). From

Donsker-Varadhan’s variational formula one obtains that for any A > 0
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Since loss function is bounded by 1, from Hoeffding’s lemma we know that:
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Because the sample points are i.i.d., we can obtain that:
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By combining the fact, that P doesn’t depend on S, and Markov’s inequality, we obtain that with
probability at least 1 — §:
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By plugging it into (2) and setting A = /m we obtain the statement of the theorem. O

Lemma 2. Let X5,...,X,, € Q be a sequence of random variables and g : Q — [0,1] be a
function such that Eg(X;)| X1, ..., Xi—1] = b;. Let Zy, ..., Z,, be independent Bernoulli random
variables such that E[Z;] = b;. Then for any convex function f:

E[f(9(X1),...,9(Xn))] < Elf(Z1,..., Z0)]. (6)
Proof. Any point = (z1,...,2,) € [0,1]™ can be written as a linear combination of the extreme
points v = (v1,...,v,) € {0,1}" in the following way:
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Therefore by convexity of f we have that:
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By taking expectations on both sides we obtain that:
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Theorem 5. For any fixed hyper-prior distribution P with probability at least 1 — ¢ the following
holds uniformly for all hyper-posterior distributions Q:
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where Ps, . .., P, are some reference prior distributions that should not depend on the training sets
corresponding to subsequent tasks. In particular, it can be just one prior distribution P fixed before
observing any data, or posterior distribution corresponding to the previous task, ie P; = Q;_1.
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Proof. By applying KL-inequality we obtain:
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Due to independence of any prior P; and consequent sample sets .5;, . . ., S, we obtain that:
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Due to Hoeffding’s lemma, boundness of the loss and the fact that training samples are i.i.d., the
following holds:
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Therefore:
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By using Markov’s inequality and setting A = (n — 1),/m we obtain the statement of the theorem.
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The KL-term in the above theorem can be simplified:
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