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Abstract
We propose Kernel Hamiltonian Monte Carlo (KMC), a gradient-free adaptive
MCMC algorithm based on Hamiltonian Monte Carlo (HMC). On target densities
where classical HMC is not an option due to intractable gradients, KMC adap-
tively learns the target’s gradient structure by fitting an exponential family model
in a Reproducing Kernel Hilbert Space. Computational costs are reduced by two
novel efficient approximations to this gradient. While being asymptotically exact,
KMC mimics HMC in terms of sampling efficiency, and offers substantial mixing
improvements over state-of-the-art gradient free samplers. We support our claims
with experimental studies on both toy and real-world applications, including Ap-
proximate Bayesian Computation and exact-approximate MCMC.

1 Introduction
Estimating expectations using Markov Chain Monte Carlo (MCMC) is a fundamental approximate
inference technique in Bayesian statistics. MCMC itself can be computationally demanding, and
the expected estimation error depends directly on the correlation between successive points in the
Markov chain. Therefore, efficiency can be achieved by taking large steps with high probability.

Hamiltonian Monte Carlo [1] is an MCMC algorithm that improves efficiency by exploiting gra-
dient information. It simulates particle movement along the contour lines of a dynamical system
constructed from the target density. Projections of these trajectories cover wide parts of the target’s
support, and the probability of accepting a move along a trajectory is often close to one. Remark-
ably, this property is mostly invariant to growing dimensionality, and HMC here often is superior to
random walk methods, which need to decrease their step size at a much faster rate [1, Sec. 4.4].

Unfortunately, for a large class of problems, gradient information is not available. For example, in
Pseudo-Marginal MCMC (PM-MCMC) [2, 3], the posterior does not have an analytic expression,
but can only be estimated at any given point, e.g. in Bayesian Gaussian Process classification [4]. A
related setting is MCMC for Approximate Bayesian Computation (ABC-MCMC), where the pos-
terior is approximated through repeated simulation from a likelihood model [5, 6]. In both cases,
HMC cannot be applied, leaving random walk methods as the only mature alternative. There have
been efforts to mimic HMC’s behaviour using stochastic gradients from mini-batches in Big Data
[7], or stochastic finite differences in ABC [8]. Stochastic gradient based HMC methods, however,
often suffer from low acceptance rates or additional bias that is hard to quantify [9].

Random walk methods can be tuned by matching scaling of steps and target. For example, Adaptive
Metropolis-Hastings (AMH) [10, 11] is based on learning the global scaling of the target from the
history of the Markov chain. Yet, for densities with nonlinear support, this approach does not work
very well. Recently, [12] introduced a Kernel Adaptive Metropolis-Hastings (KAMH) algorithm
whose proposals are locally aligned to the target. By adaptively learning target covariance in a
Reproducing Kernel Hilbert Space (RKHS), KAMH achieves improved sampling efficiency.
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In this paper, we extend the idea of using kernel methods to learn efficient proposal distributions [12].
Rather than locally smoothing the target density, however, we estimate its gradients globally. More
precisely, we fit an infinite dimensional exponential family model in an RKHS via score matching
[13, 14]. This is a non-parametric method of modelling the log unnormalised target density as an
RKHS function, and has been shown to approximate a rich class of density functions arbitrarily well.
More importantly, the method has been empirically observed to be relatively robust to increasing
dimensionality – in sharp contrast to classical kernel density estimation [15, Sec. 6.5]. Gaussian
Processes (GP) were also used in [16] as an emulator of the target density in order to speed up
HMC, however, this requires access to the target in closed form, to provide training points for the
GP.

We require our adaptive KMC algorithm to be computationally efficient, as it deals with high-
dimensional MCMC chains of growing length. We develop two novel approximations to the infinite
dimensional exponential family model. The first approximation, score matching lite, is based on
computing the solution in terms of a lower dimensional, yet growing, subspace in the RKHS. KMC
with score matching lite (KMC lite) is geometrically ergodic on the same class of targets as stan-
dard random walks. The second approximation uses a finite dimensional feature space (KMC finite),
combined with random Fourier features [17]. KMC finite is an efficient online estimator that allows
to use all of the Markov chain history, at the cost of decreased efficiency in unexplored regions. A
choice between KMC lite and KMC finite ultimately depends on the ability to initialise the sampler
within high-density regions of the target; alternatively, the two approaches could be combined.

Experiments show that KMC inherits the efficiency of HMC, and therefore mixes significantly better
than state-of-the-art gradient-free adaptive samplers on a number of target densities, including on
synthetic examples, and when used in PM-MCMC and ABC-MCMC. All code can be found at
https://github.com/karlnapf/kernel_hmc

2 Background and Previous Work
Let the domain of interest X be a compact1 subset of Rd, and denote the unnormalised target den-
sity on X by π. We are interested in constructing a Markov chain x1 → x2 → . . . such that
limt→∞ xt ∼ π. By running the Markov chain for a long time T , we can consistently approximate
any expectation w.r.t. π. Markov chains are constructed using the Metropolis-Hastings algorithm,
which at the current state xt draws a point from a proposal mechanism x∗ ∼ Q(·|xt), and sets
xt+1 ← x∗ with probability min(1, [π(x∗)Q(xt|x∗)]/[π(xt)Q(x∗|xt)]), and xt+1 ← xt otherwise.
We assume that π is intractable,2 i.e. that we can neither evaluate π(x) nor3 ∇ log π(x) for any x,
but can only estimate it unbiasedly via π̂(x). Replacing π(x) with π̂(x) results in PM-MCMC [2, 3],
which asymptotically remains exact (exact-approximate inference).

(Kernel) Adaptive Metropolis-Hastings In the absence of ∇ log π, the usual choice of Q is a
random walk, i.e. Q(·|xt) = N (·|xt,Σt). A popular choice of the scaling is Σt ∝ I . When the
scale of the target density is not uniform across dimensions, or if there are strong correlations, the
AMH algorithm [10, 11] improves mixing by adaptively learning global covariance structure of π
from the history of the Markov chain. For cases where the local scaling does not match the global
covariance of π, i.e. the support of the target is nonlinear, KAMH [12] improves mixing by learning
the target covariance in a RKHS. KAMH proposals are Gaussian with a covariance that matches the
local covariance of π around the current state xt, without requiring access to∇ log π.

Hamiltonian Monte Carlo Hamiltonian Monte Carlo (HMC) uses deterministic, measure-
preserving maps to generate efficient Markov transitions [1, 18]. Starting from the negative log
target, referred to as the potential energy U(q) = − log π(q), we introduce an auxiliary momen-
tum variable p ∼ exp(−K(p)) with p ∈ X . The joint distribution of (p, q) is then proportional
to exp (−H(p, q)), where H(p, q) := K(p) + U(q) is called the Hamiltonian. H(p, q) defines a
Hamiltonian flow, parametrised by a trajectory length t ∈ R, which is a map φHt : (p, q) 7→ (p∗, q∗)
for which H(p∗, q∗) = H(p, q). This allows constructing π-invariant Markov chains: for a chain at
state q = xt, repeatedly (i) re-sample p′ ∼ exp(−K(·)), and then (ii) apply the Hamiltonian flow

1The compactness restriction is imposed to satisfy the assumptions in [13].
2π is analytically intractable, as opposed to computationally expensive in the Big Data context.
3Throughout the paper∇ denotes the gradient operator w.r.t. to x.
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for time t, giving (p∗, q∗) = φHt (p′, q). The flow can be generated by the Hamiltonian operator

∂K

∂p

∂

∂q
− ∂U

∂q

∂

∂p
(1)

In practice, (1) is usually unavailable and we need to resort to approximations. Here, we limit our-
selves to the leap-frog integrator; see [1] for details. To correct for discretisation error, a Metropolis
acceptance procedure can be applied: starting from (p′, q), the end-point of the approximate tra-
jectory is accepted with probability min [1, exp (−H(p∗, q∗) +H(p′, q))]. HMC is often able to
propose distant, uncorrelated moves with a high acceptance probability.

Intractable densities In many cases the gradient of log π(q) = −U(q) cannot be written in closed
form, leaving random-walk based methods as the state-of-the-art [11, 12]. We aim to overcome
random-walk behaviour, so as to obtain significantly more efficient sampling [1].

3 Kernel Induced Hamiltonian Dynamics
KMC replaces the potential energy in (1) by a kernel induced surrogate computed from the history of
the Markov chain. This surrogate does not require gradients of the log-target density. The surrogate
induces a kernel Hamiltonian flow, which can be numerically simulated using standard leap-frog
integration. As with the discretisation error in HMC, any deviation of the kernel induced flow
from the true flow is corrected via a Metropolis acceptance procedure. This here also contains
the estimation noise from π̂ and re-uses previous values of π̂, c.f. [3, Table 1]. Consequently,
the stationary distribution of the chain remains correct, given that we take care when adapting the
surrogate.

Infinite Dimensional Exponential Families in a RKHS We construct a kernel induced potential
energy surrogate whose gradients approximate the gradients of the true potential energy U in (1),
without accessing π or∇π directly, but only using the history of the Markov chain. To that end, we
model the (unnormalised) target density π(x) with an infinite dimensional exponential family model
[13] of the form

const× π(x) ≈ exp (〈f, k(x, ·)〉H −A(f)) , (2)

which in particular implies ∇f ≈ −∇U = ∇ log π. Here H is a RKHS of real valued functions
on X . The RKHS has a uniquely associated symmetric, positive definite kernel k : X × X → R,
which satisfies f(x) = 〈f, k(x, ·)〉H for any f ∈ H [19]. The canonical feature map k(·, x) ∈ H
here takes the role of the sufficient statistics while f ∈ H are the natural parameters, and
A(f) := log

´
X exp(〈f, k(x, ·)〉H)dx is the cumulant generating function. Eq. (2) defines broad

class of densities: when universal kernels are used, the family is dense in the space of continuous
densities on compact domains, with respect to e.g. Total Variation and KL [13, Section 3]. It is pos-
sible to consistently fit an unnormalised version of (2) by directly minimising the expected gradient
mismatch between the model (2) and the true target density π (observed through the Markov chain
history). This is achieved by generalising the score matching approach [14] to infinite dimensional
parameter spaces. The technique avoids the problem of dealing with the intractable A(f), and re-
duces the problem to solving a linear system. More importantly, the approach is observed to be
relatively robust to increasing dimensions. We return to estimation in Section 4, where we develop
two efficient approximations. For now, assume access to an f̂ ∈ H such that∇f(x) ≈ ∇ log π(x).

Kernel Induced Hamiltonian Flow We define a kernel induced Hamiltonian operator by replac-
ing U in the potential energy part ∂U

∂p
∂
∂q in (1) by our kernel surrogate Uk = f . It is clear that,

depending on Uk, the resulting kernel induced Hamiltonian flow differs from the original one. That
said, any bias on the resulting Markov chain, in addition to discretisation error from the leap-frog
integrator, is naturally corrected for in the Pseudo-Marginal Metropolis step. We accept an end-point
φHkt (p′, q) of a trajectory starting at (p′, q) along the kernel induced flow with probability

min
[
1, exp

(
−H

(
φHkt (p′, q)

)
+H(p′, q)

)]
, (3)

where H
(
φHkt (p′, q)

)
corresponds to the true Hamiltonian at φHkt (p′, q). Here, in the Pseudo-

Marginal context, we replace both terms in the ratio in (3) by unbiased estimates, i.e., we replace
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Figure 1: Hamiltonian trajectories on a 2-dimensional standard Gaussian. End points of such trajec-
tories (red stars to blue stars) form the proposal of HMC-like algorithms. Left: Plain Hamiltonian
trajectories oscillate on a stable orbit, and acceptance probability is close to one. Right: Kernel
induced trajectories and acceptance probabilities on an estimated energy function.

π(q) within H with an unbiased estimator π̂(q). Note that this also involves ‘recycling’ the es-
timates of H from previous iterations to ensure anyymptotic correctness, c.f. [3, Table 1]. Any
deviations of the kernel induced flow from the true flow result in a decreased acceptance probability
(3). We therefore need to control the approximation quality of the kernel induced potential energy
to maintain high acceptance probability in practice. See Figure 1 for an illustrative example.

4 Two Efficient Estimators for Exponential Families in RKHS
We now address estimating the infinite dimensional exponential family model (2) from data. The
original estimator in [13] has a large computational cost. This is problematic in the adaptive MCMC
context, where the model has to be updated on a regular basis. We propose two efficient approxima-
tions, each with its strengths and weaknesses. Both are based on score matching.

4.1 Score Matching
Following [14], we model an unnormalised log probability density log π(x) with a parametric model

log π̃Z(x; f) := log π̃(x; f)− logZ(f), (4)

where f is a collection of parameters of yet unspecified dimension (c.f. natural parameters of (2)),
and Z(f) is an unknown normalising constant. We aim to find f̂ from a set of n samples4 D :=

{xi}ni=1 ∼ π such that π(x) ≈ π̃(x; f̂) × const. From [14, Eq. 2], the criterion being optimised is
the expected squared distance between gradients of the log density, so-called score functions,

J(f) =
1

2

ˆ
X
π(x) ‖∇ log π̃(x; f)−∇ log π(x)‖22 dx,

where we note that the normalising constants vanish from taking the gradient ∇. As shown in [14,
Theorem 1], it is possible to compute an empirical version without accessing π(x) or ∇ log π(x)
other than through observed samples,

Ĵ(f) =
1

n

∑
x∈D

d∑
`=1

[
∂2 log π̃(x; f)

∂x2`
+

1

2

(
∂ log π̃(x; f)

∂x`

)2
]
. (5)

Our approximations of the original model (2) are based on minimising (5) using approximate scores.

4.2 Infinite Dimensional Exponential Families Lite
The original estimator of f in (2) takes a dual form in a RKHS sub-space spanned by nd+ 1 kernel
derivatives, [13, Thm. 4]. The update of the proposal at the iteration t of MCMC requires inversion
of a (td+ 1)× (td+ 1) matrix. This is clearly prohibitive if we are to run even a moderate number
of iterations of a Markov chain. Following [12], we take a simple approach to avoid prohibitive
computational costs in t: we form a proposal using a random sub-sample of fixed size n from the
Markov chain history, z := {zi}ni=1 ⊆ {xi}ti=1. In order to avoid excessive computation when d is
large, we replace the full dual solution with a solution in terms of span ({k(zi, ·)}ni=1), which covers
the support of the true density by construction, and grows with increasing n. That is, we assume that
the model (4) takes the ‘light’ form

4We assume a fixed sample set here but will use both the full chain history {xi}ti=1 or a sub-sample later.
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f(x) =

n∑
i=1

αik(zi, x), (6)

where α ∈ Rn are real valued parameters that are obtained by minimising the empirical score match-
ing objective (5). This representation is of a form similar to [20, Section 4.1], the main differences
being that the basis functions are chosen randomly, the basis set grows with n, and we will require
an additional regularising term. The estimator is summarised in the following proposition, which is
proved in Appendix A.
Proposition 1. Given a set of samples z = {zi}ni=1 and assuming f(x) =

∑n
i=1 αik(zi, x) for the

Gaussian kernel of the form k(x, y) = exp
(
−σ−1‖x− y‖22

)
, and λ > 0, the unique minimiser of

the λ‖f‖2H-regularised empirical score matching objective (5) is given by

α̂λ = −σ
2

(C + λI)−1b, (7)

where b ∈ Rn and C ∈ Rn×n are given by

b =

d∑
`=1

(
2

σ
(Ks` +Ds`K1− 2Dx`Kx`)−K1

)
and C =

d∑
`=1

[Dx`K −KDx` ] [KDx` −Dx`K] ,

with entry-wise products s` := x` � x` and Dx := diag(x).

The estimator costsO(n3 + dn2) computation (for computing C, b, and for inverting C) andO(n2)
storage, for a fixed random chain history sub-sample size n. This can be further reduced via low-rank
approximations to the kernel matrix and conjugate gradient methods, which are derived in Appendix
A.

Gradients of the model are given as ∇f(x) =
∑n
i=1 αi∇k(x, xi), i.e. they simply require to evalu-

ate gradients of the kernel function. Evaluation and storage of∇f(·) both cost O(dn).

4.3 Exponential Families in Finite Feature Spaces
Instead of fitting an infinite-dimensional model on a subset of the available data, the second estimator
is based on fitting a finite dimensional approximation using all available data {xi}ti=1, in primal
form. As we will see, updating the estimator when a new data point arrives can be done online.

Define an m-dimensional approximate feature space Hm = Rm, and denote by φx ∈ Hm the
embedding of a point x ∈ X = Rd into Hm = Rm. Assume that the embedding approximates the
kernel function as a finite rank expansion k(x, y) ≈ φ>x φy . The log unnormalised density of the
infinite model (2) can be approximated by assuming the model in (4) takes the form

f(x) = 〈θ, φx〉Hm = θ>φx (8)
To fit θ ∈ Rm, we again minimise the score matching objective (5), as proved in Appendix B.
Proposition 2. Given a set of samples x = {xi}ti=1 and assuming f(x) = θ>φx for a finite
dimensional feature embedding x 7→ φx ∈ Rm, and λ > 0, the unique minimiser of the λ‖θ‖22-
regularised empirical score matching objective (5) is given by

θ̂λ := (C + λI)−1b, (9)
where

b := − 1

n

t∑
i=1

d∑
`=1

φ̈`xi ∈ Rm, C :=
1

n

t∑
i=1

d∑
`=1

φ̇`xi

(
φ̇`xi

)T
∈ Rm×m,

with φ̇`x := ∂
∂x`

φx and φ̈`x := ∂2

∂x2
`
φx.

An example feature embedding based on random Fourier features [17, 21] and a standard Gaussian
kernel is φx =

√
2
m

[
cos(ωT1 x+ u1), . . . , cos(ω

T
mx+ um)

]
, with ωi ∼ N (ω) and ui ∼ Uniform[0, 2π].

The estimator has a one-off cost of O(tdm2 +m3) computation and O(m2) storage. Given that we
have computed a solution based on the Markov chain history {xi}ti=1, however, it is straightforward
to update C, b, and the solution θ̂λ online, after a new point xt+1 arrives. This is achieved by
storing running averages and performing low-rank updates of matrix inversions, and costs O(dm2)
computation and O(m2) storage, independent of t. Further details are given in Appendix B.

Gradients of the model are ∇f(x) = [∇φx]
>
θ̂ , i.e., they require the evaluation of the gradient of

the feature space embedding, costing O(md) computation and and O(m) storage.
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Algorithm 1 Kernel Hamiltonian Monte Carlo – Pseudo-code

Input: Target (possibly noisy estimator) π̂, adaptation schedule at, HMC parameters,
Size of basis m or sub-sample size n.

At iteration t+ 1, current state xt, history {xi}ti=1, perform (1-4) with probability at
KMC lite:

1. Update sub-sample z ⊆ {xi}ti=1

2. Re-compute C, b from Prop. 1

3. Solve α̂λ = −σ
2
(C + λI)−1b

4. ∇f(x)←∑n
i=1 αi∇k(x, zi)

KMC finite:

1. Update to C, b from Prop. 2

2. Perform rank-d update to C−1

3. Update θ̂λ = (C + λI)−1b

4. ∇f(x)← [∇φx]> θ̂
5. Propose (p′, x∗) with kernel induced Hamiltonian flow, using∇xU = ∇xf
6. Perform Metropolis step using π̂: accept xt+1 ← x∗ w.p. (3) and reject xt+1 ← xt otherwise

If π̂ is noisy and x∗ was accepted, store above π̂(x∗) for evaluating (3) in the next iteration

5 Kernel Hamiltonian Monte Carlo
Constructing a kernel induced Hamiltonian flow as in Section 3 from the gradients of the infinite di-
mensional exponential family model (2), and approximate estimators (6),(8), we arrive at a gradient
free, adaptive MCMC algorithm: Kernel Hamiltonian Monte Carlo (Algorithm 1).

Computational Efficiency, Geometric Ergodicity, and Burn-in KMC finite using (8) allows for
online updates using the full Markov chain history, and therefore is a more elegant solution than
KMC lite, which has greater computational cost and requires sub-sampling the chain history. Due
to the parametric nature of KMC finite, however, the tails of the estimator are not guaranteed to
decay. For example, the random Fourier feature embedding described below Proposition 2 contains
periodic cosine functions, and therefore oscillates in the tails of (8), resulting in a reduced acceptance
probability. As we will demonstrate in the experiments, this problem does not appear when KMC
finite is initialised in high-density regions, nor after burn-in. In situations where information about
the target density support is unknown, and during burn-in, we suggest to use the lite estimator (7),
whose gradients decay outside of the training data. As a result, KMC lite is guaranteed to fall back
to a Random Walk Metropolis in unexplored regions, inheriting its convergence properties, and
smoothly transitions to HMC-like proposals as the MCMC chain grows. A proof of the proposition
below can be found in Appendix C.

Proposition 3. Assume d = 1, π(x) has log-concave tails, the regularity conditions of [22, Thm
2.2] (implying π-irreducibility and smallness of compact sets), that MCMC adaptation stops after
a fixed time, and a fixed number L of ε-leapfrog steps. If lim sup‖x‖2→∞ ‖∇f(x)‖2 = 0, and
∃M : ∀x : ‖∇f(x)‖2 ≤ M , then KMC lite is geometrically ergodic from π-almost any starting
point.

Vanishing adaptation MCMC algorithms that use the history of the Markov chain for construct-
ing proposals might not be asymptotically correct. We follow [12, Sec. 4.2] and the idea of ‘vanish-
ing adaptation’ [11], to avoid such biases. Let {at}∞i=0 be a schedule of decaying probabilities such
that limt→∞ at = 0 and

∑∞
t=0 at = ∞. We update the density gradient estimate according to this

schedule in Algorithm 1. Intuitively, adaptation becomes less likely as the MCMC chain progresses,
but never fully stops, while sharing asymptotic convergence with adaptation that stops at a fixed
point [23, Theorem 1]. Note that Proposition 3 is a stronger statement about the convergence rate.

Free Parameters KMC has two free parameters: the Gaussian kernel bandwidth σ, and the regu-
larisation parameter λ. As KMC’s performance depends on the quality of the approximate infinite
dimensional exponential family model in (6) or (8), a principled approach is to use the score match-
ing objective function in (5) to choose σ, λ pairs via cross-validation (using e.g. ‘hot-started’ black-
box optimisation). Earlier adaptive kernel-based MCMC methods [12] did not address parameter
choice.

6 Experiments
We start by quantifying performance of KMC finite on synthetic targets. We emphasise that these
results can be reproduced with the lite version.
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KMC performance approaches HMC – outperforming KAMH and RW. 80% error bars over 30 runs.

KMC Finite: Stability of Trajectories in High Dimensions In order to quantify efficiency in
growing dimensions, we study hypothetical acceptance rates along trajectories on the kernel induced
Hamiltonian flow (no MCMC yet) on a challenging Gaussian target: We sample the diagonal entries
of the covariance matrix from a Gamma(1,1) distribution and rotate with a uniformly sampled
random orthogonal matrix. The resulting target is challenging to estimate due to its ‘non-singular
smoothness’, i.e., substantially differing length-scales across its principal components. As a single
Gaussian kernel is not able to effeciently represent such scaling families, we use a rational quadratic
kernel for the gradient estimation, whose random features are straightforward to compute. Figure
2 shows the average acceptance over 100 independent trials as a function of the number of (ground
truth) samples and basis functions, which are set to be equal n = m, and of dimension d. In low to
moderate dimensions, gradients of the finite estimator lead to acceptance rates comparable to plain
HMC. On targets with more ‘regular’ smoothness, the estimator performs well in up to d ≈ 100,
with less variance. See Appendix D.1 for details.

KMC Finite: HMC-like Mixing on a Synthetic Example We next show that KMC’s perfor-
mance approaches that of HMC as it sees more data. We compare KMC, HMC, an isotropic random
walk (RW), and KAMH on the 8-dimensional nonlinear banana-shaped target; see Appendix D.2.
We here only quantify mixing after a sufficient burn-in (burn-in speed is included in next example).
We quantify performance on estimating the target’s mean, which is exactly 0. We tuned the scaling
of KAMH and RW to achieve 23% acceptance. We set HMC parameters to achieve 80% acceptance
and then used the same parameters for KMC. We ran all samplers for 2000+200 iterations from a
random start point, discarded the burn-in and computed acceptance rates, the norm of the empirical
mean ‖Ê[x]‖, and the minimum effective sample size (ESS) across dimensions. For KAMH and
KMC, we repeated the experiment for an increasing number of burn-in samples and basis functions
m = n. Figure 3 shows the results as a function of m = n. KMC clearly outperforms RW and
KAMH, and eventually achieves performance close to HMC as n = m grows.

KMC Lite: Pseudo-Marginal MCMC for GP Classification on Real World Data We next
apply KMC to sample from the marginal posterior over hyper-parameters of a Gaussian Process
Classification (GPC) model on the UCI Glass dataset [24]. Classical HMC cannot be used for this
problem, due to the intractability of the marginal data likelihood. Our experimental protocol mostly
follows [12, Section 5.1], see Appendix D.3, but uses only 6000 MCMC iterations without discard-
ing a burn-in, i.e., we study how fast KMC initially explores the target. We compare convergence in
terms of all mixed moments of order up to 3 to a set of benchmark samples (MMD [25], lower is bet-
ter). KMC randomly uses between 1 and 10 leapfrog steps of a size chosen uniformly in [0.01, 0.1],

7



0 1000 2000 3000 4000 5000

Iterations

102

103

104

105

106

107

M
M

D
fr

om
gr

ou
nd

tr
ut

h

KMC
KAMH
RW

0 20 40 60 80 100

Lag

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ut

oc
or

re
la

ti
on

KMC
RW
HABC

−10 0 10 20 30 40 50

θ1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
(θ

1
)

Figure 4: Left: Results for 9-dimensional marginal posterior over length scales of a GPC model
applied to the UCI Glass dataset. The plots shows convergence (no burn-in discarded) of all mixed
moments up to order 3 (lower MMD is better). Middle/right: ABC-MCMC auto-correlation and
marginal θ1 posterior for a 10-dimensional skew normal likelihood. While KMC mixes as well as
HABC, it does not suffer from any bias (overlaps with RW, while HABC is significantly different)
and requires fewer simulations per proposal.

a standard Gaussian momentum, and a kernel tuned by cross-validation, see Appendix D.3. We did
not extensively tune the HMC parameters of KMC as the described settings were sufficient. Both
KMC and KAMH used 1000 samples from the chain history. Figure 4 (left) shows that KMC’s burn-
in contains a short ‘exploration phase’ where produced estimates are bad, due to it falling back to a
random walk in unexplored regions, c.f. Proposition 3. From around 500 iterations, however, KMC
clearly outperforms both RW and the earlier state-of-the-art KAMH. These results are backed by the
minimum ESS (not plotted), which is around 415 for KMC and is around 35 and 25 for KAMH and
RW, respectively. Note that all samplers effectively stop improving from 3000 iterations – indicating
a burn-in bias. All samplers took 1h time, with most time spent estimating the marginal likelihood.
KMC Lite: Reduced Simulations and no Additional Bias in ABC We now apply KMC in the
context of Approximate Bayesian Computation (ABC), which often is employed when the data like-
lihood is intractable but can be obtained by simulation, see e.g. [6]. ABC-MCMC [5] targets an
approximate posterior by constructing an unbiased Monte Carlo estimator of the approximate like-
lihood. As each such evaluation requires expensive simulations from the likelihood, the goal of all
ABC methods is to reduce the number of such simulations. Accordingly, Hamiltonian ABC was
recently proposed [8], combining the synthetic likelihood approach [26] with gradients based on
stochastic finite differences. We remark that this requires to simulate from the likelihood in every
leapfrog step, and that the additional bias from the Gaussian likelihood approximation can be prob-
lematic. In contrast, KMC does not require simulations to construct a proposal, but rather ‘invests’
simulations into an accept/reject step (3) that ensures convergence to the original ABC target. Fig-
ure 4 (right) compares performance of RW, HABC (sticky random numbers and SPAS, [8, Sec. 4.3,
4.4]), and KMC on a 10-dimensional skew-normal distribution p(y|θ) = 2N (θ, I) Φ (〈α, y〉) with
θ = α = 1 · 10. KMC mixes as well as HABC, but HABC suffers from a severe bias. KMC also
reduces the number of simulations per proposal by a factor 2L = 100. See Appendix D.4 for details.
7 Discussion
We have introduced KMC, a kernel-based gradient free adaptive MCMC algorithm that mimics
HMC’s behaviour by estimating target gradients in an RKHS. In experiments, KMC outperforms
random walk based sampling methods in up to d = 50 dimensions, including the recent kernel-
based KAMH [12]. KMC is particularly useful when gradients of the target density are unavailable,
as in PM-MCMC or ABC-MCMC, where classical HMC cannot be used. We have proposed two
efficient empirical estimators for the target gradients, each with different strengths and weaknesses,
and have given experimental evidence for the robustness of both.

Future work includes establishing theoretical consistency and uniform convergence rates for the
empirical estimators, for example via using recent analysis of random Fourier Features with tight
bounds [21], and a thorough experimental study in the ABC-MCMC context where we see a lot of
potential for KMC. It might also be possible to use KMC as a precomputing strategy to speed up
classical HMC as in [27]. For code, see https://github.com/karlnapf/kernel_hmc
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